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Abstract

Multi-agent systems empowered by large lan-
guage models (LLMs) have demonstrated re-
markable capabilities in a wide range of down-
stream applications. In this work, we introduce
TRANSAGENTS, a novel multi-agent transla-
tion system inspired by human translation com-
panies. TRANSAGENTS employs specialized
agents — Senior Editor, Junior Editor, Trans-
lator, Localization Specialist, and Proofreader
— to collaboratively produce translations that
are accurate, culturally sensitive, and of high
quality. Our system is flexible, allowing users
to configure their translation company based on
specific needs, and universal, with empirical
evidence showing superior performance across
various domains compared to state-of-the-art
methods. Additionally, TRANSAGENTS fea-
tures a user-friendly interface and offers trans-
lations at a cost approximately 80× cheaper
than professional human translation services.
Evaluations on literary, legal, and financial test
sets demonstrate that TRANSAGENTS produces
translations preferred by human evaluators,
even surpassing human-written references in lit-
erary contexts. Our live demo website is avail-
able at https://www.transagents.ai/. Our
demonstration video is available at https://
www.youtube.com/watch?v=p7jIAtF-WKc.

1 Introduction

Large language models (LLMs) have revolution-
ized the field of natural language processing and ar-
tificial intelligence, achieving remarkable progress
in various downstream applications (Ouyang et al.,
2022; Sanh et al., 2022; OpenAI, 2023; Anil et al.,
2023b; Touvron et al., 2023a,b; Anil et al., 2023a;
Mesnard et al., 2024; Dubey et al., 2024). The su-
perior capabilities of LLMs also empower a wide
range of multi-agent systems (Yao et al., 2023;
Wang et al., 2023c; Dong et al., 2023), enhanc-
ing their efficiency and effectiveness in diverse do-

*Longyue Wang is the corresponding author.

Figure 1: Compared to conventional machine trans-
lation (MT) systems that utilize a single MT engine,
TRANSAGENTS leverages the collaboration among mul-
tiple language agents, each powered by large language
models (LLMs), for translation.

mains, including software development (Qian et al.,
2023; Hong et al., 2023), simulation (Park et al.,
2022, 2023; Li et al., 2023), gaming (Xu et al.,
2023b), and more.

Among all the above, one particularly exciting
application of multi-agent systems is in the field of
machine translation (MT). MT systems, which typ-
ically rely on a single model to perform the transla-
tion, have achieved considerable success (Cho et al.,
2014; Sutskever et al., 2014; Vaswani et al., 2017;
Costa-jussà et al., 2022). However, these systems
often encounter difficulties in accurately handling
nuances, context, and idiomatic expressions (Fre-
itag et al., 2021; Thai et al., 2022). This limitation
highlights the need for a superior approach that
can handle the subtleties of human language more
effectively.

Consequently, to address the aforementioned
limitations of recent MT systems, we draw inspi-
ration from the traditional translation industry’s
workflow and propose TRANSAGENTS as shown in
Figure 1. Similar to a human translation company,
TRANSAGENTS functions as a virtual multi-agent
translation company. It mitigates the challenge
of generating high-quality translations by dividing
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the translation process into several steps and utiliz-
ing the collaborative efforts of multiple specialized
agents. More specifically, in TRANSAGENTS, each
agent is designed to manage specific aspects of the
translation process, to produce accurate and natu-
ral translations akin to those of human translators.
Each of our agents plays a specialized role, includ-
ing Senior Editor, Junior Editor, Translator, Local-
ization Specialist, and Proofreader. Together, these
agents replicate the traditional human translation
process, delivering translations that are accurate,
culturally sensitive, and of high quality. Finally, we
evaluate TRANSAGENTS alongside other state-of-
the-art translation systems using three test sets from
the literary, legal, and financial domains. Our exper-
imental results show that, despite lower d-BLEU
scores, the translations from TRANSAGENTS are
significantly more preferred by human evaluators
from the target audience compared to other state-
of-the-art translation systems. Notably, the literary
translations provided by TRANSAGENTS are even
more preferred than the human-written reference
translations.

Our system is featured by the following charac-
teristics:

• Flexible: TRANSAGENTS allows users to con-
figure their translation company based on their
specific needs, such as the number of employ-
ees for each role, the source and target lan-
guages, and the backbone of language agents.

• Universal: Empirical results indicate that
TRANSAGENTS significantly outperforms
other methods in translations across various
domains, according to human evaluations.

• User-Friendly: We design a straightforward
and intuitive user interface to enhance the user
experience as shown in Figure 3. This inter-
face is easy to navigate, allowing users to ac-
cess the system’s functionalities effortlessly.

• Cost-Effective: The cost of translating docu-
ments using TRANSAGENTS is approximately
80× cheaper than professional translation ser-
vices as described in Section 4.4.

2 Related Work

Large Language Models Large language mod-
els (LLMs) have significantly transformed the field
of artificial intelligence. These models are pre-
trained on extensive text corpora to predict the next
word in a sentence, which allows them to under-
stand and generate human-like text (Brown et al.,

2020; Chowdhery et al., 2022; Anil et al., 2023b;
Touvron et al., 2023a,b; Anil et al., 2023a,a; Yang
et al., 2024). After the initial pretraining phase,
LLMs undergo supervised fine-tuning (SFT) or
instruction tuning (IT). This process helps align
the models more closely with human instructions,
enhancing their ability to perform specific tasks
(Sanh et al., 2022; Chung et al., 2022; Tay et al.,
2023; Shen et al., 2023; Wu et al., 2024b). Recent
developments in the field include the use of syn-
thetic datasets generated by LLMs for fine-tuning.
Additionally, reinforcement learning from human
feedback (RLHF) is employed to further improve
the models’ performance and reliability (Ouyang
et al., 2022; Hejna et al., 2023; Ethayarajh et al.,
2024; Hong et al., 2024; Meng et al., 2024).

Multi-Agent Systems Intelligent agents are de-
signed to understand their environments, make
informed decisions, and respond appropriately
(Wooldridge and Jennings, 1995). Recent multi-
agent systems utilize collaboration among multiple
agents based on LLMs to tackle complex problems
or simulate real-world environments effectively
(Guo et al., 2024), such as software development
(Qian et al., 2023; Hong et al., 2023), multi-robot
collaboration (Mandi et al., 2023; Zhang et al.,
2023), text generation (Liang et al., 2023), and sim-
ulate societal, economic, and gaming environments
(Park et al., 2023; Xu et al., 2023b).

Machine Translation Machine translation (MT)
has seen remarkable advancements in recent years
(Cho et al., 2014; Sutskever et al., 2014; Vaswani
et al., 2017; Gu et al., 2018; Fan et al., 2021; Com-
munication et al., 2023). However, these improve-
ments are predominantly at the sentence level. Re-
cent research has shifted focus towards incorporat-
ing contextual information to enhance translation
quality beyond individual sentences (Wang et al.,
2017; Wu et al., 2023; Herold and Ney, 2023; Wu
et al., 2024c). This involves leveraging document-
level context to provide more accurate translations.
Additionally, large language models (LLMs) have
demonstrated superior capabilities in MT, further
pushing the boundaries of translation quality (Xu
et al., 2023a; Robinson et al., 2023; Wang et al.,
2023a; Wu et al., 2024a).

Ours In this work, we introduce TRANSAGENTS,
a general-purpose multi-agent framework that har-
nesses collaborative efforts among agents for trans-
lation. These language agents are powered by the
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Figure 2: The overview of TRANSAGENTS, including the Frontend and Backend modules.

latest state-of-the-art LLMs.

3 TRANSAGENTS

Our demo system TRANSAGENTS is implemented
as a web application, built using Streamlit.1 The
system comprises two main modules: a front-end
and a back-end. As illustrated in Figure 2, the fron-
tend module is responsible for accepting user input,
including the document to be processed and task
configurations (Section 3.1). The backend module,
on the other hand, handles the translation of the
given document by orchestrating the collaborative
efforts of our language agents (Section 3.2). Addi-
tionally, we present a step-by-step walkthrough of
TRANSAGENTS in Section 3.3.

3.1 Frontend Design

Task Configuration In addition to accepting doc-
uments for translation from users, we also allow
users to configure their tasks. As shown in Fig-
ure 3, this includes specifying the backbone of the
language agents, selecting the source and target
languages, determining the number of candidates
for various roles in the company, and more.

Progress Visualization As shown in Figure 3,
when the language agents collaborate with each
other, we visualize translation progress check-
points and multi-agent conversations in the user
interface, allowing users to monitor the progress of
the translation. This feature provides insights into
the decision-making process of the agents, making
it easier to understand how translations are derived.

1https://streamlit.io/

3.2 Backend Design

Agentic Backbone In our system, we allow users
to select various large language models as the back-
bone of their translation tasks. Users can choose
from a range of state-of-the-art large language mod-
els, including but not limited to GPT-4, GPT-4o,
and others. This selection ensures that users can
find the most suitable model for their specific trans-
lation requirements. This flexibility not only en-
hances the quality and accuracy of translations but
also allows users to experiment and find the perfect
balance between speed, precision, and contextual
understanding.

Role Playing TRANSAGENTS mirrors the tra-
ditional translation pipeline employed by human
translation companies, ensuring an effective and ef-
ficient workflow. In our system, we assign distinct
roles to language agents by defining specific sys-
tem prompts tailored to their functions, including
the Senior Editor, Junior Editor, Translator, Local-
ization Specialist, and Proofreader. We leverage
large language models (LLMs) to create detailed
prompts for each role. These prompts guide the
language agents, ensuring they understand their
specific tasks and responsibilities within the trans-
lation pipeline.

Translation Workflow We illustrate the work-
flow of TRANSAGENTS in Figure 2. Upon receiv-
ing the document to be translated and the task con-
figuration from the user, the Senior Editor first se-
lects appropriate agents for the translation task and
prepares the translation guidelines in collaboration
with the Junior Editor. The Junior Editor adds as
much detail as possible to the translation guidelines,
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Figure 3: The user interface and step-by-step walkthrough of TRANSAGENTS.

while the Senior Editor is responsible for remov-
ing redundant information, refining the guidelines
until they are precise and clear. Following this, the
Senior Editor and Junior Editor work closely with
the Translator, Localization Specialist, and Proof-
reader. The Junior Editor provides initial feedback
on the translations in collaboration with the Trans-
lator, Localization Specialist, and Proofreader. The
Senior Editor then evaluates whether the transla-
tions meet the required quality criteria. Finally, the
Senior Editor reviews the quality of the translations.
If the translations meet the required standards, they
are delivered to the user. Otherwise, they are sent
back to the translator for further improvements.

3.3 System Walkthrough

We present a complete walkthrough for using our
system in Figure 3:

• Step 1: Enter the user’s API key;
• Step 2: Select the LLM as the backbone of

language agents;
• Step 3: Specify the source language of the

document to be translated and the desired tar-
get language for translation;

• Step 4: Upload the document to be translated;
• Step 5: Set the number of employees for each

role in the translation company;
• Step 6: Click the start button in the upper right

corner to initiate the multi-agent translation
process. Once the translation is complete, the
user can download the translated document.

4 Experiments

In this section, we first introduce our experimental
setup in Section 4.1, followed by presenting the

results from both automatic evaluation (Section 4.2)
and human evaluation (Section 4.3).

4.1 Setup

Datasets We evaluate our models on three
Chinese-English test sets from the literary, legal,
and financial domains. The literary test set, sourced
from Wang et al. (2023b), comprises 240 chapters
from 20 web novels, with each chapter averaging
approximately 1,400 words. The legal test set is
an in-house collection of 500 contracts, each con-
taining around 68K words. Similarly, the financial
test set is an in-house collection of 500 financial
reports, with each report containing roughly 83K
words. The figures and charts in the financial re-
ports are removed. Both the legal and financial test
sets are manually translated by professional trans-
lators and reviewed by lawyers and accountants.

Evaluation In this work, we evaluate the transla-
tion quality with two methods: automatic evalua-
tion and human evaluation. We leverage d-BLEU
(Papineni et al., 2002; Liu et al., 2020) to evalu-
ate the translation quality at the document level,
and describe the details for human evaluation in
Section 4.3.

Models In this work, the backbone of the
language agents in TRANSAGENTS is GPT-4-
TURBO.2 We compare TRANSAGENTS with NLLB-
200-3.3B (Costa-jussà et al., 2022), GOOGLE-
TRANS,3 GPT-4-TURBO, and GPT-4O.4

2gpt-4-turbo-2024-04-09
3https://translate.google.com/
4gpt-4o-2024-05-13
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Just as Rhode was scrutinizing the room, the door suddenly opened.
A blonde girl in a white robe walked into the room. She looked at Rhode, who was half sitting up, and her eyes widened in surprise.
“You are awake?"
“Great!"
The girl did not speak Chinese or English, but Rhode could understand what she was talking about.
It surprised Rhode because he knew this language.
It was the Nimu language, one of the official languages of the Dragon Soul Continent!
“How do you feel? Are you okay?"
However, the girl did not care about Rhode's expression. She quickly walked to his side and carefully examined his left shoulder and chest.
“Your injuries are serious. Frankly, I'm a little worried if you might hold on..."
“This is..."

While Rhode was absorbing his surroundings, the door swung open, and a blonde-haired young woman in a white robe stepped inside. She
seemed surprised to see Rhode propped up.
'You're awake? How marvelous!' she exclaimed.
She spoke neither Chinese nor English, yet Rhode understood her effortlessly. This language was Nim, one of the official languages of Dragon
Soul Continent.
'How do you feel? Are you well?' she inquired, her voice laden with concern as she checked his bandages.
'Your injuries were severe. I feared you might not pull through...'

No Preference

Figure 4: The user interface for human evaluation. The human evaluators select their preferred translations.

Literary Legal Financial

NLLB-200-3.3B 20.2 24.8 26.5
GOOGLETRANS 47.3 37.9 35.8
GPT-4-TURBO 47.8 38.9 36.7
GPT-4O 46.8 39.0 37.8

TRANSAGENTS 25.0 30.9 32.9

Table 1: d-BLEU given by TRANSAGENTS and base-
lines on three test sets. The BEST results are high-
lighted in bold.

4.2 Automatic Evaluation

We present our results in Table 1. Interestingly,
TRANSAGENTS performs poorly in terms of d-
BLEU, achieving the lowest scores among all the
compared methods. However, these low scores do
not necessarily imply poor performance of our ap-
proach, as typical references used for calculating
d-BLEU scores often exhibit poor diversity and
tend to concentrate around translationese language
(Freitag et al., 2020). Our results also align with the
findings from Thai et al. (2022), where automatic
metrics cannot accurately reflect human preference.
To confirm this claim, we conduct human evalua-
tion and present the results in Section 4.3.

4.3 Human Evaluation

In this section, we introduce how we conduct hu-
man evaluation in this work and present our results.

Setup In the real-world application, it is not nec-
essary for the readers to understand the original
language, so we only provide the translated text
given by different models and its corresponding ref-
erence translation to human evaluators, and require
the human evaluators to select their preferred trans-

Literary Legal Financial

NLLB-200-3.3B 10.2 15.3 14.8
GOOGLETRANS 38.5 28.9 31.8
GPT-4-TURBO 41.9 30.5 33.9
GPT-4O 43.4 32.7 34.8

TRANSAGENTS 55.5 39.9 37.9

Table 2: Winning rate (WR; %) given by
TRANSAGENTS and baselines on three test sets.
The BEST results are highlighted in bold.

lation. It is hard for human evaluators to ensure the
evaluation quality when evaluating the very long
documents, so we split the whole document into
segments containing approximately 200 English
words. For each test set, we employ five human
evaluators from the corresponding target audience.
For literary test sets, we hire human evaluators
from online forum for web novel.5 Furthermore,
we employ the master students majoring in law and
finance in U.S. to evaluate the translations. The
translation and its reference are anonymized when
presented to the human evaluators and their order
is randomly shuffled to avoid the potential bias on
the position. Due to budget constraints, we only
evaluate roughly 500 segments for each test set,
and pay $0.5 USD for each annotation. We present
the user interface for human evaluation in Figure 4.

Results We present the results in Table 2.
TRANSAGENTS significantly outperforms all the
baselines in terms of winning rate. Notably,
TRANSAGENTS is even more preferred over the
human-written reference translations on the literary
test set. However, human evaluators still favor the

5https://www.reddit.com/r/WebNovels/
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Original Text 第834章回归圣地（二）[OMITTED]
第835章回归圣地（三）[OMITTED]

REFERENCE Chapter 834 Return to the Sacred Land (2)
[OMITTED] Chapter 835 Return to the
Sacred Land (3)

GPT-4O Chapter 834: Return to the Holy Land
(Part Two) [OMITTED] Chapter 834: Re-
turn to the Sacred Land (Part Three)

TRANSAGENTS Chapter 834: Return to the Sacred Land
(Part Two) [OMITTED] Chapter 835: Re-
turn to the Sacred Land (Part Three)

Table 3: Case study for translation consistency. The text
highlighted in red indicates inconsistent translations
across different chapters. The text highlighted in blue
indicates consistent translations.

human-written reference translations on the legal
and financial test sets. The inter-annotator agree-
ments are 0.64, 0.78, and 0.72 for the literary, legal,
and financial test sets, respectively, as measured
by Cohen’s κ coefficient (Cohen, 1960). These
values indicate substantial agreement among the
annotators for all three test sets. We believe this
discrepancy arises because the evaluation criteria
differ across various domains. The readers of lit-
erary texts commonly have higher standards for
stylistic language and cultural nuances, while the
readers of legal and financial documents prioritize
precision in language. These findings pave the way
for future research.

4.4 Cost Analysis

The American Translators Association advises a
baseline fee of $0.12 USD per word for profes-
sional translation services,6 which translates to
$168.48 USD per chapter for the literary test set.
In contrast, employing TRANSAGENTS for transla-
tion purposes incurs a total cost of approximately
$500 USD for the entire literary test set, which is
equivalent to about $2.08 USD per chapter. Con-
sequently, using TRANSAGENTS for translating
literary texts can result in an 80× decrease in trans-
lation expenses.

5 Case Study

In this section, we present two case studies from
literary test set to demonstrate the superiority of
TRANSAGENTS.

6https://unbabel.com/
translation-pricing-how-does-it-work/

Original Text 慕言君仅仅睡了两个时辰，眼睛就睁
开。

REFERENCE Mu Yanjun only slept for four hours before
his eyes opened.

GPT-4O Mu Yanjun only slept for two hours before
his eyes opened.

TRANSAGENTS After only four hours, Mu Yanjun’s eyes
opened once more.

Table 4: Case study for culture adaptation. The text
highlighted in red indicates incorrect translations. The
text highlighted in blue indicates correct translations.

Translation Consistency Ensuring consistency
from the beginning to the end of a document is
essential. As shown in Table 3, the chapter titles
in the original text are consistent, except for the
index. While all translation methods deliver se-
mantically accurate results, only REFERENCE and
TRANSAGENTS achieve consistency across vari-
ous chapters. In contrast, GPT-4O has difficulty
maintaining this consistency. This highlights that
TRANSAGENTS can maintain consistency through-
out the entire translation process.

Cultural Adaptation For translation systems to
be truly effective, they must incorporate an under-
standing of cultural and historical contexts. In tra-
ditional Chinese timekeeping, a时辰 ("shichen")
is equivalent to two hours in the modern time sys-
tem. Therefore,两个时辰 (two "shichen") is equal
to four hours. As shown in Table 4, both REFER-
ENCE and TRANSAGENTS correctly translate两个
时辰 to four hours, while GPT-4O fails to convert
"shichen" to the modern time system and mistrans-
lates两个时辰 as two hours. This highlights that
TRANSAGENTS has a superior ability to handle
culturally specific terms and accurately translate
them into the modern context.

6 Conclusion

In this work, we introduce TRANSAGENTS, a novel
multi-agent translation system inspired by the tra-
ditional human translation process, characterized
by its flexibility, universality, user-friendliness, and
cost-effectiveness. TRANSAGENTS leverages the
collaborative efforts of specialized agents, includ-
ing a Senior Editor, Junior Editor, Translator, Lo-
calization Specialist, and Proofreader. Our experi-
mental results, derived from test sets across literary,
legal, and financial domains, highlight the supe-
rior performance of TRANSAGENTS. Although
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TRANSAGENTS achieves lower d-BLEU scores
compared to other state-of-the-art systems, its trans-
lations are significantly more preferred by human
evaluators. Our case study also demonstrates the ef-
fectiveness of TRANSAGENTS with regard to trans-
lation consistency and culture adaptation.

7 Limitations

Translation Latency While TRANSAGENTS is
obviously faster than a human translator, it is con-
siderably slower compared to conventional MT sys-
tems. This increased latency is due to the exten-
sive communication required among the language
agents in TRANSAGENTS.

Evaluation The shortcomings of the BLEU met-
ric are well-documented within the MT literature.
Due to budget constraints, our human evaluation
covers only a subset of translations. These limita-
tions may impact the reliability of our evaluation.
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