
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
System Demonstrations, pages 101–109

November 12-16, 2024 ©2024 Association for Computational Linguistics

Commentator : A Code-mixed Multilingual Text Annotation
Framework

Rajvee Sheth†, Shubh Nisar⋆, Heenaben Prajapati†,
Himanshu Beniwal†, Mayank Singh†,

†Indian Institute of Technology Gandhinagar, ⋆North Carolina State University
Correspondence: lingo@iitgn.ac.in

Abstract
As the NLP community increasingly addresses
challenges associated with multilingualism, ro-
bust annotation tools are essential to handle
multilingual datasets efficiently. In this paper,
we introduce a code-mixed multilingual text
annotation framework, Commentator, specif-
ically designed for annotating code-mixed text.
The tool demonstrates its effectiveness in token-
level and sentence-level language annotation
tasks for Hinglish text. We perform robust qual-
itative human-based evaluations to showcase
Commentator led to 5x faster annotations than
the best baseline. Our code is publicly avail-
able at https://github.com/lingo-iitgn/
commentator. The demonstration video is
available at https://bit.ly/commentator_
video.

1 Introduction
Code mixing is prevalent in informal conversa-
tions and in social media, where elements from
different languages are interwoven within a single
sentence. A representative example in Hinglish
such as “I am feeling very thand today, so I’ll
wear a sweater.” (In this sentence, “thand” is
a Hindi word meaning “cold”, while the rest of
the sentence is in English), demonstrating seam-
less integration of Hindi and English. A major
challenge in NLP research is the scarcity of high-
quality datasets, which require extensive manual
efforts, significant time, domain expertise, and lin-
guistic understanding, as highlighted by Hovy and
Lavid (2010). The rise of social media has further
complicated annotation tasks due to non-standard
grammar, platform-specific tokens, and neologisms
(Shahi and Majchrzak, 2022). Annotating these
datasets presents unique challenges, including en-
suring data consistency, efficiently managing large
datasets, mitigating annotator biases, and reporting
poor-quality instances. Existing annotation tools
often fail to address these diverse issues effectively.

Figure 1: Commentator Framework.

This paper introduces Commentator, a robust
annotation framework designed for multiple code-
mixed annotation tasks. The current version1 of
Commentator supports two token-level annotation
tasks, Language Identification, POS tagging, and
sentence-level Matrix Language Identification.
While Commentator has already been used to
generate a large number of annotations (more than
100K) in our ongoing project2, these are not part of
the current demo paper. The focus of this paper is
to present the capabilities and initial functionalities
of the framework. Figure 1 presents the framework
Commentator.

We evaluate Commentator by comparing its
features and performance against five state-of-the-
art text annotation tools, (i) YEDDA (Yang et al.,
2018), (ii) MarkUp (Dobbie et al., 2021), (iii) IN-
CEpTION (Klie et al., 2018), (iv) UBIAI3 and
(v) GATE (Cunningham et al., 1996). The major
perceived capabilities (see Section 4.1) of Com-
mentator are (i) simplicity in navigation and per-
forming basic actions, (ii) task-specific recommen-
dations to improve user productivity and ease the

1As a continual development effort, it will be further
extended to three more popular code-mixing tasks NER, Spell
Correction and Normalization, and Machine Translation.

2URL available on our Github.
3https://ubiai.tools/

101

mailto:lingo@iitgn.ac.in
https://github.com/lingo-iitgn/commentator
https://github.com/lingo-iitgn/commentator
https://bit.ly/commentator_video
https://bit.ly/commentator_video
https://ubiai.tools/


annotation process, (iii) quick cloud or local setup
with minimal dependency requirements, (iv) pro-
moting iterative refinement and quality control by
integrating annotator feedback, (v) simple admin
interface for uploading data, monitoring progress
and post-annotation data analysis, and (vi) parallel
annotations enabling multiple users to work on the
same project simultaneously. Furthermore, Sec-
tion 4.2 demonstrates an annotation speed increase
of nearly 5x compared to the nearest SOTA base-
line. This speed gain can be further enhanced by
incorporating more advanced code-mixed libraries.

In addition, the codebase, the demo website with
a detailed installation guide, and some Hinglish
sample instances are available on GitHub4. Cur-
rently, the functionality is tailored for Hinglish, but
it can be extended to support any language pair.

2 Existing Text Annotation Frameworks
Text annotation tools are vital in NLP for creat-
ing annotated datasets for training and evaluating
machine learning models. This summary reviews
several key tools, each with unique features and
limitations.

2.1 Web-based Annotation Tools
These tools have been created to provide annotation
environments independent of operating systems.
Some of the web-based annotation tools are: (1)
MarkUp improves annotation speed and accuracy
using NLP and active learning but requires re-
annotation for updates and has unreliable collabora-
tion features (Dobbie et al., 2021), (2) INCEpTION
offers a versatile platform for semantic and interac-
tive annotation but struggles with session timeouts
and updating annotations (Klie et al., 2018), and
lastly, (3) UBIAI provides advanced cloud-based
NLP functions but faces problems with incorrect en-
tity assignments and model integration (ubi, 2022).

2.2 Locally-hosted Tools
These tools can be installed on a local machine and
offer more robust features or better performance for
large datasets. Some of the locally hosted tools are:
(1) YEDDA is an open source tool that enhances
annotation efficiency and supports collaborative
and administrative functions, though it has limita-
tions in customization and can break tokens during
annotation (Yang et al., 2018), (2) GATE is an open-
source tool known for its real-time collaboration,

4https://github.com/lingo-iitgn/commentator

but it is complicated to configure and slow with
API requests (Bontcheva et al., 2013), (3) BRAT
is user-friendly for entity recognition and relation-
ship annotation but lacks active learning, automatic
suggestions, and does not provide post-annotation
analysis features. Additionally it lacks a dedicated
admin interface for user management and annota-
tion monitoring, limiting its overall effectiveness.
(Stenetorp et al., 2012), (4) Prodigy integrates with
machine learning workflows and supports active
learning but requires a commercial license (Mon-
tani and Honnibal, 2018), and (5) Doccano is an
open-source tool with a customizable interface for
various annotation tasks but lacks advanced features
like real-time collaboration (Nakayama et al., 2018).
Additional tools include (6) Knowtator, designed
for biomedical annotations within Protégé, but re-
quires significant manual setup (Ogren, 2006), (7)
WordFreak, which is flexible but challenging for
non-technical users (Morton and LaCivita, 2003),
(8) Anafora, known for its efficiency in biomed-
ical annotation but lacking integration with ma-
chine learning models (Chen and Styler, 2013),
(9) Atomic, which is modular and powerful but
requires extensive customization (Druskat et al.,
2014), lastly, (10) WebAnno supports a wide range
of annotation tasks and collaborative work, but
encounters performance issues with large datasets
(Yimam et al., 2013).

While these tools offer diverse functionalities,
each exhibits limitations that affect efficiency and
usability. Most state-of-the-art frameworks are
either paid or closed-source and do not support
annotator feedback. Additionally, the majority do
not enable parallel annotations over the internet
and perform poorly when multiple scripts or words
from different languages appear in the same sen-
tence. The introduction of Commentator seeks
to address these challenges by providing a robust
framework specifically designed for multiple code-
mixed annotation tasks.

3 COMMENTATOR

3.1 The Functionalities
The proposed system caters to two types of users:
(i) the annotators and (ii) the admins. Annota-
tors perform annotation tasks. The admins design
the annotation task, employ annotators, administer
the annotation task, and process the annotations.
Given these roles, we describe the Commentator
functionalities by introducing:

102

https://github.com/lingo-iitgn/commentator


Figure 2: The Task interface of the Commentator.

3.1.1 The Annotator Panel
The annotator panel contains three pages:
1. Landing page: Figure 2 presents an annotator

landing page. Here, the annotators are presented
with a selection of several NLP tasks, displayed
as clickable options. Selecting a task directs
them to the dedicated annotation page for that
specific task.

2. Annotation pages: We, next, describe annotation
pages for the first three tasks:

• Token-Level Language Identification
(LID): This task involves identifying the
language of individual words (tokens)
within a sentence (Figure 3a, point 1). Each
token is pre-assigned a language tag using
a state-of-the-art language identification
API 5(more details are presented in Sec-
tion 3.2.2). Annotators can update these
tags by clicking the tag button until the
desired tag appears. Textual feedback can
be entered in the “Enter Your Feedback
Here” section (Figure 3a, point 3). Textual
feedback is essential to highlight issues
with the current sentence. Some issues
include grammatically incorrect sentences,
incomplete sentences, sensitive/private in-
formation, toxic content, etc.

• Token-Level Parts-Of-Speech Tagging
(POS): Similar to LID, this task involves
identifying the POS tags of individual to-
kens within a text. Each token is pre-
assigned a language tag using a state-of-
the-art POS tagging CodeSwitch NLP li-
brary 6(more details are presented in Sec-
tion 3.2.2). In case of incorrect assignment
of the tag, the annotators can select the cor-
rect tag from a drop-down menu (Figure 4a,

5https://github.com/microsoft/LID-tool
6https://github.com/sagorbrur/codeswitch

point 1). We do not keep the toggling but-
ton feature due to many POS tags. Similarly
to LID, annotators can provide feedback
(Figure 4a, point 3).

• Matrix Language Identification (MLI):
As shown in Figure 5, this task involves
identifying the language that provides the
syntactic structure of a code-mixed sen-
tence. Annotators select the matrix lan-
guage from the multiple supported lan-
guages for each sentence (Figure 5, point
1).

The primary instructions are present on the left
side of the page for each task (See point 2 in Fig-
ures 3a, 4a and 5a). Similarly, annotations can
be corrected by clicking the “Edit Annotations”
button (see point 4 in Figures 3a, 4a and 5a),
which redirects to the corresponsing history and
edit pages (see Figures 3b, 4b and 5b).

3. History and Edit pages: Figures 3b, 4b and 5b
show a list of previously annotated sentences
with timestamps for LID, POS and MLI, re-
spectively. Clicking on a sentence opens the
respective annotation page with the previously
chosen tags for editing.

3.1.2 The Admin Panel
Figure 6 shows the admin panel. The admin panel
performs three major tasks:
1. Data upload: The administrator can upload the

source sentences using a CSV file (Figure 6,
point 1).

2. Annotation analysis: The administrator can: (i)
analyze the quality of annotations using Cohen’s
Kappa score for inter-annotator agreement (IAA)
(Figure 6, point 3) and (ii) analyze the degree
of code-mixing in the annotated text using the
code-mixing index (CMI) (Das and Gambäck,
2014a)7(Figure 6, point 2).

3. Data download: The admin can download an-
notations of single/multiple annotators in a CSV
file. Admins can select specific tasks from a
dropdown menu to customize the data extraction
(Figure 6, point 2) The data download function-
ality also supports the conditional filtering of
data based on IAA and CMI.

3.2 The Architecture
Figure 1 showcases the highly modular architecture
for Commentator. We describe it using two main

7The CMI score ranges from 0 (monolingual) to 100 (highly
code-mixed).

103

https://github.com/microsoft/LID-tool
https://github.com/sagorbrur/codeswitch


(a) (b)

Figure 3: Token-Level Language Identification (LID): (a) annotation page and (b) history and edit page.

(a) (b)

Figure 4: Token-Level Parts-Of-Speech Tagging (POS): (a) annotation page and (b) history and edit page.

modules:

3.2.1 Client Module
The client is developed using ReactJS8. The client
module comprises pages for the following func-
tionalities: (i) User Login, (ii) User Signup, (iii)
Annotation Panel, and (iv) History, and (v) Admin
Panel. The user login page is used to log into the
portal. The user signup page creates a new annota-
tor account on the portal. The annotation panel is
the main landing page that initiates the annotation
process for all tasks. The history page lists the
annotated sentences by the logged-in annotator for
individual tasks.

3.2.2 Server Module
The client is served using a Flask9 Server. The
server performs two major functions: (i) con-
nection with the database and (ii) calling task-
specific API/libraries. It connects to the MongoDB
database through a Pymongo library. The Mon-
goDB database can be locally hosted or on the cloud.
We use the MongoDB Atlas database10 hosted lo-
cally. In the current setup, we use Microsoft API

8https://reactjs.org
9https://flask.palletsprojects.com/en/2.1.x/
10https://www.mongodb.com/atlas/database

for LID11. For POS, we use the CodeSwitch NLP
library. This also demonstrates the flexibility of
Commentator to make web-based API calls or
local-hosted library calls based on the task require-
ments.

4 Experiments

In this section, we perform two human studies
to evaluate Commentator against recent state-of-
the-art tools to ensure a comprehensive compari-
son with modern advancements and cutting-edge
functionalities: (i) YEDDA (Yang et al., 2018),
(ii) MarkUp (Dobbie et al., 2021), (iii) INCEp-
TION (Klie et al., 2018), (iv) UBIAI12, and (v)
GATE (Bontcheva et al., 2013) (vi) BRAT (Stene-
torp et al., 2012). The first study assesses the total
time and perceived capabilities during the initial
low-level setup and at higher-level annotation tasks
(see Section 4.1 for more details). The second study
examines the annotation time (see Section 4.2 for
more details).

11Existing open source libraries such as Spacy-LangDetect
(https://pypi.org/project/spacy-langdetect/) and
LangDetect (https://pypi.org/project/langdetect/)
showed poor performance

12https://ubiai.tools/

104

https://reactjs.org
https://flask.palletsprojects.com/en/2.1.x/
https://www.mongodb.com/atlas/database
https://pypi.org/project/spacy-langdetect/
https://pypi.org/project/langdetect/
https://ubiai.tools/


(a) (b)

Figure 5: Matrix Language Identification (MID): (a) annotation page and (b) history and edit page.

Capabilities YEDDA MarkUp INCEpTION UBIAI GATE BRAT Commentator
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Operational ease ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓
Less dependency requirements ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓
Low latency in API requests ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓
Admin Interface ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓
System recommendation ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓
Multiple user collaboration ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓
Annotation Refinement and Feedback ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Post-annotation analysis ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓

Table 1: Perceived capabilities by annotators. All annotators perceive all the eight capabilities in Commentator.

Figure 6: The admin interface of the Commentator.

4.1 Initial Setup and Perceived Capabilities
We employ three human annotators proficient in
English and Hindi with experience using social
media platforms such as X (formally ‘Twitter’). Ad-
ditionally, the annotators are graduate students with
good programming skills and knowledge of version
control systems. Each annotator has a detailed
instruction document13 containing links to execute
codebases or access the web user interface, descrip-
tions of tool configurations, annotation processes,
and guidelines for recording time.

Each annotator measures the time taken for the
initial setup, including installation and configura-
tion. The initial setup includes installation (down-
loading source code, decompressing, and installing
dependencies) and configuration (adding config-
uration files, sentence loading, and user account

13https://github.com/lingo-iitgn/commentator/
tree/main/Documents

creation/login).:

1. Operational Ease: A tool demonstrates opera-
tional ease when it requires minimal effort for in-
stallation, data input, and output. A user-friendly
interface with features like color gradients for
tag differentiation enhances the annotation expe-
rience, leading to more engaging and prolonged
usage compared to tools with less visually ap-
pealing interfaces.

2. Less Dependency Requirements: Annotation
tools often require resolving multiple dependen-
cies during installation, which is challenging
due to rapid advancements in web frameworks,
data processing pipelines, and programming
languages. This complexity limits usage, partic-
ularly among non-CS users.

3. Low Latency in API Requests: Latency is mea-
sured as the time to serve the request made by a
client. This is the main bottleneck in web-based
annotation tools that deal with APIs to serve and
process data.

4. Admin Interface: The tool should feature an in-
tuitive admin interface for efficient user manage-
ment, role assignment, and annotation progress
monitoring, offering comprehensive control
without requiring extensive technical knowledge.

5. System Recommendation: Effective system rec-
ommendations that use advanced NLP tools and
APIs can streamline the annotation process and

105

https://github.com/lingo-iitgn/commentator/tree/main/Documents
https://github.com/lingo-iitgn/commentator/tree/main/Documents


Tools Installation Configuration
YEDDA 7.66 ± 8.73 24.33 ± 32.29
MarkUp NA 366.67 ± 47.25
INCEpTION NA 247.66 ± 39.80
UBIAI NA 324.33 ± 62.90
GATE 45.67 ± 11.44 125.00 ± 68.07
Commentator (ours) 173.33 ± 89.93 210.00 ± 81.65

Table 2: Comparison of time taken (mean ± standard
deviation) for installation and configuration in seconds.
‘NA’ corresponds to those web-based tools that cannot
be installed on local systems. YEDDA takes the least
time to install and configure. Commentator’s configu-
ration time is lower than three popular tools, MarkUp,
INCEpTION and UBIAI.

reduce the annotation time.
6. Parallel Annotations: The tool should support

multiple users to work simultaneously on the
same dataset, share insights, and maintain con-
sistency across annotations, enhancing overall
efficiency and reliability.

7. Annotation Refinement and Feedback: The tool
must allow annotators to refine and update their
annotations easily.

8. Post-annotation Analysis: This feature evalu-
ates annotation quality using metrics like inter-
annotator agreement, with statistical measures
like Cohen’s Kappa (it gauges the degree of
consistency among annotations), enhancing the
reliability and validity of the data. In addition,
as the Commentator largely focuses on the
code-mixed domain; integration of metrics like
Code-mixing Index (CMI) is highly preferred.

Annotators report each tool’s setup time and as-
sign a “Yes/No” label to eight perceived capabili-
ties. Table 2 reports the time taken in seconds for
five baselines tool and Commentator. Overall,
YEDDA takes the least time to install and configure.
However, Table 1 presents a slightly more distinct
picture. Commentator receives all eight perceived
capabilities, while all existing state-of-the-art anno-
tation frameworks, except UIBAI, lack operational
ease. Additionally, none of the tools possess a
feedback mechanism that allows users to report
any inconsistencies during annotations, including
identifying noisy or abusive datasets for potential
removal. All annotators agree that YEDDA exhibits
poor user collaboration capabilities.

4.2 Annotation Time
In the second human study, we recruit three an-
notators with a good understanding of Hindi and

Tools LID POS
YEDDA 757.00 ± 62.27 1370.66 ± 81.24
MarkUp 1192.33 ± 172.77 1579.00 ± 68.86
INCEpTION 1040.66 ± 69.67 1714.66 ± 71.30
UBIAI 690.66 ± 79.43 748.33 ± 91.45
GATE 1118.33 ± 166.20 1579.00 ± 50.61
Commentator (ours) 138.33 ± 24.60 337.66 ± 25.34

Table 3: Comparison of time taken (mean ± standard
deviation) for annotation in seconds. POS, being a highly
challenging task than LID, took significantly more time.
LID annotations on Commentator are 5x faster than
the next best tool, UBIAI. Whereas POS annotations on
Commentator are 2x faster than UBIAI.

English languages14. Each annotator annotates
ten Hinglish sentences (available on the project’s
GitHub page) for token-level language tasks: (i)
LID and (ii) POS. Both tasks involve assigning a tag
to each token in a sentence. For LID, the tags are
Hindi, English, Unidentified. For POS, we follow
the list of tags proposed by Singh et al. (2018).
This list includes NOUN, PROPN, VERB, ADJ,
ADV, ADP, PRON, DET, CONJ, PART, PRON_WH,
PART_NEG, NUM, and X. Here, X denotes foreign
words, typos, and abbreviations. Table 3 shows
that the libraries that preassign tags enable Com-
mentator to perform at least five times faster in
annotation than the existing tools.
Overall, annotators find that Commentator takes
slightly longer time in initial setup but significantly
reduces annotation time and efforts. It showcases
good recommendation capability, parallel annota-
tions and post-annotation analysis capabilities.

5 Conclusion and Future Work
We introduce Commentator, an annotation frame-
work for code-mixed text, and compared it against
five-six state-of-the-art annotation tools. Commen-
tator shows better user collaboration, operational
ease, and efficiency, significantly reducing anno-
tation time for tasks like Language Identification
and Part-of-Speech tagging. Future plans include
expanding Commentator to support tasks such as
sentiment analysis, Q&A, and language generation,
making it an even more comprehensive tool for
multilingual and code-mixed text annotation.

14The three annotators recruited in the first human study are
different than these annotators.

106



6 Ethics
We adhere to the ethical guidelines by ensuring the
responsible development and use of our annotation
tool. Our project prioritizes annotator well-being,
data privacy, and bias mitigation while promoting
transparency and inclusivity in NLP research.

References
2022. Ubiai: Nlp annotation tools - automatic text

annotation tool.

Kalina Bontcheva, Hamish Cunningham, Ian Roberts,
Angus Roberts, Valentin Tablan, Niraj Aswani, and
Genevieve Gorrell. 2013. Gate teamware: a web-
based, collaborative text annotation framework. Lan-
guage Resources and Evaluation, 47:1007–1029.

Wei-Te Chen and Will Styler. 2013. Anafora: A web-
based general purpose annotation tool. In Proceed-
ings of the 2013 NAACL HLT Demonstration Session,
pages 14–19, Atlanta, Georgia. Association for Com-
putational Linguistics.

Jacob Cohen. 1960. A coefficient of agreement for
nominal scales. Educational and psychological mea-
surement, 20(1):37–46.

Hamish Cunningham, Yorick Wilks, and Robert
Gaizauskas. 1996. Gate-a general architecture for
text engineering. In COLING 1996 Volume 2: The
16th International Conference on Computational Lin-
guistics.

Amitava Das and Björn Gambäck. 2014a. Identifying
languages at the word level in code-mixed Indian
social media text. In Proceedings of the 11th Interna-
tional Conference on Natural Language Processing,
pages 378–387, Goa, India. NLP Association of India.

Amitava Das and Björn Gambäck. 2014b. Identifying
languages at the word level in code-mixed indian
social media text. In Proceedings of the 11th Interna-
tional Conference on Natural Language Processing,
pages 378–387.

S Dobbie, H Strafford, WO Pickrell, B Fonferko-
Shadrach, C Jones, A Akbari, S Thompson, and
A Lacey. 2021. Markup: A web-based annotation
tool powered by active learning. Frontiers in Digital
Health, 3:598916–598916.

Stephan Druskat, Ulrike Gut, Nils Reiter, Stefan
Schweter, and Manfred Stede. 2014. Atomic: An
open-source tool for working with anaphora in multi-
ple languages. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 71–76.

Kevin Hallgren. 2012. Computing inter-rater reliability
for observational data: An overview and tutorial.
Tutorials in Quantitative Methods for Psychology,
8:23–34.

Eduard Hovy and Julia Lavid. 2010. Towards a ‘sci-
ence’of corpus annotation: a new methodological
challenge for corpus linguistics. International jour-
nal of translation, 22(1):13–36.

Jan-Christoph Klie, Michael Bugert, Beto Boullosa,
Richard Eckart de Castilho, and Iryna Gurevych.
2018. The INCEpTION platform: Machine-assisted
and knowledge-oriented interactive annotation. In
Proceedings of the 27th International Conference on
Computational Linguistics: System Demonstrations,
pages 5–9, Santa Fe, New Mexico. Association for
Computational Linguistics.

Ines Montani and Matthew Honnibal. 2018. Prodigy:
A new annotation tool for radically efficient machine
teaching. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 50–55.

Thomas Morton and Jeremy LaCivita. 2003. WordFreak:
An open tool for linguistic annotation. In Companion
Volume of the Proceedings of HLT-NAACL 2003 -
Demonstrations, pages 17–18.

Hiroki Nakayama, Tomoyuki Kubo, Naoki Yoshinaga,
and Masaru Kitsuregawa. 2018. Doccano: Text
annotation tool for human. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pages
1–6.

Philip V. Ogren. 2006. Knowtator: A protégé plug-in
for annotated corpus construction. In Proceedings
of the Human Language Technology Conference of
the NAACL, Companion Volume: Demonstrations,
pages 273–275, New York City, USA. Association
for Computational Linguistics.

Gautam Kishore Shahi and Tim A Majchrzak. 2022.
Amused: An annotation framework of multimodal
social media data. In International Conference on
Intelligent Technologies and Applications, pages 287–
299. Springer.

Kushagra Singh, Indira Sen, and Ponnurangam Ku-
maraguru. 2018. A Twitter corpus for Hindi-English
code mixed POS tagging. In Proceedings of the Sixth
International Workshop on Natural Language Pro-
cessing for Social Media, pages 12–17, Melbourne,
Australia. Association for Computational Linguistics.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić, Tomoko
Ohta, Sophia Ananiadou, and Jun’ichi Tsujii. 2012.
brat: a web-based tool for nlp-assisted text annotation.
In Proceedings of the Demonstrations at the 13th Con-
ference of the European Chapter of the Association for
Computational Linguistics, pages 102–107, Avignon,
France. Association for Computational Linguistics.

Jie Yang, Yue Zhang, Linwei Li, and Xingxuan Li.
2018. Yedda: A lightweight collaborative text span
annotation tool. ACL 2018, page 31.

Seid Muhie Yimam, Iryna Gurevych, Richard Eckart de
Castilho, and Chris Biemann. 2013. WebAnno: A

107

https://ubiai.tools/
https://ubiai.tools/
https://aclanthology.org/N13-3004
https://aclanthology.org/N13-3004
https://aclanthology.org/W14-5152
https://aclanthology.org/W14-5152
https://aclanthology.org/W14-5152
https://doi.org/10.20982/tqmp.08.1.p023
https://doi.org/10.20982/tqmp.08.1.p023
https://aclanthology.org/C18-2002
https://aclanthology.org/C18-2002
https://aclanthology.org/N03-4009
https://aclanthology.org/N03-4009
https://aclanthology.org/N06-4006
https://aclanthology.org/N06-4006
https://doi.org/10.18653/v1/W18-3503
https://doi.org/10.18653/v1/W18-3503
https://aclanthology.org/P13-4001


flexible, web-based and visually supported system for
distributed annotations. In Proceedings of the 51st
Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 1–6, Sofia,
Bulgaria.

A Appendix
A.1 Inter-annotator agreement (IAA)
IAA measures how well multiple annotators can
make the same annotation decision for a particular
category. IAA shows you how clear your annotation
guidelines are, how uniformly your annotators un-
derstand them, and how reproducible the annotation
task is. Cohen’s kappa coefficient (Hallgren, 2012;
Cohen, 1960) is a statistic to measure the reliabil-
ity between annotators for qualitative (categorical)
items. It is a more robust measure than simple
percent agreement calculations, as k considers the
possibility of the agreement occurring by chance.
It is a pairwise reliability measure between two
annotators.

The formula for Cohen’s kappa (κ) is:

κ =
Po − Pe

1− Pe
(1)

where, Po is relative observed agreement among
raters and Pe is hypothetical probability of chance
agreement.

A.2 Code-mixing Index (CMI)
CMI metric (Das and Gambäck, 2014b) is defined
as follows:

CMI =

{
100 ∗ [1− max(wi)

n−u ] n > u

0 n = u
(2)

Here, wi is the number of words of the language
i, max{wi} represents the number of words of the
most prominent language, n is the total number
of tokens, u represents the number of language-
independent tokens (such as named entities, ab-
breviations, mentions, and hashtags). A low CMI
score indicates monolingualism in the text whereas
the high CMI score indicates the high degree of
code-mixing in the text.

B Limitations
We present some of the limitations in the Commen-
tator tool, along with potential areas for future
improvement:

1. Web-hosting: Commentator is not currently
web-based, but we are developing a web ver-
sion to improve accessibility and user experi-
ence.

2. Model Integration: The tool does not yet sup-
port direct integration of pre-trained models
through the user interface for predictions.

108

https://aclanthology.org/P13-4001
https://aclanthology.org/P13-4001


3. Post-annotation Analysis: While offering
basic post-annotation analysis, future ver-
sions will include task-specific metrics such
as Fleiss’ Kappa, Krippendorff’s Alpha, and
Intraclass Correlation for more detailed evalu-
ations of inter-annotator reliability and anno-
tation accuracy.

C Acknowledgements
This work is supported by the Science and Engineer-
ing Research Board (SERB) through the project
titled “Curating and Constructing Benchmarks and

Development of ML Models for Low-Level NLP
Tasks in Hindi-English Code-Mixing”. The au-
thors express their gratitude to Diksha, Mahesh
Kumar, Ronakpuri Goswami, Vaidahi Patel and
Ashish Singh for their invaluable support with an-
notation. We also extend our thanks to Vannsh Jani,
Isha Narang, and Eshwar Dhande for their assis-
tance in reviewing the manuscript and reporting
on installation and configuration times. Himan-
shu Beniwal is supported by the Prime Minister
Research Fellowship (PMRF ID-1702154).

109


