@inproceedings{giuliani-etal-2024-cava,
title = "{CAVA}: A Tool for Cultural Alignment Visualization {\&} Analysis",
author = "Giuliani, Nevan and
Ma, Cheng Charles and
Pradeep, Prakruthi and
Ippolito, Daphne",
editor = "Hernandez Farias, Delia Irazu and
Hope, Tom and
Li, Manling",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-demo.16",
pages = "153--161",
abstract = "It is well-known that language models are biased; they have patchy knowledge of countries and cultures that are poorly represented in their training data. We introduce CAVA, a visualization tool for identifying and analyzing country-specific biases in language models.Our tool allows users to identify whether a language model successful captures the perspectives of people of different nationalities. The tool supports analysis of both longform and multiple-choice models responses and comparisons between models.Our open-source code easily allows users to upload any country-based language model generations they wish to analyze.To showcase CAVA{'}s efficacy, we present a case study analyzing how several popular language models answer survey questions from the World Values Survey.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="giuliani-etal-2024-cava">
<titleInfo>
<title>CAVA: A Tool for Cultural Alignment Visualization & Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nevan</namePart>
<namePart type="family">Giuliani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cheng</namePart>
<namePart type="given">Charles</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Prakruthi</namePart>
<namePart type="family">Pradeep</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daphne</namePart>
<namePart type="family">Ippolito</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Delia</namePart>
<namePart type="given">Irazu</namePart>
<namePart type="family">Hernandez Farias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Hope</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manling</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>It is well-known that language models are biased; they have patchy knowledge of countries and cultures that are poorly represented in their training data. We introduce CAVA, a visualization tool for identifying and analyzing country-specific biases in language models.Our tool allows users to identify whether a language model successful captures the perspectives of people of different nationalities. The tool supports analysis of both longform and multiple-choice models responses and comparisons between models.Our open-source code easily allows users to upload any country-based language model generations they wish to analyze.To showcase CAVA’s efficacy, we present a case study analyzing how several popular language models answer survey questions from the World Values Survey.</abstract>
<identifier type="citekey">giuliani-etal-2024-cava</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-demo.16</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>153</start>
<end>161</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CAVA: A Tool for Cultural Alignment Visualization & Analysis
%A Giuliani, Nevan
%A Ma, Cheng Charles
%A Pradeep, Prakruthi
%A Ippolito, Daphne
%Y Hernandez Farias, Delia Irazu
%Y Hope, Tom
%Y Li, Manling
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F giuliani-etal-2024-cava
%X It is well-known that language models are biased; they have patchy knowledge of countries and cultures that are poorly represented in their training data. We introduce CAVA, a visualization tool for identifying and analyzing country-specific biases in language models.Our tool allows users to identify whether a language model successful captures the perspectives of people of different nationalities. The tool supports analysis of both longform and multiple-choice models responses and comparisons between models.Our open-source code easily allows users to upload any country-based language model generations they wish to analyze.To showcase CAVA’s efficacy, we present a case study analyzing how several popular language models answer survey questions from the World Values Survey.
%U https://aclanthology.org/2024.emnlp-demo.16
%P 153-161
Markdown (Informal)
[CAVA: A Tool for Cultural Alignment Visualization & Analysis](https://aclanthology.org/2024.emnlp-demo.16) (Giuliani et al., EMNLP 2024)
ACL
- Nevan Giuliani, Cheng Charles Ma, Prakruthi Pradeep, and Daphne Ippolito. 2024. CAVA: A Tool for Cultural Alignment Visualization & Analysis. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 153–161, Miami, Florida, USA. Association for Computational Linguistics.