@inproceedings{wijanarko-etal-2024-monitoring,
title = "Monitoring Hate Speech in {I}ndonesia: An {NLP}-based Classification of Social Media Texts",
author = "Wijanarko, Musa Izzanardi and
Susanto, Lucky and
Pratama, Prasetia Anugrah and
Idris, Ika Karlina and
Hong, Traci and
Wijaya, Derry Tanti",
editor = "Hernandez Farias, Delia Irazu and
Hope, Tom and
Li, Manling",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-demo.15",
pages = "142--152",
abstract = "Online hate speech propagation is a complex issue, deeply influenced by both the perpetrator and the target{'}s cultural, historical, and societal contexts. Consequently, developing a universally robust hate speech classifier for diverse social media texts remains a challenging and unsolved task. The lack of mechanisms to track the spread and severity of hate speech further complicates the formulation of effective solutions. In response to this, to monitor hate speech in Indonesia during the recent 2024 presidential election, we have employed advanced Natural Language Processing (NLP) technologies to create an improved hate speech classifier tailored for a narrower subset of texts; specifically, texts that target vulnerable groups that have historically been the targets of hate speech in Indonesia. Our focus is on texts that mention these six vulnerable minority groups in Indonesia: Shia, Ahmadiyyah, Christians, LGBTQ+, Indonesian Chinese, and people with disabilities, as well as one additional group of interest: Jews. The insights gained from our dashboard have assisted stakeholders in devising more effective strategies to counteract hate speech. Notably, our dashboard has persuaded the General Election Supervisory Body in Indonesia (BAWASLU) to collaborate with our institution and the Alliance of Independent Journalists (AJI) to monitor social media hate speech in vulnerable areas in the country known for hate speech dissemination or hate-related violence in the upcoming Indonesian regional elections. This dashboard is available online at \url{https://aji.or.id/hate-speech-monitoring}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wijanarko-etal-2024-monitoring">
<titleInfo>
<title>Monitoring Hate Speech in Indonesia: An NLP-based Classification of Social Media Texts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Musa</namePart>
<namePart type="given">Izzanardi</namePart>
<namePart type="family">Wijanarko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucky</namePart>
<namePart type="family">Susanto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Prasetia</namePart>
<namePart type="given">Anugrah</namePart>
<namePart type="family">Pratama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ika</namePart>
<namePart type="given">Karlina</namePart>
<namePart type="family">Idris</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Traci</namePart>
<namePart type="family">Hong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Derry</namePart>
<namePart type="given">Tanti</namePart>
<namePart type="family">Wijaya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Delia</namePart>
<namePart type="given">Irazu</namePart>
<namePart type="family">Hernandez Farias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Hope</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manling</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Online hate speech propagation is a complex issue, deeply influenced by both the perpetrator and the target’s cultural, historical, and societal contexts. Consequently, developing a universally robust hate speech classifier for diverse social media texts remains a challenging and unsolved task. The lack of mechanisms to track the spread and severity of hate speech further complicates the formulation of effective solutions. In response to this, to monitor hate speech in Indonesia during the recent 2024 presidential election, we have employed advanced Natural Language Processing (NLP) technologies to create an improved hate speech classifier tailored for a narrower subset of texts; specifically, texts that target vulnerable groups that have historically been the targets of hate speech in Indonesia. Our focus is on texts that mention these six vulnerable minority groups in Indonesia: Shia, Ahmadiyyah, Christians, LGBTQ+, Indonesian Chinese, and people with disabilities, as well as one additional group of interest: Jews. The insights gained from our dashboard have assisted stakeholders in devising more effective strategies to counteract hate speech. Notably, our dashboard has persuaded the General Election Supervisory Body in Indonesia (BAWASLU) to collaborate with our institution and the Alliance of Independent Journalists (AJI) to monitor social media hate speech in vulnerable areas in the country known for hate speech dissemination or hate-related violence in the upcoming Indonesian regional elections. This dashboard is available online at https://aji.or.id/hate-speech-monitoring.</abstract>
<identifier type="citekey">wijanarko-etal-2024-monitoring</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-demo.15</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>142</start>
<end>152</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Monitoring Hate Speech in Indonesia: An NLP-based Classification of Social Media Texts
%A Wijanarko, Musa Izzanardi
%A Susanto, Lucky
%A Pratama, Prasetia Anugrah
%A Idris, Ika Karlina
%A Hong, Traci
%A Wijaya, Derry Tanti
%Y Hernandez Farias, Delia Irazu
%Y Hope, Tom
%Y Li, Manling
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F wijanarko-etal-2024-monitoring
%X Online hate speech propagation is a complex issue, deeply influenced by both the perpetrator and the target’s cultural, historical, and societal contexts. Consequently, developing a universally robust hate speech classifier for diverse social media texts remains a challenging and unsolved task. The lack of mechanisms to track the spread and severity of hate speech further complicates the formulation of effective solutions. In response to this, to monitor hate speech in Indonesia during the recent 2024 presidential election, we have employed advanced Natural Language Processing (NLP) technologies to create an improved hate speech classifier tailored for a narrower subset of texts; specifically, texts that target vulnerable groups that have historically been the targets of hate speech in Indonesia. Our focus is on texts that mention these six vulnerable minority groups in Indonesia: Shia, Ahmadiyyah, Christians, LGBTQ+, Indonesian Chinese, and people with disabilities, as well as one additional group of interest: Jews. The insights gained from our dashboard have assisted stakeholders in devising more effective strategies to counteract hate speech. Notably, our dashboard has persuaded the General Election Supervisory Body in Indonesia (BAWASLU) to collaborate with our institution and the Alliance of Independent Journalists (AJI) to monitor social media hate speech in vulnerable areas in the country known for hate speech dissemination or hate-related violence in the upcoming Indonesian regional elections. This dashboard is available online at https://aji.or.id/hate-speech-monitoring.
%U https://aclanthology.org/2024.emnlp-demo.15
%P 142-152
Markdown (Informal)
[Monitoring Hate Speech in Indonesia: An NLP-based Classification of Social Media Texts](https://aclanthology.org/2024.emnlp-demo.15) (Wijanarko et al., EMNLP 2024)
ACL