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Abstract

Annotation tools are increasingly only steps
in a larger process into which they need to be
integrated, for instance by calling out to web
services for labeling support or importing doc-
uments from external sources. This requires
certain capabilities that annotation tools need
to support in order to keep up. Here, we define
the respective requirements and how popular
annotation tools support them. As a demon-
stration for how these can be implemented,
we adapted INCEpTION, a semantic annota-
tion platform offering intelligent assistance and
knowledge management. For instance, support
for a range of APIs has been added to INCEp-
TION through which it can be controlled and
which allow it to interact with external services
such as authorization services, crowdsourcing
platforms, terminology services or machine
learning services. Additionally, we introduce
new capabilities that allow custom rendering
of XML documents and even the ability to add
new JavaScript-based editor plugins, thereby
making INCEpTION usable in an even wider
range of annotation tasks.

1 Introduction/Motivation

Annotated data is crucial for many branches of
science and industry. It is used in supervised learn-
ing to train and evaluate machine learning mod-
els (Pustejovsky and Stubbs, 2013) and has been
the catalyst as well as limiting factor for the deep
learning revolution (Sun et al., 2017; Sambasivan
et al., 2021). Large language models often require
high-quality annotated data, be it for (instruction)
fine-tuning or their evaluation (Chen et al., 2023;
Zhang et al., 2023; Zhou et al., 2023).

As the processes producing and consuming an-
notations become more complex, annotation tools
need to be able to act as a part in these larger pro-
cesses. For instance, they need to be embedded in a
crowdsourcing pipeline (Klie et al., 2023), integrate
external knowledge bases (Bugert et al., 2021), or

provide functionality to call machine learning mod-
els for annotation support (Schulz et al., 2019).
They also need to be customizable in order to cope
with the ever-demanding change in requirements.
If the functionality for a task is not implemented
yet, they need to be extensible so that these new
features can be easily retrofitted.

We survey the required capabilities in five ar-
eas relevant to customization and integration into
larger processes: annotator management, task de-
sign, process integration, machine learning services
and external knowledge and discuss if and how pop-
ular annotation tools support them. In addition, we
describe how INCEpTION has implemented them
to serve as a role model for future implementations.

2 Related work

Over the years, many annotation tools have been
developed that target different use cases and come
with different capabilities. We discuss some older
but popular as well as some more recently pub-
lished text annotation tools (see Neves and Ševa
(2019) for a more comprehensive overview). Most
tools considered are free open source tools. LABEL

STUDIO and POTATO are freemium tools that re-
quire a paid license for certain functionalities or
use-cases. PRODIGY is commercial software.

Design choices tend to be made based on
whether an annotation tool is mainly instance-
oriented or document-oriented. Many recent tools
are instance-oriented and focusing on high through-
put (e.g., PRODIGY (Montani and Honnibal), LA-
BEL STUDIO, GATE TEAMWARE 2 (Wilby et al.,
2023), ALANNO (Jukić et al., 2023), LABEL

SLEUTH (Shnarch et al., 2022), or POTATO (Pei
et al., 2022)). They try to get annotators to label as
many instances as possible in the shortest amount
of time. Often, these tools only support labelling
the entire instance. Some support span and rela-
tion annotation tasks, but tend to focus on very
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ALANNO Doccano GATE
Label

Sleuth

Label

Studio
POTATO Prodigy brat MedTator WebAnno INCEpTION

Annotator management
AM-1: Multi-user X X X – X X – X – X X
AM-2: Workload mgmt. dyn stat dyn n/a dyn* dyn n/a stat n/a stat dyn

AM-3: Reclaim abandoned – – X – – – – – – – X
AM-4: Self-sign-up L IdP L n/a L, IdP* URL n/a – n/a – URL, IdP

Task design
TD-1: Customizable UI tagset tagset templ. tagset templ. templ. templ. schema schema schema schema

TD-2: Document layout – – – – X – – – – – X

Process integration
PI-1: API – R R R R – L – – R R

PI-2: Event notifications – – – – X – – – – X X

ML services
ML-1: ML support BI P P BI P, R BI P, L P, R P P, BI P, BI, R

ML-2: Active learning X – – X X* X X – – – X

Knowledge bases
KB-1: RDF/SPARQL – – – – – – – – – – X
KB-2: Generic lookup – – – – – – – X – – X

Table 1: Integrability requirements and their support in selected annotation tools. Some features (*) are only
available paid versions. BI - built-in; L - local, R - remote, P - pre-annotated, IdP - Identity Provider.

short documents, e.g. a single sentence a single
turn in a conversation. Their user interface (UI) is
streamlined to support this goal e.g. by showing
only the instance to be annotated with little to no
context. Document-oriented tools (brat (Stenetorp
et al., 2012), DOCCANO (Nakayama et al., 2018),
MEDTATOR (He et al., 2022), WEBANNO (Yimam
et al., 2013), INCEpTION) on the other hand show
an entire document to the annotator at a time. Here,
a document usually consists of a longer text (e.g.
an essay, article, speech, conversation, etc.). This
allows the annotation of spans and relations in their
intended context. While document-oriented tools
impose a higher cognitive load on the annotator,
context can be very important for areas where read-
ing a statement in isolation can easily lead to misin-
terpretation. Areas prone to such problems include
the analysis of misinformation, political speeches,
or analysis of inconsistencies or incoherence in
documents (cf. Chong et al. (2021)).

3 Requirements and Contributions

In the following subsections, we identify several
requirements that annotation tools should meet in
order to integrate well into a larger process and how
INCEpTION meets these requirements. Table 1
compares the capabilities of INCEpTION to those
of other annotation tools. A detailed discussion
of this comparison can be found in the appendix.

Our last publication on INCEpTION (Klie et al.,
2020) was written around the time of INCEpTION
0.16.1 (Jun 2020). Most of the features touched
upon in the present paper have been developed or
significantly improved in the versions 0.17.0 (Oct
2020) to 34.0 (Oct 2024). In the contributions,
we mention the approximate version introducing a
particular feature, e.g. AM-2 ≈ v0.17.0 indicates
that the features supporting the requirement AM-2
was introduced around INCEpTION 0.17.0. A few
features have always existed in INCEpTION and
are mentioned just for the sake of completeness.
These are noted as e.g. AM-1 always.

3.1 Annotator management (AM)

A central component of any annotation project is
the team of annotators. In traditional annotation
projects, teams tend to be small and all annotators
end up annotating all the texts (Chamberlain et al.,
2013). However, if an annotation project contains a
larger number of documents, also a larger number
of annotators is called for. Thus, annotation tools
need to offer functionalities for dealing with a large
and potentially dynamic group of annotators.

Requirements (AM-1) MULTI-USER [YES,
NO] – Annotation tools should offer multi-user
support and the ability to manage the annotation
team. Single-user tools might still be integrable
into a larger process where multi-user support is
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provided through external systems, e.g. provision-
ing different instances of the tool to different users.

(AM-2) WORKLOAD MANAGEMENT [STATIC,
DYNAMIC] – If the annotation team is known in
advance and changes seldom (if ever) during the
course of the project, project managers can man-
ually distribute the workload (e.g. the texts to be
annotated) to the team members. But if the team
is dynamic, annotators frequently join or leave the
project (Snow et al., 2008), or the productivity dif-
fers significantly among the team members, auto-
matic methods of work distribution are necessary.

(AM-3) RECLAIM ABANDONED [YES, NO] –
It can be necessary to detect when when annotators
abandon a project so that unfinished work can be
reclaimed and reassigned to other annotators. This
is particularly important if workload distribution
is based on larger units, e.g. batches of multiple
instances or long documents.

(AM-4) SELF-SIGN-UP [LOCAL ACCOUNT,
IDP, INVITE-URL] – A suitable sign-up and sign-
in mechanism is required when team members
should be able to join a project at any time. This
can be useful e.g. in crowdsourcing or citizen sci-
ence projects or if a project can otherwise call on
a large pool of potential annotators. Self-sign-up
can create a local account or operate in conjunction
with an external identity provider (IdP). An invite
URL that grants access to a particular annotation
project can facilitate the process.

Contribution INCEpTION is a multi-user anno-
tation tool (AM-1 always) that supports dynamic
workload management (AM-2 ≈ v0.17.0). Its
URL-based self-sign-up (AM-4 ≈ v0.18.0) can be
used either with anonymous accounts or with per-
manent accounts in combination with an OAuth2
(≈ v0.25.0) or SAML-compliant IdP (≈ v0.27.0).
A notable difference to other tools is the handling
of abandoned work though (AM-3 ≈ v0.20.0).

Dynamic workload management in a document-
oriented tool like INCEpTION needs to meet
slightly different goals than in instance-oriented
tools because an annotator usually spends a longer
time per document. After an annotator as been
offered a document, that annotator needs to be al-
lowed some time to work on it. If the document has
been offered to the maximum number of annotators
allowed per document, it may not be offered again
until one of these annotators has aborted or aban-
doned their work. Also, there is the possibility that
a document is abandoned after a non-trivial amount

of work went into it – or that the user simply forgets
marking the document as finished. In such cases, it
may be useful to reclaim the document and assign
it to another user. However, it may also be sensible
to not completely discard the annotations that may
already have been created in the document.

In addition to setting a limit of annotators per
document and configuring an optional timeout be-
fore a document is considered to be abandoned,
INCEpTION offers three options of dealing with
abandoned documents: discard the data from the
annotator who abandoned the document; lock the
document for the annotator who abandoned it so
the annotator can no longer edit it (if the annotator
re-joins the project, the annotator will be assigned
a new document); mark the document as finished
for the annotator even though the annotations in
the document may be incomplete. With discard
and lock, the abandoned document will not count
against the annotator-per-document limit and will
be reassigned to new annotators. With lock and
finished, the work already invested by the annotator
into the document will be preserved.

3.2 Task design (TD)

There are almost infinite possibilities how to de-
sign annotation tasks and what to annotate. For
example, annotation tools may focus on specific
tasks (e.g. entity linking) or classes of tasks (e.g.
spans/relations or whole documents).

Requirements (TD-1) CUSTOMIZABLE ANNO-
TATION UI [TAGSET, SCHEMA, TEMPLATE] The
annotation UI determines the efficiency of the an-
notators to a great degree. The better the UI is
suited to the task at hand, the faster the annotators
can work and the less cognitive load they have to
bear. The structure of annotations can range from
just allowing a single label to complex annotation
schemes with multiple attributes. Specialized wid-
gets should be offered depending on the type of
attribute, e.g. to rank an instance on a Likert-scale,
link it to a knowledge base, single- or multiple
choice labels, etc. A flexible arrangement of wid-
gets using a templating mechanism can further op-
timize annotation efficiency.

(TD-2) DOCUMENT LAYOUT [YES, NO] The
documents to be annotated can come in many differ-
ent formats from plain text files, PDF files, various
XML dialects, up to complex pre-annotated files.
The level to which an annotation can be customized
and extended in these areas determines the range of
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annotation tasks it can be used for. Web browsers
can display formatted HTML documents. The abil-
ity to annotate formatted documents as opposed to
plain text documents is important for many users.

Contribution When it comes to the customizabil-
ity of the annotation UI, INCEpTION stays close
to other document-oriented annotation tools. It sup-
ports a flexible schema definition with a range of
different attribute types, each coming with special-
ized inputs (TD-1 ALWAYS). Some widgets are to
a degree configurable (e.g. the size of an input field
can be changed to accommodate large comments,
choosing between a dropdown or a radio-box pre-
sentation for single-choice string labels, etc.). Re-
cent additions to the available attribute types in-
clude multi-value string attributes (≈ v23.0) and
multi-value concept attributes (≈ v24.0). Also,
single-value string attributes with tagsets can be
displayed as a radio group to allow single-click
label selections (≈ v20.0).

INCEpTION offers two unique capabilities: the
ability to switch between different views of a doc-
ument (always) and the ability to add support for
new XML-based formats through a plugin mecha-
nism (TD-2 ≈ v30.0).

For example, if a PDF or HTML document is im-
ported, the user can freely switch between layout-
oriented annotation mode using PDF.js (2022) and
a content-oriented annotation mode, e.g. using the
brat-based one-sentence-per-line mode. The PDF
support was updated to support a more robust an-
choring of the annotations to the text (≈ v24.0).

There are certain annotation tasks that require
particular UI arrangements, e.g. cross-document
linking or word-alignment tasks. To support such
cases, a plugin mechanism is introduced that allows
implementing custom editors in JavaScript. The
mechanism consists of a JavaScript API (≈ v23.0)
that handles the communication between the edi-
tor running in the annotator’s browser and the IN-
CEpTION backend, a plugin descriptor, packag-
ing specification, and an optional mechanism for
styling and filtering XML to support documents in
DocX, TEI, TMX, JATS or similar formats.

The JavaScript API allows the editor to send
commands to the server, e.g. create span annota-
tion, delete annotation, or select annotation or to
request the annotated document from the server for
rendering. It also allows the server to push updates
to the editor. Annotated documents can be complex
and contain a large amount of information. Instead

of transferring the entire information, INCEpTION
pre-renders the annotated document on the server
side into a condensed visual representation contain-
ing only limited information such as span offsets,
relation endpoints, annotation colors and labels.
Rendering this visual representation in the browser
is simpler and more efficient than working with the
full server-side representation. To further reduce
the size of the data sent to the browser, the editor
request only data relevant to the part of the docu-
ment that is visible in the browser. Additionally,
when possible a differential update mode relying
on JSONDiff/JSONPatch (Bryan and Nottingham,
2013) is used to send only minimal updates to the
browser. The JavaScript API does not directly ex-
pose the wire format sent by the server but rather
decodes the format into a JavaScript object model.
This decoupling of the wire format from the re-
quirements of convenient access to the data via the
API provides further opportunity for choosing a
compact wire representation.

To demonstrate its viability, we have integrated
several editor front-ends using the plugin mech-
anism based on Annotator JS (2015) (INCEp-
TION AnnotatorJS plugin, 2023), Apache An-
notator (2021) (INCEpTION Apache Annotator
plugin, 2023), RecogitoJS (2023) (INCEpTION
RecogitonJS plugin, 2023) and DOCCANO (INCEp-
TION Doccano plugin, 2023). The editor based
on Apache Annotator is also now (≈ v29.0) built
into INCEpTION and used as the default editor
for HTML/XML-based files. Also, the updated
PDF support makes use of the JavaScript API. The
brat-based editors have been upgraded to use the
JavaScript API to send commands to the server, but
are still using their own document serialization for-
mat to receive annotation data from the back-end.

The actual document is usually not rendered by
the editor plugin itself but rather provided directly
by the back-end as text or XML/XHTML – depend-
ing on what the plugin requests. Browsers can not
only render HTML documents, but they can ac-
tually render any XML documents and style them
using cascading style sheets (CSS). This creates the
opportunity for a generic XML document importer
which analyzes and preserves the XML structure
of the document during import. This structure can
then be loaded into the browser. The plugin can
then provide a CSS to visually style this XML struc-
ture. Additionally, the plugin has to provide a con-
tent policy file. This policy define which elements
and attributes may safely be sent to the browser.
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Figure 1: INCEpTION INTERTEXT plugin (2024) rendering a formatted XML document in a side-by-side view.

Anything not permitted by the policy is filtered
out on the server side. In particular, such a pol-
icy should remove script tags or other potentially
harmful content from the XML data. It can also be
used to improve loading times by reducing the data
being sent to the browser.

To avoid having to implement a new editor
plugin for every XML dialect, there is also the
option to define a custom XML format plugin
(≈ v30.0) which includes only the CSS and policy
file and which can be used in conjunction with any
XML/HTML-based editor such as Apache Anno-
tator or RecogitoJS. The generic XML document
importer (≈ v23.0) in conjunction with the custom
XML formats and/or the annotation editor API en-
able the support of many XML formats without
having to change the INCEpTION code.

To demonstrate the viability of displaying for-
matted XML files, we have implemented partial
support for the TEI P5 XML format to allow ren-
dering plays from the Drama Corpora Project (Fis-
cher et al., 2019) (≈ v31.0). Also, the INCEpTION
custom XML format examples (2024) repository
contains example custom format definitions for the
Timed Text Markup Language 2 (TTML) and the
Translation Memory Exchange 1.4 format (TMX).

The INCEpTION INTERTEXT plugin (2024)
uses the mechanisms described above to support
a pairwise cross-document linking use-case (Ruan
et al., 2024). For this use-case, we have defined a
simple XML format that contains a view-left and
view-right section which are display side-by-side
in the browser using CSS styling (Fig. 1). Each of
the two documents to be linked go into one of these
sections. The RECOGITOJS-based editor plugin
was then slightly modified to track the two views
separately and to dynamically load annotations as
the user scrolls.

3.3 Process integration (PI)

Annotation tools are used to create annotated data
or to improve it, e.g. by correcting mistakes. Tra-
ditionally, there was a process of first compiling
a corpus and then annotating it. The annotated
gold standard corpus was then a final product to be
published and shared. Annotation is increasingly
becoming a step in a larger process where new data
is automatically acquired, possibly pre-annotated
before being rolled out to a dynamic group of anno-
tators. Finally, the annotated data is fed back into a
process to improve a model which is then used for
pre-annotation in the next iteration.

Requirements (PI-1) API [NONE, LOCAL, RE-
MOTE] To be integrable into such processes, anno-
tation tools need to offer APIs through which data
can be provisioned for annotation, the annotation
process can be monitored, and the annotated data
be retrieved again for further processing. The inte-
gration into a larger process works best if the tool
offers an API for project management. Such an
API should allow at least creating a project, deploy-
ing data to be annotated, monitoring the progress of
the annotations, exporting the annotated data and
finally deleting the project again.

(PI-2) EVENT-BASED NOTIFICATION [YES,
NO] While an external process could poll the anno-
tation tool for state changes, a event-based notifica-
tion mechanism can more efficiently trigger exter-
nal actions when specific events occur. Such events
could include an annotator completing a document,
or all documents in a batch being completed.

Contribution INCEpTION provides an AERO-
compatible1 remote API for project management
needs (PI-1 ALWAYS). While AERO works well
for setting up and wrapping up projects, it is lack-

1https://openminted.github.io/releases/
aero-spec/1.0.0/omtd-aero/
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ing functionality for dynamically updating certain
aspects of running annotation projects such as man-
aging user permissions. We therefore added new
endpoints in INCEpTION (≈ v24.0) for listing,
adding, and removing user permissions. Addition-
ally, a new endpoint for setting the state of a docu-
ment for a given user was added (≈ v0.19.0). This
can be used for example to remotely re-open a doc-
ument that an annotators has marked as finished
or to lock certain documents for specific annota-
tors. All new endpoints conform to conventions of
the AERO API design. For integration into enter-
prise environments, we added support for OAuth
authentication to the remote API (≈ v26.0).

Webhooks to trigger external processes when
the state of individual users, documents or the en-
tire project changes are supported as well (PI-2
always). Webhooks have been extended (≈ v24.0)
to support a limited retry in case the recipient of
the notification is temporarily unreachable, to al-
low header-based authentication to the recipient, as
well as to include a timestamp and the user who
triggered the event.

3.4 Machine learning services (ML)

There are several ways of using machine learning
(ML) to support the annotation process. A com-
mon approach to improve annotation speed is using
already pre-annotated data and just let annotators
correct them (Fort and Sagot, 2010). There, poten-
tial annotations are shown inline in the annotation
editor which can be accepted or rejected by the an-
notators. Tools that support loading pre-annotated
data typically assume that any data not explicitly re-
jected by the user is correct. Instance-oriented tools
usually require the user to accept the instance, but
do not force the user to explicitly accept each span,
relation or attribute value. Because in document-
oriented tools there is typically large quantity of
annotations per document, it can be easy to miss
a wrong one. Thus, a mechanism that requires the
annotator to verify each automatically generated an-
notation explicitly can be beneficial. One approach
to achieve this are dynamic label suggestions in the
form of recommenders (Schulz et al., 2019).

Requirements (ML-1) ML SUPPORT [PRE-
ANNOTATION, BUILT-IN, LOCAL, REMOTE] Ma-
chine Learning (ML) is currently one of the fastest
moving areas of science. Relying only on built-in
ML capabilities limits the scope of an annotation
tool. Being able to import pre-annotated data or to

call out to a local library or a remote ML service
gives users the opportunity to connect the latest and
best available ML capabilities to a tool.

(ML-2) ACTIVE LEARNING [YES, NO] Active
Learning (Settles, 2012) (AL) can be used to re-
duce the amount of training data needed to reach
a certain performance level. It requires a tight in-
tegration of ML services with the annotation tool
as the ML model determines the order in which
instances are presented to the user for annotation
and as the model is frequently updated or re-trained
as part of the active-learning process.

Contribution INCEpTION follows the pre-
dict/fit paradigm for its ML service integration
(ML-1 always). It comes with several built-in ML
services as well as the ability to invoke remote ML
services using a simple HTTP-based protocol. The
INCEpTION external recommender (2024) repos-
itory contains a Python-based ML server imple-
mentation and provides examples based on scikit
learn (Pedregosa et al., 2011), spaCy (Honnibal
et al., 2020), SentenceTransformers (Reimers and
Gurevych, 2019) and many more. In terms of in-
teraction, INCEpTION opts for the recommender
model where the annotator has to explicitly accept
or reject annotation suggestions. If the ML services
provide a score along with the labels, INCEpTION
can apply an AL mode (ML-2 ≈ V0.13.0) that
uses uncertainty sampling to guide the annotator
through the annotation suggestions.

While the predict function typically generates
only labels and potentially scores, we found it use-
ful to also allow associating an explanatory descrip-
tion to each annotation which is presented to the
user when the mouse hovers over the suggestion.

The ML service can set a flag on an auto-
generated annotation to signal that it should be
accepted immediately without user interaction
(≈ v28.0). This can be used to avoid imposing
work on the human annotator to explicitly verify
annotation suggestions that have a very high prob-
ability of being correct. It also enables new usage
scenarios which dynamically or conditionally cre-
ate place-holder annotations that highlight spans an
annotator should label, but without assigning the
labels yet. This removes the need from the anno-
tator to create the annotations themselves, so they
can then focus on label assignment.
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3.5 Knowledge bases (KB)

Some annotation tasks involve disambiguating con-
cept mentions against a very large terminology or
knowledge base. Such annotation tasks typically
involve entity linking, concept disambiguation, or
normalization (e.g. Ehrmann et al. (2020)).

Requirements (KB-1) SPARQL/RDF SUP-
PORT [YES, NO] The dominant data representation
standard in this area is RDF and SPARQL as the
query protocol. And even the different SPARQL
server implementations each have their own propri-
etary full-text-search commands which are essen-
tial for efficiently querying large databases. Inter-
operability with SPARQL services gives an annota-
tion tool access to many relevant resources.

(KB-2) GENERIC LOOKUP PROTOCOL [YES,
NO]) There are other data formats such as OBO
(Open Biomedical Ontologies) or TBX (TermBase
eXchange) and other query standards such as the
FHIR (Saripalle et al., 2020) terminology services
API. Thus, tools that support a simpler protocol
can offer a better integrability as users can adapt it
for any kind of server back-end they may be using.

Contribution By supporting RDF and SPARQL,
INCEpTION is able to use many terminology and
knowledge-base resources (KB-1 always). Re-
cently, in particular the support for large knowl-
edge bases such as SNOMED-CT (SNOMED In-
ternational, 2024) or the Human Phenotype Ontol-
ogy (Robinson et al., 2008) has been improved by
allowing to directly import files in OWL functional
syntax and OBO formats (≈ v31.1), supporting syn-
onyms (≈ v21.0), out-of-order matching of search
terms to concept labels (≈ v33.0), as well as various
performance improvements.

However, converting terminologies to RDF and
querying them using SPARQL can still incur a sig-
nificant overhead. Thus, we introduce support for
a custom HTTP-based lightweight lookup protocol
(LLP) into INCEpTION (KB-2 ≈ v27.0) to facil-
itate the integration with other resources. While
RDF and SPARQL-support aims at supporting stan-
dard formats and protocols to be interoperable with
exisiting technology, the LLP aims at facilitating
the implementation of custom service proxies to
be able to access arbitrary backends. It would
be straightforward to index a terminology in an
APACHE SOLR index, a FHIR server or even an
SQL database and build a small LLP proxy service
to access this index.

An LLP-compliant service responds to a GET
request in one of two modes: query or lookup. The
query mode is enabled by the presence of the query
parameter q which contains the string entered by
the user that is to be auto-completed. The con-
text of the query may be included in the qc pa-
rameter. Typically, this is the text covered by the
(span) annotation that is linked to the external re-
source. This allows generating auto-completion
suggestions based on the annotated text even if the
user did not type anything yet. Consider an entity-
linking task where the user wants to disambiguate
the name of a drug using a drug database. The user
can simply annotate the drug name, press space
in the label editor to trigger an auto-completion
and the LLP service can return potential matches
of the drug name from the database. When the
user selects a match, the identifier of that match
is stored in an annotation attribute. The lookup
mode, is triggered by the presence of the id param-
eter. This is used during rendering to resolve the
identifiers to their label and optional description.
The INCEpTION lookup service examples (2024)
repository offers example lookup service imple-
mentations supporting the EMBL-EBI Ontology
lookup service and the Wikidata REST API.

4 Conclusion

We have discussed recent developments in the the
free and open source annotation tool INCEpTION
which allows it to be integrated as a step into larger
processes and which allow it to be customized us-
ing format and editor plugins so the tool can be
used with a wider range of document types and for
a wider range of annotation tasks. We have com-
pared the tool to the state-of-the-art and see that
based on the capabilities discussed here, INCEp-
TION is one of the most versatile tools in its peer
group. That said, we see further opportunities for
innovative annotation user interfaces (e.g. to better
accommodate annotation tasks related to large lan-
guage models) as well as in for supporting a wider
range of document types.
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A Detailed comparison to state of the art
tools

This appendix provides background information to
the comparison presented in Table 1.

Annotator management Automatically dis-
tributing work across the available annotators is
particularly relevant when there are many units of
work to be distributed. In instance-oriented tools,
every instance is a unit of work – typically very
small one and there is a large number of them
(e.g. several thousand). In document-oriented tools,
the unit of work is typically larger and there are
fewer of them. This is likely the reason that we
find the most advanced annotator management fea-
tures in the instance-oriented tools. For example,
a recent update to PRODIGY (v1.12) introduced a
programmable mechanism for routing work to an-
notators. However, that functionality seems only
to be fully exploitable with the PRODIGY TEAMS

offering that is unreleased at the time of writing, so
we consider PRODIGY to be a single-user tool for
the moment. POTATO and GATE TEAMWARE 2,
LABEL STUDIO (paid) and ALANNO all offer
configurable dynamic workload distribution mech-
anisms, typically allowing to set a target number
of labels required for a given instance. GATE
TEAMWARE 2 allows reclaiming instances aban-
doned by an annotator before assigning a label and
distributing them to other annotators. DOCANNO

has no workload distribution mechanism and ex-
pects all annotators to annotate all instances.

Dynamic workload management is most effec-
tive when paired with a self-sign-up mechanism or
the ability to use a external identity provider (IdP)
via OAuth or SAML protocols. POTATO offers a
self-sign-up mechanism based on submitting an ID
token via a special URL. LABEL STUDIO (paid)
and DOCCANO offer IdP support e.g. via OAuth.

However, document-oriented tools mostly lack
advanced workload management features. Neither
BRAT nor MEDTATOR offer any workload man-
agement. WEBANNO allows the project manager
to manually assign annotators to specific docu-
ments, but it is tedious and not suitable for sce-
narios where the composition of the annotation
team is not known in advance or regularly subject
to change.

Task design A highly customizable arrange-
ment of the UI elements is mainly interesting for
instance-oriented annotation tools in order to cre-

ate a layout that minimizes cognitive load and
maximizes annotation efficiency (He et al., 2022;
Gooding et al., 2023). LABEL STUDIO, POTATO,
PRODIGY and GATE TEAMWARE 2 are all relying
on a templating mechanism to customize the lay-
out of the annotation UI, typically intermixing pre-
defined input elements with custom HTML code.
DOCCANO offers different UIs for different kinds
of pre-defined tasks, allows for custom tagsets, but
is not flexibly configurable. LABEL SLEUTH and
ALANNO allow for configurable tagsets, but no
further customization of the annotation UI.

For document-oriented tools, usually, most of
the screen is occupied by the document view, so
there is less opportunity for custom arrangements.
The flexibility of these tools tends to lie in the way
the annotation schema is defined while leaving the
UI layout to the tool. For example, WEBANNO,
BRAT and INCEpTION offer a range of different
attribute types of which one or more can be added
to each annotation (string, number, rating, boolean,
etc.); each coming with specialized inputs. These
inputs are displayed to the user when editing an
annotation, but their arrangement is not freely de-
finable. MEDTATOR is least flexible in this area,
allowing only for single-value or multi-value string
attributes.

Support for annotating formatted text is scarce.
Among the tools considered here, only LABEL

STUDIO offers an input element that can display
formatted text and allows creating span and relation
annotations. It is also the only tool that supports
displaying PDF documents, but only for document-
classification tasks. Creating span and relation an-
notations inside the PDF are not supported.

Process integration While offering an API2 is
quite common for annotation tools today, there are
still tools being published without one. ALANNO,
POTATO, MEDTATOR and BRAT do all not offer
an API. PRODIGY is essentially a programming
library, so if offers a rich API. However, this API
is not remotely accessible out-of-the-box. LABEL

STUDIO, LABEL SLEUTH, GATE TEAMWARE 2
facilitating their integration into a larger process
consisting of multiple interacting services.

The AERO remote API specification defines end-
points for remotely managing annotation projects,

2Note that some tools advertise the API used by their
respective frontend layers as general purpose APIs. Frontend
APIs are not management APIs and trying to coerce both
use-cases into the same API is likely to create maintainability
issues in the long run.
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e.g. to create projects, import documents, moni-
tor the progress of annotation and export the re-
sults. While annotation tools mostly implement
proprietary APIs, the AERO specification was de-
signed to be implementable by multiple tools, one
of which is WEBANNO.

Event-based notifications allowing other ser-
vices to react to state changes in the annotation
tool are offered by LABEL STUDIO (paid) and WE-
BANNO.

Machine learning services GATE
TEAMWARE 2 and MEDTATOR allow only
importing and editing pre-annotated data. The
document-oriented WEBANNO has a dedicated
correction mode which requires the annotator
to explicitly verify and merge each annotation
from the pre-annotated document into the final
document.

DOCCANO, BRAT and LABEL STUDIO support
calling out to external ML services to annotate
documents using generic HTTP-based protocols –
the annotations can then be corrected by the an-
notator. WEBANNO offers only a single built-in
ML algorithm with limited ability to customize its
configuration. ALANNO comes with a range of
built-in ML algorithms and automatically chooses
the most applicable without the need or possibil-
ity for configuration. LABEL SLEUTH follows a
similar approach but allows the configuration of
model policies to decide which model is used for
the next batch. PRODIGY defers to locally calling
the spaCy library (Honnibal et al., 2020) from the
same vendor for its ML backends.

The APIs to interact with ML services are
very similar across tools. There is one predict
method/endpoint which gets provided with data
and returns data with annotations often in the same
format. A second fit method/endpoint maybe be
available if the tool also supports training models.

ALANNO, POTATO, LABEL STUDIO (paid),
LABEL SLEUTH, and PRODIGY all offer Active
Learning to efficiently source labels from the hu-
man annotator to improve the training efficiency of
the model.

External knowledge Most annotation tools only
offer limited support for controlled vocabularies
in the form of tagsets – these were covered un-
der Task design. Working with large terminologies
or knowledge bases can put considerable cogni-
tive load on the annotator, so it is not compati-
ble with the throughput maximization objective

of most instance-oriented annotation tools. The
document-oriented tool BRAT is one of the few an-
notation tools that support linking annotations to
knowledge bases using its normalization function-
ality. However, BRAT requires the manual gener-
ation of a local term index which is then used for
auto-completion, so it is not really integrable with
external services.

B Limitations

In this work, we discussed the importance of in-
tegrability for annotation tools based on a set of
requirements and how state-of-the art tools imple-
ment them. While there are many annotation tools
out there, they are too many to count or inspect.
Therefore, we focused on a limited selection of
some popular and some recent ones, trying to cover
a reasonably representative portion of long term
and recent trends. While we proceeded with ut-
most care when surveying the field, it is possible
that we overlooked annotation tools that are highly
relevant for this work.

When coming up with requirements concerning
integrability, we derived them mainly from our own
experience in developing annotation tools and inte-
grating them with services and processes as well as
our annotation tool survey. While mostly objective
and generic, different annotation processes might
need slightly different requirements and not 100%
benefit from our suggestions. In particular, our per-
spective focuses more on document-oriented tools
than on instance-oriented tools.

For each annotation tool, we read the papers,
their documentation and at times had to look at
their source code as well to assess how a tool works,
if and how it supports a particular feature and how
well it adhers in general to our set of requirements.
Indeed, we were positively surprised how some
of the tools we looked at have evolved in recent
months. However, we did not actively use most of
the tools. We still hope to have given a correct and
fair assessments of their capabilities.
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