
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
System Demonstrations, pages 162–171

November 12-16, 2024 ©2024 Association for Computational Linguistics

ReDel: A Toolkit for LLM-Powered Recursive Multi-Agent Systems

Andrew Zhu, Liam Dugan, Chris Callison-Burch
University of Pennsylvania

{andrz,ldugan,ccb}@seas.upenn.edu

Abstract
Recently, there has been increasing interest in
using Large Language Models (LLMs) to con-
struct complex multi-agent systems to perform
tasks such as compiling literature reviews, draft-
ing consumer reports, and planning vacations.
Many tools and libraries exist for helping create
such systems, however none support recursive
multi-agent systems—where the models them-
selves flexibly decide when to delegate tasks
and how to organize their delegation structure.
In this work, we introduce ReDel: a toolkit for
recursive multi-agent systems that supports cus-
tom tool-use, delegation schemes, event-based
logging, and interactive replay in an easy-to-
use web interface. We show that, using ReDel,
we are able to easily identify potential areas of
improvements through the visualization and de-
bugging tools. Our code, documentation, and
PyPI package are open-source1 and free to use
under the MIT license.

1 Introduction

A multi-agent system uses multiple large language
models (LLMs) together to accomplish complex
tasks or answer complex questions beyond the ca-
pabilities of a single LLM. Often, in such scenar-
ios, each LLM is provided with tools (Parisi et al.,
2022; Schick et al., 2023) that it can use to give
it additional capabilities, like searching the inter-
net for real-time data or interacting with a web
browser. In most cases, these systems are defined
manually, with a human responsible for defining a
static problem-decomposition graph and defining
an agent to handle each subproblem in the graph
(Hong et al., 2024; Wu et al., 2023; Zhang et al.,
2024; Qiao et al., 2024, inter alia).

In a recursive multi-agent system, rather than
a human defining the layout of multiple agents,
a single root agent is given a tool to spawn addi-
tional agents. When faced with a complex task, the

1ReDel’s source code is available at https://github.
com/zhudotexe/redel.

Help me plan a trip to
Japan visiting 3 cities.

I'll need to find flights,
hotels, trains, and food.

Delegation Graph

Find hotels in Tokyo, Osaka, ...
Search for a hotel in Tokyo...

Search for a hotel in Osaka...

Search for flights to Japan...
FlightSearch[SFO, NRT]

Figure 1: ReDel allows developers to create systems of
recursive agents, inspect each agent’s state, and visual-
ize a system’s delegation graph (right). Recursive agents
can be used to solve complex tasks, such as planning a
trip to Japan (left).

root agent can decompose the task into smaller sub-
tasks, then delegate those tasks to newly-created
sub-agents. Each sub-agent can then either com-
plete the task if it is small enough, or recursively
decompose and delegate the task further2 (Khot
et al., 2023; Lee and Kim, 2023; Prasad et al., 2024)
(Figure 1).

In the current landscape of multi-agent systems,
the majority of tooling focuses on human-defined
static systems, and poorly handles dynamic sys-
tems where agents are added to a computation
graph at runtime. Furthermore, much of this tool-
ing is unsuitable for academic purposes (Zhu et al.,
2023) or hidden behind paywalls and proprietary
licenses.

In this paper, we present ReDel, a fully-featured
open-source toolkit for recursive multi-agent sys-
tems. ReDel makes it easy to experiment by provid-
ing a modular interface for creating tools, differ-
ent delegation methods, and logs for later analysis.
This granular logging and a central event-driven
system makes it easy to listen for signals from any-
where in a system, and every event is automatically

2This is where the toolkit’s name, ReDel, comes from: it’s
short for Recursive Delegation.

162

https://github.com/zhudotexe/redel
https://github.com/zhudotexe/redel

logged for post-hoc data analysis. ReDel also fea-
tures a web interface that allows users to interact
with a configured system directly and view replays
of saved runs, making it easy for researchers and
developers to build, iterate on, and analyze recur-
sive multi-agent systems. In Section 4 we use Re-
Del to run recursive multi-agent systems on three
diverse agentic benchmarks, and in Section 5 we
demonstrate how the toolkit can be used to explore
complex behaviours of these systems.

2 Related Work

Recursive Multi-Agent Systems. Recent work
on recursive multi-agent systems has been done
by Lee and Kim (2023), Khot et al. (2023), Qi
et al. (2023), and Prasad et al. (2024). These works
introduce the method of fine-tuning or few-shot
prompting LLMs to decompose complex tasks and
using sub-agents to solve each part (often called
recursive or hierarchical decomposition). ReDel
builds upon the methods introduced in these works
by taking advantage of modern models’ native tool
use capability (Schick et al., 2023) to decompose
and delegate tasks zero-shot (i.e., without human-
written examples in prompt) instead of using few-
shot prompting or fine-tuning. As a framework,
we provide an extensible interface to apply these
approaches to additional tasks and domains.

Other multi-agent system methods such as agent
evolution (Qian et al., 2024; Yuan et al., 2024; Zhou
et al., 2024b) perturb human-written prompts and
tools to create new variations of sub-agents on the
fly. In this paper, we choose to explore delega-
tion using zero-shot prompting and function calling
without on-the-fly adaptation, but our framework is
flexible enough to implement these alternate meth-
ods of agent delegation as well.

Multi-Agent System Frameworks. Although
there are other LLM-powered multi-agent system
frameworks, each have various weaknesses that
make them poorly suited for recursive systems
and/or academic purposes. In Table 1, we com-
pare LangGraph (Campos et al., 2023), LlamaIndex
(Liu et al., 2022), MetaGPT (Hong et al., 2024),
AutoGPT (Significant Gravitas, 2023), and XAgent
(XAgent Team, 2023) to ReDel, our system. Most
are built around static multi-agent systems, with
only AutoGPT and XAgent supporting a single
level of delegation. Only LangGraph and LlamaIn-
dex allow agents to run in parallel asynchronously,
whereas MetaGPT, AutoGPT, and XAgent run one

R
eD

el

L
angG

raph

L
lam

aIndex

M
etaG

PT

A
utoG

PT

X
A

gent

Dynamic Systems
Parallel Agents
Event-Driven
Run Replay
Web Interface
Fully Open Source

Table 1: A feature comparison between ReDel and com-
peting toolkits. ReDel is the only fully open-source
toolkit that supports dynamic multi-agent systems with
a rich event-driven base and web interface.

agent at a time in a synchronous fashion. To log
events deep within the system, only LlamaIndex
provides a rigorous instrumentation suite to devel-
opers that allows them to emit events at any point
while a system is running. Most do not allow devel-
opers to replay a system run from a log, with only
LangGraph allowing replays by taking snapshots
of each state of the system. Most do not provide
a visualization interface, with only AutoGPT and
XAgent providing a simple chat-based UI. Unless
one subscribes to a paid service, LangGraph’s re-
plays cannot be viewed visually, and are instead
presented as the raw data of each state. Finally,
only AutoGPT, MetaGPT, and XAgent are fully
open-source, with LangGraph and LlamaIndex uti-
lizing proprietary code to offer more “premium”
features beyond what their open-source libraries
offer.

In comparison, ReDel allows developers to cus-
tomize their agents’ delegation strategies and build
multi-level dynamic systems while providing all of
these features out of the box and remaining fully
free and open source. It is the only such toolkit
to provide first-class support for recursive multi-
agent systems with best-in-class support for system
visualization and modern LLMs with tool usage.

3 System Design

ReDel consists of two main parts: a Python pack-
age to define recursive delegation systems, log
events, and run experiments, and a web interface to
quickly and interactively iterate on defined systems
or analyze experiment logs. In the following sec-
tions, we discuss these components in more detail.

163

class MyHTTPTool(ToolBase):

@ai_function()

def get(self, url: str):

"""Get the contents of a webpage,

and return the raw HTML."""

resp = requests.get(url)

return resp.text

Figure 2: An example of a simple ReDel tool that ex-
poses an HTTP GET function to any agent equipped
with the tool.

prompt_toks = Counter()

out_toks = Counter()

for event in read_jsonl("/path/to/events.jsonl"):

if event["type"] == "tokens_used":

eid = event["id"]

prompt_toks[eid] += event["prompt_tokens"]

out_toks[eid] += event["completion_tokens"]

Figure 3: Every event in a ReDel system, builtin or
custom, is logged to a JSONL file. Developers can use
data analysis tools of their choice to analyze event logs
post-hoc. This example demonstrates token counting.

3.1 Tool Usage
In ReDel, a “tool” is a group of functions, written
in Python, that is exposed to an agent. The agent
may generate requests to call appropriate functions
from this tool, which interact with the environment
(e.g. searching the Internet).

Developers can define tools in any Python file,
and a tool’s methods can be implemented by any
Python code. ReDel is implemented in pure Python,
and method bodies will not be sent to an agent’s
underlying language model, so there is no limit
to a tool’s implementation complexity or length.
Similarly, a tool can use functionality defined in
any other external library, allowing developers to
utilize existing application code. An example of
a basic tool that provides a function for making
HTTP requests is in Figure 2.

ReDel comes bundled with a web browsing tool
and email tool as examples, and we encourage de-
velopers to implement domain-specific tools for
their own purposes.

3.2 Delegation Schemes
A delegation scheme is the strategy used by an
agent to send tasks to sub-agents. In ReDel, dele-
gation schemes are implemented as a special type

define a custom event

class CustomToolEvent(BaseEvent):

type: Literal["custom_event"] = "custom_event"

id: str # the ID of the dispatching agent

foo: str # some other data

define a tool that dispatches the event

class MyTool(ToolBase):

@ai_function()

def my_cool_function(self):

self.app.dispatch(

CustomToolEvent(id=self.kani.id, foo="bar")

)

other behaviour here ...

Figure 4: Using ReDel to define a custom event and
dispatch it from a tool. Custom events can be used
to add observability deep within a system and can be
queried post-hoc for rich data analysis.

of tool that an LLM agent (the “parent”) can call
with task instructions as an argument. These in-
structions are sent to a new sub-agent (the “child”),
which can either complete them if they are simple
enough, or break them up into smaller parts and
recursively delegate again.

Taking inspiration from common process man-
agement paradigms found in operating systems,
ReDel comes with two delegation schemes:

• DelegateOne: Synchronously block the par-
ent agent’s execution until the child agent re-
turns its result (in the form of its chat output).

• DelegateWait3: Do not block parent agent’s
execution. Instead, provide a separate func-
tion to asynchronously retrieve the result (chat
output) of a particular child.

The DelegateOne scheme is well-suited for LLMs
with parallel function calling as it allows ReDel to
let a group of spawned child agents run in parallel,
and return their results once they all complete.

In contrast, the DelegateWait scheme is well-
suited for LLMs without parallel function calling,
as it lets these models spawn multiple agents before
deciding to wait on any one agent’s result (i.e.,
retrieve its conversational output). The drawback
is that this runs the risk of creating zombie agents
if the parent agent never retrieves the results of a

3Named so in that it provides two functions to agents:
delegate(), which sends the instructions to the child agent
and spawns it, and wait(), which retrieves its result, waiting
for it to finish if necessary.

164

particular child agent.4 As far as we are aware,
ReDel is the first system to implement this type of
deferred delegation scheme.

Developers can also implement their own del-
egation schemes modularly in a fashion similar
to defining tools which can enable more complex
behaviour. For example, a developer might im-
plement a delegation scheme that allows a parent
agent to ask follow-up questions to existing chil-
dren to enable multi-turn delegation. Developers
can also use the delegation scheme to control how
the child passes information back to its parent – for
example, having each child call a set_result()
function to explicitly record its answer to a subtask
instead of implicitly sending its chat output to the
parent. We include examples of how to define a del-
egation scheme in Appendix A and in our GitHub
repository.

3.3 Events & Logging

ReDel operates as an event-driven framework, with
comprehensive built-in events and the ability to
define custom events. An event can be defined as

4From our testing, this is a fairly rare occurrence.

anything from the creation of a sub-agent to the
usage of a particular tool. Whenever ReDel catches
an event, it logs the event to a JSONL file. This file
essentially acts as an execution trace for a system
run and users can use standard data analysis tools
to inspect this trace and debug their runs. Figure
3 shows how a basic Python script can be used to
count a system’s token usage post-hoc.

Furthermore, using just the built-in events, Re-
Del is able to interactively play back any response
through our web interface for extra visual debug-
ging aid (see Section 3.4). In Section 4 we show a
case study of how this can be used to debug com-
plex query failures. We provide the set of built-in
default events in Appendix B and an example of
defining a custom event in Figure 4.

3.4 Web Interface

The web interface consists of four main views:

Home Page. The home page (Figure 5a) is the
default view when starting the interface for the first
time. Users can transition to the interactive view
by sending a message in the chat bar, or use the
provided buttons to load a saved replay or read

Interactive
sessions you've
started appear
here.

Start a new session with the configured ReDel
system by sending the first message.

Start a new empty session with the configured ReDel system.

Read more about ReDel.

Load a saved session in the replay viewer.

(a) The home page of the ReDel web interface.

Send new messages to the root node.

Root node message history. Computation graph.
A running node.
Waiting on children.
A finished node.
The selected node.
The root node.

Click a node to
view its

message history
in the selected

node view.

Selected node message history view.

(b) ReDel’s interactive view allows users to quickly iterate
on prompts and tool design, and test end-to-end performance.

The date and time the save was last modified.
The number of events in the save.

The current directory (relative to the save roots).

The save's title.

Search all save titles for keywords.

Sort saves by edit time,
name, or event count.

(c) The save browser displays logs found in configured direc-
tories on the filesystem. It allows developers to search for and
review previous runs of ReDel systems.

Jump to:
Previous/next event
Previous/next message (selected node)
Previous/next message (root)

Seek (click & drag)

Event count.

Root node message history. Computation graph.
A running node.
Waiting on children.
A finished node.
The selected node.
The root node.

Click a node to
view its

message history
in the selected

node view.

Selected node message history view.

(d) ReDel’s replay view allows developers to replay saved
runs of ReDel systems, giving events temporal context when
analyzing or debugging a system’s performance.

Figure 5: The four views of the ReDel web interface: Home (a), Interactive (b), Save Browser (c), and Replay (d).

165

more about ReDel. The sidebar lets users switch
between interactive sessions they have started, start
new sessions, or load saved replays.

Interactive View. In the interactive view (Figure
5b), users can send messages to the root node to
interact with the system. While the system is run-
ning, the top right panel contains the delegation
graph: a visual representation of each agent in the
system, their parent and children, and what their
current status is: running (green), waiting (yellow),
or done (grey). Users can further inspect each node
in the delegation graph by clicking it, which dis-
plays its full message history in the bottom right
panel. ReDel supports streaming, and LLM gener-
ations appear in real-time for every agent.

Save Browser. The save browser (Figure 5c) al-
lows users to select replays to view from the list of
previous sessions. This allows researchers to run
experiments in batches while saving their logs, and
use the interface to review the system’s behaviour
at a later date. The save list contains all the saves
that the ReDel server found in the provided save
directories, their titles, number of events, and when
they were last edited. Users can search for key-
words in a save’s title and can also sort saves by
name, edit time, or number of events – the latter
allowing users to quickly find outliers at a glance.

Replay View. With just the built-in default events
(see Appendix B) ReDel saves enough information
about a session to fully recreate it in a replay setting.
Thus, the replay view (Figure 5d) allows users to
step through every event (both built-in and custom)
dispatched by the system during a particular session
and visualize each event’s impact on the system.

The layout of the replay view is virtually identi-
cal to the interactive view except with the message
bar replaced by replay controls. Users can use
these controls to jump between messages in the
root node, selected node in the delegation graph, or
seek events using the slider. The message history
and delegation graph update in real time as users
seek through the replay.

4 Evaluation & Case Study

To evaluate ReDel, we compare its performance to
a baseline single-agent system and to the published
state-of-the-art system on three different bench-
marks. We include the logs and source code for all
experiments in our code release.

4.1 Experimental Setup

Benchmarks. To properly evaluate ReDel we
had to choose only datasets that contained suffi-
ciently complex tasks. For our benchmarks we
therefore chose the following:

1. FanOutQA: (Zhu et al., 2024) Agents must
compile data from many Wikipedia articles to
answer complex information-seeking queries.

2. TravelPlanner: (Xie et al., 2024) Agents
must create travel plans using tools to search
flights, restaurant, and attraction databases.

3. WebArena: (Zhou et al., 2024a) Agents must
do complex web tasks such as adding products
to a shopping cart or commenting on GitLab.

Due to cost constraints we limited our evaluation to
roughly 100-300 examples from each benchmark
(see Appendix C).

Models. For our main two ReDel systems we
used GPT-4o (OpenAI, 2024) and GPT-3.5-turbo
(OpenAI, 2022) as the underlying models. In all
setups, root nodes are not given tool usage capabil-
ities and use the DelegateOne delegation scheme.

For the two baseline systems, we used the GPT-
4o and GPT-3.5-turbo models as-is. All models
were given equal access to all tools and no few-
shot prompting or fine-tuning was performed.

4.2 Results

In Table 2 we report the results of our evaluation.
We see that, across all benchmarks, our recursive
delegation system significantly outperforms its cor-
responding single-agent baseline. We even present
an improvement over the previous state of the art
systems in both FanOutQA and TravelPlanner.

Furthermore, we see that the gap between ReDel
and the baseline system gets larger as the capabili-
ties of the underlying model improves. We believe
that this bodes well for the application of such tech-
niques to future, more powerful models.

In the few cases where ReDel fails, namely H-
Micro on TravelPlanner and SR on WebArena,
these are attributable to metric failures and unequal
comparisons. In the TravelPlanner case, on further
inspection, we find that recursive systems tend to
make more commonsense inputs for meals (e.g.
“on the flight” or “packed lunch”) – which causes
the TravelPlanner evaluation script to give a score
of 0 on the Hard Constraint metric. As for the We-
bArena result, the published SotA SteP model uses

166

FanOutQA TravelPlanner WebArena
System Loose Model Judge CS-Micro H-Micro Final SR SR (AC) SR (UA)

ReDel (GPT-4o) 0.687 0.494 67.49 9.52 2.78 0.203 0.179 0.643
ReDel (GPT-3.5-turbo) 0.300 0.087 54.58 0 0 0.092 0.066 0.571

Baseline (GPT-4o) 0.650 0.394 50.83 18.81 0 0.162 0.128 0.786
Baseline (GPT-3.5-turbo) 0.275 0.077 48.75 0.24 0 0.085 0.058 0.571

Published SotA 0.580 0.365 61.1 15.2 1.11 0.358 — —

Table 2: Systems’ performance on FanOutQA, TravelPlanner, and WebArena. The SotA models are GPT-4o on
FanOutQA, GPT-4-turbo/Gemini Pro on TravelPlanner, and SteP on WebArena. We see that ReDel outperforms the
corresponding single-agent baselines across all benchmarks and improves over published SotA in two of three.

few-shot, chain-of-thought prompting, whereas our
systems all use zero-shot prompting.

5 Using ReDel for Error Analysis

For our error analysis, we took the saved log files
for each benchmark and manually investigated the
logs of both the successful runs as well as the failed
runs through the replay view of the ReDel web
interface. Through this investigation we observed
two common failure cases in recursive multi-agent
systems. These cases are as follows:

• Overcommitment: The agent attempts to
complete an overly-complex task itself.

• Undercommitment: The agent performs no
work and re-delegates the task it was given.

We find that overcommitment commonly occurs
when an agent performs multiple tool calls and
fills its context window with retrieved information.
In the ReDel web interface, this manifests as an
abnormally small delegation graph, often consist-
ing of only two nodes: the root node, and a single
child which the root delegates to and which subse-
quently overcommits. In practice, this often, but
not always, results in the overcommitting model
“forgetting” the task it was meant to accomplish
due to the original task being truncated its limited
context window. An overcommitting model might
fail a task because it outputs a summary of what-
ever remains in its context window instead of the
answer to the original task, whereas a task failure
due to causes other than overcommittment might
look like a hallucinated result or a simple apology
for being unable to complete the task.

In contrast, we find that undercommitment com-
monly happens when the model incorrectly decides
that it does not have the necessary tools to solve the
problem and instead assumes that its future child
will possess the required tools to solve the prob-
lem. In all three benchmarks, this led to failure as

FOQA TP WA
System OC UC OC UC OC UC

RD (4o) 22.7 11.3 41.1 0.5 31.3 44.8
RD (3.5-t) 40.8 1.1 96.7 0 54.6 17.7

Table 3: The overcommitment (OC) and undercom-
mitment (UC) rates, in percent, of the two recursive
multi-agent systems we tested, by benchmark.

agents entered an infinite loop of delegation until
they reached a configured depth limit or timed out.
In the web interface, this manifests as a line of
nodes in the delegation graph (Figure 6).

In Table 3 we tabulate the over- and undercom-
mitment rates of ReDel with both GPT-4o and GPT-
3.5-turbo for each benchmark. We did this heuristi-
cally by counting any delegation graph with two or
fewer agents as overcommitted and any delegation
graph with a chain of three or more agents with ex-
actly zero or one children as undercommitted. We
see that as models get stronger they have a stronger
propensity to delegate. However, that propensity to
delegate may lead to undercommitment.

Given the prevalence of these two issues, we hy-
pothesize that recursive multi-agent systems may
still see further improvements to performance from
interventions that target these behaviors. For ex-
ample, one could fine-tune or prompt agents with
domain-specific instructions that detail when the
models should delegate and when they should per-
form tasks on their own.

While implementing such improvements is be-
yond the scope of this paper, we believe that this
case study helps to demonstrate the strengths of the
ReDel system. Using the delegation graph view, it
is easy to identify and characterize errors in recur-
sive multi-agent systems and we hope that through
ReDel more research can be done to further refine
such systems for maximum utility.

167

Figure 6: Recursive systems exhibiting undercommit-
ment produce long chains of agents (blue boxes), as
seen in the ReDel delegation graph.

6 Conclusion

We present ReDel, a novel toolkit for working with
recursive multi-agent systems. ReDel allows aca-
demic developers to quickly build, iterate on, and
run experiments involving dynamic multi-agent
systems. It offers a modular interface to create
tools for agents to use, an event framework to in-
strument experiments for later analysis, and a free
and open-source web interface to interact with and
explore developer-defined systems. We use Re-
Del to demonstrate recursive multi-agent systems’
performance on three diverse benchmarks, and we
include the full logs of these runs in our demo re-
lease for reproducibility and further exploration5.
ReDel opens the door for a new paradigm of recur-
sive multi-agent systems, and we are excited to see
how developers can utilize our system in the future.

Acknowledgements

This research is supported in part by the Office
of the Director of National Intelligence (ODNI),
Intelligence Advanced Research Projects Activ-
ity (IARPA), via the HIATUS Program contract
#2022-22072200005. This material is based upon
work supported by the National Science Founda-
tion Graduate Research Fellowship, under Grant
No. DGE-2236662. The views and conclusions
contained herein are those of the authors and should
not be interpreted as necessarily representing the
official policies or views, either expressed or im-
plied, of ODNI, IARPA, the NSF, or the U.S. Gov-
ernment. The U.S. Government is authorized to
reproduce and distribute reprints for governmental

5https://datasets.mechanus.zhu.codes/
redel-dist.zip

purposes notwithstanding any copyright annotation
therein.

References
Nuno Campos, William FH, Vadym Barda, and Harrison

Chase. 2023. LangGraph.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu
Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu,
and Jürgen Schmidhuber. 2024. MetaGPT: Meta pro-
gramming for a multi-agent collaborative framework.
In The Twelfth International Conference on Learning
Representations.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao
Fu, Kyle Richardson, Peter Clark, and Ashish Sab-
harwal. 2023. Decomposed prompting: A modular
approach for solving complex tasks. In The Eleventh
International Conference on Learning Representa-
tions.

Soochan Lee and Gunhee Kim. 2023. Recursion of
thought: A divide-and-conquer approach to multi-
context reasoning with language models. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2023, pages 623–658, Toronto, Canada.
Association for Computational Linguistics.

Jerry Liu, Logan, and Simon Siu. 2022. LlamaIndex.

OpenAI. 2022. ChatGPT: Optimizing Language Mod-
els for Dialogue.

OpenAI. 2024. Hello GPT-4o.

Aaron Parisi, Yao Zhao, and Noah Fiedel. 2022.
TALM: tool augmented language models. Preprint,
arXiv:2205.12255.

Archiki Prasad, Alexander Koller, Mareike Hartmann,
Peter Clark, Ashish Sabharwal, Mohit Bansal, and
Tushar Khot. 2024. ADaPT: As-needed decompo-
sition and planning with language models. In Find-
ings of the Association for Computational Linguis-
tics: NAACL 2024, pages 4226–4252, Mexico City,
Mexico. Association for Computational Linguistics.

Jingyuan Qi, Zhiyang Xu, Ying Shen, Minqian Liu,
Di Jin, Qifan Wang, and Lifu Huang. 2023. The art
of SOCRATIC QUESTIONING: Recursive thinking
with large language models. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 4177–4199, Singapore.
Association for Computational Linguistics.

Cheng Qian, Shihao Liang, Yujia Qin, Yining Ye, Xin
Cong, Yankai Lin, Yesai Wu, Zhiyuan Liu, and
Maosong Sun. 2024. Investigate-consolidate-exploit:
A general strategy for inter-task agent self-evolution.
Preprint, arXiv:2401.13996.

168

https://datasets.mechanus.zhu.codes/redel-dist.zip
https://datasets.mechanus.zhu.codes/redel-dist.zip
https://github.com/langchain-ai/langgraph
https://openreview.net/forum?id=VtmBAGCN7o
https://openreview.net/forum?id=VtmBAGCN7o
https://openreview.net/forum?id=_nGgzQjzaRy
https://openreview.net/forum?id=_nGgzQjzaRy
https://doi.org/10.18653/v1/2023.findings-acl.40
https://doi.org/10.18653/v1/2023.findings-acl.40
https://doi.org/10.18653/v1/2023.findings-acl.40
https://doi.org/10.5281/zenodo.1234
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://openai.com/index/hello-gpt-4o/
https://arxiv.org/abs/2205.12255
https://doi.org/10.18653/v1/2024.findings-naacl.264
https://doi.org/10.18653/v1/2024.findings-naacl.264
https://doi.org/10.18653/v1/2023.emnlp-main.255
https://doi.org/10.18653/v1/2023.emnlp-main.255
https://doi.org/10.18653/v1/2023.emnlp-main.255
https://arxiv.org/abs/2401.13996
https://arxiv.org/abs/2401.13996

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo,
Wangchunshu Zhou, Yuchen Jiang, Chengfei Lv, and
Huajun Chen. 2024. AutoAct: Automatic agent
learning from scratch for QA via self-planning. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 3003–3021, Bangkok, Thailand.
Association for Computational Linguistics.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: Language models can teach themselves
to use tools. In Thirty-seventh Conference on Neural
Information Processing Systems.

Significant Gravitas. 2023. AutoGPT.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran
Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan
Awadallah, Ryen W White, Doug Burger, and Chi
Wang. 2023. AutoGen: enabling next-gen llm ap-
plications via multi-agent conversation. Preprint,
arXiv:2308.08155.

XAgent Team. 2023. Xagent: An autonomous agent for
complex task solving.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze
Lou, Yuandong Tian, Yanghua Xiao, and Yu Su. 2024.
TravelPlanner: A benchmark for real-world planning
with language agents. In Forty-first International
Conference on Machine Learning.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Dong-
sheng Li, and Deqing Yang. 2024. Evoagent: To-
wards automatic multi-agent generation via evolu-
tionary algorithms. Preprint, arXiv:2406.14228.

Ceyao Zhang, Kaijie Yang, Siyi Hu, Zihao Wang,
Guanghe Li, Yihang Sun, Cheng Zhang, Zhaowei
Zhang, Anji Liu, Song-Chun Zhu, Xiaojun Chang,
Junge Zhang, Feng Yin, Yitao Liang, and Yaodong
Yang. 2024. Proagent: Building proactive coopera-
tive agents with large language models. Proceedings
of the AAAI Conference on Artificial Intelligence,
38(16):17591–17599.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue
Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Gra-
ham Neubig. 2024a. Webarena: A realistic web en-
vironment for building autonomous agents. In The
Twelfth International Conference on Learning Repre-
sentations.

Wangchunshu Zhou, Yixin Ou, Shengwei Ding, Long
Li, Jialong Wu, Tiannan Wang, Jiamin Chen, Shuai
Wang, Xiaohua Xu, Ningyu Zhang, Huajun Chen,
and Yuchen Eleanor Jiang. 2024b. Symbolic
learning enables self-evolving agents. Preprint,
arXiv:2406.18532.

Andrew Zhu, Liam Dugan, Alyssa Hwang, and Chris
Callison-Burch. 2023. Kani: A lightweight and

highly hackable framework for building language
model applications. In Proceedings of the 3rd Work-
shop for Natural Language Processing Open Source
Software (NLP-OSS 2023), pages 65–77, Singapore.
Association for Computational Linguistics.

Andrew Zhu, Alyssa Hwang, Liam Dugan, and Chris
Callison-Burch. 2024. FanOutQA: A multi-hop,
multi-document question answering benchmark for
large language models. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 18–37,
Bangkok, Thailand. Association for Computational
Linguistics.

169

https://doi.org/10.18653/v1/2024.acl-long.165
https://doi.org/10.18653/v1/2024.acl-long.165
https://openreview.net/forum?id=Yacmpz84TH
https://openreview.net/forum?id=Yacmpz84TH
https://github.com/Significant-Gravitas/AutoGPT
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2406.14228
https://arxiv.org/abs/2406.14228
https://arxiv.org/abs/2406.14228
https://doi.org/10.1609/aaai.v38i16.29710
https://doi.org/10.1609/aaai.v38i16.29710
https://openreview.net/forum?id=oKn9c6ytLx
https://openreview.net/forum?id=oKn9c6ytLx
https://arxiv.org/abs/2406.18532
https://arxiv.org/abs/2406.18532
https://doi.org/10.18653/v1/2023.nlposs-1.8
https://doi.org/10.18653/v1/2023.nlposs-1.8
https://doi.org/10.18653/v1/2023.nlposs-1.8
https://doi.org/10.18653/v1/2024.acl-short.2
https://doi.org/10.18653/v1/2024.acl-short.2
https://doi.org/10.18653/v1/2024.acl-short.2

A Custom Delegation Scheme

The following annotated code snippet shows how to use the ReDel Python package to define a delegation
scheme – the delegation scheme here is a reproduction of the bundled DelegateOne scheme.

class DelegateOne(DelegationBase):

@ai_function()

async def delegate(instructions: str):

"""(Insert your prompt for the model here.)"""

request a new agent instance from the system

subagent = await self.create_delegate_kani(instructions)

set the state of the delegator agent to be waiting on the delegate

with self.kani.run_state(RunState.WAITING):

buffer the delegate's response as a list of strings, filtering for ASSISTANT messages

use full_round_stream so that the app automatically dispatches streaming events

result = []

async for stream in subagent.full_round_stream(instructions):

msg = await stream.message()

if msg.role == ChatRole.ASSISTANT and msg.content:

result.append(msg.content)

clean up any of the delegate's ephemeral state and return result to caller

await subagent.cleanup()

return "\n".join(result)

Figure 7: Using ReDel to define a custom delegation scheme. Delegation tools are responsible for the lifecycle of
any agent they create.

B Application Events

The following table lists the built-in default events that will be emitted on every run of a ReDel system.
Each event has a type key which is used to determine what kind of event it is, and a timestamp key.

Event Name Key Description

Agent Spawned kani_spawn A new agent was spawned. The data attached to the event contains the full state
of the agent at the time it was spawned, which includes its ID, relations to other
agents, a description of the LLM powering it, the tools it has access to, and any
system prompts.

Agent State Change kani_state_change The running state of an agent changed (e.g. from RUNNING to WAITING).
Contains the ID of the agent and its new state.

Tokens Used tokens_used An agent made a call to the language model powering it. Contains the ID of the
agent, the number of tokens in the prompt it sent, and the number of tokens in
the completion the LLM returned.

Agent Message kani_message An agent added a new message to its chat history. Contains the ID of the agent
and the message’s role (e.g. USER or ASSISTANT) and content.

Root Message root_message Similar to Agent Message, but only fires for messages in the root node. This is
fired in addition to an Agent Message event.

Round Complete round_complete Fired when the root node completes a full chat round (i.e. there are no running
children and it has generated a response to a user query).

Table 4: A list of events built-in to the ReDel toolkit.

C Benchmark Comparison

Here, we tabulate each of the benchmarks tested in our experiments.

170

Benchmark Split # Example Metrics

FanOutQA
(Zhu et al., 2024)

dev 310 What is the total num-
ber of employees in
the five largest banks
in the world?

Loose: The average proportion of reference strings found in
the generated answer.
Model Judge: Whether the reference answer and generated
answer are equivalent, judged by GPT-4 (gpt-4-0613).

TravelPlanner
(Xie et al., 2024)

val 180 Please help me plan
a trip from St. Pe-
tersburg to Rockford
spanning 3 days from
March 16th to March
18th, 2022. The travel
should be planned for
a single person with a
budget of $1,700.

CS-Micro: The proportion of elements in a generated travel
plan that do not demonstrate a commonsense error (e.g. visit-
ing the same attraction twice).
H-Micro: The proportion of elements in a generated travel
plan that do not violate a constraint set by the user or a physi-
cal constraint (e.g. budget overruns, non-existent restaurants).
Final: The proportion of generated travel plans in which there
are no exhibited commonsense errors and all constraints are
met (i.e., valid travel plans).

WebArena
(Zhou et al., 2024a)

test 271 Show me the er-
gonomic chair with
the best rating

SR: Whether the task is successfully completed or correctly
marked as unachievable.
SR (AC): Whether the task is successfully completed, only
among tasks that are achievable.
SR (UA): Whether the task is correctly marked as unachiev-
able, only among tasks that are unachievable.

Table 5: The dataset split, number of queries, and example queries from each of the benchmarks we test.

D Additional Design Notes

D.1 Prompts
In this section, we provide the prompts used for each benchmark. We use zero-shot prompts for each
benchmark, and provide the necessary tools as defined in each benchmark’s paper.

Prompt

FanOutQA
(Zhu et al., 2024)

USER: {question}

TravelPlanner
(Xie et al., 2024)

SYSTEM: Based on the user’s query, make the best travel plan for the user and save
it. Do not ask follow-up questions.
USER: {question}

WebArena
(Zhou et al., 2024a)

SYSTEM: You are an autonomous intelligent agent tasked with navigating a web browser.
You will be given web-based tasks. These tasks will be accomplished through the
use of specific functions you can call.
Here’s the information you’ll have:
The user’s objective: This is the task you’re trying to complete.
The current web page’s accessibility tree: This is a simplified representation of
the webpage, providing key information.
The current web page’s URL: This is the page you’re currently navigating.
The open tabs: These are the tabs you have open.
Homepage: If you want to visit other websites, check out the homepage at
http://homepage.com. It has a list of websites you can visit.
USER: BROWSER STATE: {observation}
URL: {url}
OBJECTIVE: {objective}

Table 6: The prompts used for each benchmark in our evaluation.

D.2 Identical Delegation Prevention
By default, the delegation schemes bundled in ReDel will prevent an agent from delegating instructions
that are the same as the instructions that were given to it. If an agent attempts to do so, the delegation
function returns a message instructing the agent to either attempt the task itself or break it into smaller
pieces before delegating again. We implemented this as an early mitigation for undercommitment, but
some undercommitment still occurs.

171

