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Abstract

The increased use of large language models
(LLMs) across a variety of real-world applica-
tions calls for automatic tools to check the fac-
tual accuracy of their outputs, as LLMs often
hallucinate. This is difficult as it requires as-
sessing the factuality of free-form open-domain
responses. While there has been a lot of re-
search on this topic, different papers use dif-
ferent evaluation benchmarks and measures,
which makes them hard to compare and ham-
pers future progress. To mitigate these is-
sues, we developed OpenFactCheck, a uni-
fied framework, with three modules: (i) RE-
SPONSEEVAL, which allows users to easily cus-
tomize an automatic fact-checking system and
to assess the factuality of all claims in an input
document using that system, (ii) LLMEVAL,
which assesses the overall factuality of an
LLM, and (iii) CHECKEREVAL, a module
to evaluate automatic fact-checking systems.
OpenFactCheck is open-sourced1 and publicly
released as a Python library2 and also as a web
service3. A video describing the system is avail-
able at https://youtu.be/-i9VKL0HleI.

1 Introduction

Large language models (LLMs) have demonstrated
impressive capabilities in generating naturally-
sounding answers over a broad range of human
inquiries. However, GPT-4o (OpenAI, 2023) and
other text generation models still produce content
that deviates from real-world facts (Bang et al.,
2023; Borji, 2023; Guiven, 2023). This degrades
the performance of LLMs and undermines their reli-
ability, which is a significant bottleneck for their de-
ployment (Chuang et al., 2023; Geng et al., 2023),
especially for high-stake applications, e.g., clinical,
legal, and financial settings.

∗Equal contribution.
1https://github.com/mbzuai-nlp/openfactcheck
2https://pypi.org/project/openfactcheck/
3http://app.openfactcheck.com
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Figure 1: Overview of the OpenFactCheck demo system
for LLM factuality evaluation and its modules. Green
RESPONSEEVAL: a customized fact-checker to identify
factual errors given text inputs. Orange LLMEVAL: an
LLM factuality evaluator to assess the LLM factual abil-
ity from different aspects and then to produce a report to
illustrate its weaknesses and strengths. Purple CHECK-
EREVAL: a fact-checker evaluator and leaderboard to
encourage the development of advanced checkers in
terms of performance, latency and costs.

Many studies have explored evaluating the fac-
tuality of LLMs (Lee et al., 2022; Chuang et al.,
2023; Shi et al., 2023; Chen et al., 2023). Two
challenges have been identified: (i) it is difficult
to assess the factuality of open-domain free-form
responses, and (ii) different papers use different
evaluation datasets and measures, which makes
it hard to compare them, thus hampering future
progress (Wang et al., 2024c). To mitigate these
issues, we introduce OpenFactCheck.
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OpenFactCheck is an Open-source Factuality
Evaluation Framework for LLMs and it comprises
the following three core modules (see Figure 1):

• RESPONSEEVAL: It allows users to customize
an automatic fact-checker and to verify the
factuality of all claims made in a free-form
document to alleviate the first problem.

• LLMEVAL: A unified LLM factuality evalu-
ation module which applies seven factuality-
specific benchmarks to assess the LLM fac-
tuality ability from different aspects and then
produces a report to illustrate the weakness
and strength, tackling the second challenge.

• CHECKEREVAL: It assesses the verification
accuracy of fact-checkers, equipped with a
leaderboard in terms of accuracy, latency, and
costs, aiming to encourage the development
of advanced automatic fact-checking systems.

The modules are designed for seamless integra-
tion, each contributing to and enhancing the capa-
bilities of the others. The results of human veri-
fication derived from LLMEVAL can be used as
the benchmark for evaluating the accuracy of au-
tomated fact-checkers. Simultaneously, the most
effective checker identified in CHECKEREVAL can
be deployed for automated fact-checking tasks.
Each fact-checker in CHECKEREVAL can be an im-
plementation in RESPONSEEVAL. Complex user
inquiries may be considered as potential candi-
dates of the factuality assessment dataset utilized
in LLMEVAL.

General users can tailor their checkers accord-
ing to their specific needs, such as domain special-
ization, cost-effectiveness, or rapid processing, and
identify factual errors for both human-written text
(a claim or document) and the outputs of LLMs.
LLM researchers and practitioners can directly
submit their LLM responses to the LLMEVAL by
downloading our question set. Subsequently, we
conduct evaluations to assess the model’s factual
accuracy and to generate a report analyzing the
model performance from multiple aspects. Simi-
larly, developers who seek to evaluate and to fairly
compare the efficacy of their fact-checking sys-
tems to other ones can upload their checker’s ver-
ification outcomes to CHECKEREVAL. Then, our
system will show the ranking information in the
leaderboard after evaluating under the same mea-
surements.

To sum, three modules of OpenFactCheck re-
spectively address the following:

• how to effectively identify factual errors in a
text input;

• how to systematically evaluate the factuality
ability of an LLM;

• which automatic fact-checker is the best, and
which component dominates the final verifica-
tion accuracy.

We have launched an open-source initiative that
includes the development of a Python library and
a web interface tailored to support three major
functionalities. This foundation is expected to act
as a catalyst for future advancements in factual-
ity evaluation for LLMs. We encourage extensive
implementation of unique, effective, and robust
claim processors, retrievers and verifiers within
fact-checking pipelines, collections of challenging
questions that LLMs tend to make factual errors,
and human-annotated fine-grained verification ex-
amples. We believe that this will help to promote
and to advance future research on LLM factuality.

2 Related Work

While numerous automatic fact-checking systems
have developed, such as RARR, FactScore, FacTool,
Factcheck-GPT , Longform SAFE and FIRE (Gao
et al., 2022; Min et al., 2023; Chern et al., 2023;
Wang et al., 2023; Wei et al., 2024; Xie et al., 2024),
they are often inaccessible to general users who
lack a Python environment to compile code and
run verification. Although these systems can func-
tion as the backend of a service, a user-friendly
web interface is necessary to allow general users
to verify text inputs by simply typing or copying
text and clicking a check button. OpenFactCheck
addresses this by providing an accessible web in-
terface.

In addition, various fact-checking systems have
distinct advantages. For instance, Factcheck-GPT
offers a fine-grained framework to involve all
possible subtasks that could improve the fact-
checking system, FacTool uses a low-latency evi-
dence retriever through asynchronous processing,
and FactScore introduces a scoring metric that cal-
culates the percentage of true claims in a given text,
thereby quantitatively assessing the credibility of
the input. OpenFactCheck integrates these compo-
nents into a unified system (Wang et al., 2024c).
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Recent open-sourced demo system Loki (Wang
et al., 2024a) also aims to leverage strength of vari-
ous automatic fact-checkers, while it emphasizes
optimization a single fact-checking system in terms
of accuracy, latency, robustness, cost-efficiency,
and extensive support for multiple languages and
LLMs. In contrast, OpenFactCheck is a unified
framework to cover three major functionalities for
factuality evalaution of LLMs, including customiz-
ing a fact-checker by combining modules of differ-
ent checkers, assessing LLM factuality from var-
ious perspectives, and evaluating the accuracy of
automatic fact-checkers (Wang et al., 2024b).

3 System Architecture

The design of OpenFactCheck emphasizes two
principles: (i) customizability and extensibility for
both users and developers, and (ii) compatibility
with existing methods and datasets. It consists of
three modules: RESPONSEEVAL, LLMEVAL, and
CHECKEREVAL. We detail the design and imple-
mentation of each components below.

3.1 RESPONSEEVAL

RESPONSEEVAL allows users to build a cus-
tomized fact-checking system by selecting a claim
processor, a retriever, and a verifier in web pages.
The current version supports the following fact-
checking systems: RARR, FacTool and Factcheck-
GPT (Gao et al., 2022; Chern et al., 2023; Wang
et al., 2023).

Configurable Architecture We consolidate vari-
ous fact-checking systems into a three-step process,
encapsulated by three classes: claim_processor,
retriever, and verifier (Wang et al., 2024c).
These classes are instantiated and sequentially con-
nected to form a pipeline that addresses the fol-
lowing tasks: (i) breaking down a document into
individual claims, (ii) gathering pertinent evidence
for each claim, and (iii) evaluating the veracity of
each claim based on the evidence provided. This
sequence of tasks is referred to as solvers. (see
the pseudo code in Appendix A)

The implementation of a task solver can be flex-
ible, just ensuring that the input and the output
are aligned with the abstract class definitions. For
example, evidence can be retrieved by calling Ser-
pAPI or by searching Wikipedia using BM25, but
we must return a list of relevant passages given an
input claim.

Moreover, task solvers in our pipeline are not
hard-coded, but can be configured through a
YAML configuration file. Thus, users can com-
bine task-solver implementations from different
systems (e.g., using Factcheck-GPT’s claim pro-
cessor, RARR’s retriever, and FacTool’s verifier)
and start the verification from any step. For exam-
ple, users can start from the step of retrieval when
the input does not need decomposition.

This functionality is achieved by a message-
passing mechanism, where a success_flag is
used to indicate whether the current task solver
successfully executes and returns the expected out-
put. The success flag passes through the pipeline as
the configured order of solvers, guaranteeing that
the output of the preceding solver fits the input for
the current solver, otherwise error warning will be
issued. Practically, the input and the output param-
eter names for the task solvers are defined in the
configuration file. To link different solvers into a
pipeline, one only needs to ensure that the current
solver output name matches the input name of the
succeeding solver. A FactcheckerState class en-
sures storage of all information in the verification.

Extendable Architecture Inspired by Fairseq,
our framework is designed to be highly extendable
by treating any third-party task solvers as plug-
ins (Ott et al., 2019). As long as the developed task
solvers adhere to our class interface definitions,
they can be imported and used in our framework.

3.2 LLMEVAL

We observed that studies assessing language mod-
els’ factuality or evaluating whether the methods
are effective to mitigate model hallucinations use
different datasets and metrics. This makes it dif-
ficult to compare, in the same conditions, the fac-
tuality of different models as well as to compare
the effectiveness of different factuality enhance-
ment approaches. Moreover, a lot of prior work
applied datasets such as MMLU (Hendrycks et al.,
2021), StrategyQA (Geva et al., 2021) and Hot-
potQA (Yang et al., 2018) to evaluate model’s fac-
tuality. These datasets tend to focus on assessing
the general performance, rather than factuality. To
this end, we first collect a dataset FactQA by gath-
ering factual questions of existing datasets that are
curated to probe diverse factual errors and span
across a spectrum of domains, to fairly evaluate
LLMs’ factuality under the same criteria

221



Dataset↓ The Ability to Evaluate Domain Error Size

Snowball Snowballing hallucination when model immediately output Math, history, graph search Type 2 1,500
SelfAware Understand their own limitations on the unknowns Biology, philosophy, psychology, history Type 1,3 3,369
FreshQA Answer questions changing fast over time or with false premises Sports, entertainment, history, technology Type 3 600
FacTool-QA Respond knowledge-based questions History, geography, biology, science Type 1 50
FELM-WK Answer world-knowledge questions History, biology, geography, sports Type 1 184
Factcheck-Bench Answer open-domain, false-premise questions Technology, history, science, sports Type 1,2 94
FactScore-Bio Generate detailed biographies Biography Type 1,3 683

Total LLM factuality against world knowledge 482 domains, top20 accounts for 70% Type 1,2,3 6,480

Table 1: FactQA: factual vulnerability, domain, potential error type and size across seven component datasets.

Factual Question Collection We collected fac-
tual questions from seven commonly-used cor-
pora that is collected deliberately to assess
LLM’s factuality, including Snowball (Zhang
et al., 2023a), SelfAware (Yin et al., 2023),
FreshQA (Vu et al., 2023), FacTool (Chern et al.,
2023), FELM-WK (Chen et al., 2023), Factcheck-
GPT (Wang et al., 2023) and FactScore-Bio, a total
of 6,480 examples shown in Table 1, referring to
FactQA (see dataset details in Appendix C).

To concretely analyze models’ vulnerability, we
identify three labels for each question from the
perspective of the knowledge domain, the topic,
and the potential error type if a LLM generates
a factually incorrect response. So each example
includes the following fields: question, domain,
topic, ability to test, task and source. Domains in-
volve general, legal, biomedical, clinical, scientific
and so on. Given a domain, we further fine-grained
topics. Three common error types are presented.

Type1: Knowledge error is the most common
error when the model produces hallucinated or in-
accurate information due to lacking relevant knowl-
edge or internalizing false knowledge in the pre-
training stage or in the alignment process.

Type2: Over-commitment error occurs when the
model fails to recognize the falsehoods (or jokes)
in the prompt or previously-generated context, and
provides an inaccurate or inappropriate response.

Type3: Disability error happens when the model
is unable to search up-to-date information to cor-
rectly answer questions whose answers change over
time, e.g., What is today’s gas price in New York
(fast-changing). See more in Appendix B.

Evaluation Measurement For questions that can
be answered by Yes/No or have a short gold answer,
we perform exact matching between the model
responses and the gold standard answer to judge
whether the response is factually correct, and then
to calculate accuracy, such as for Snowball and
SelfAware.

Dataset ↓ #True #False #Unknown Total

FacTool-QA 177 56 0 233
FELM-WK 385 147 0 532
Factcheck-Bench 472 159 47 678

HaluEval 3,692 815 0 4,507

Table 2: The number of true, false claims and unknown
(no-enough-evidence or opinions) for FacTool-QA,
FELM-WK and Factcheck-Bench, the number of re-
sponses for HaluEval (no claim-level labels).

For FreshQA, we use the FreshEval proposed
in Vu et al. (2023) to evaluate the correctness of
model’s responses. For open-domain questions
from the other four datasets with free-form and
long responses, there are no gold standard answers.
We use automatic fact-checking systems to judge
the correctness of claims and obtain the percentage
of true claims as the accuracy for a response.

3.3 CHECKEREVAL

Automatic fact-checking systems aim to identify
whether a claim or a document is true or false,
but the results are not necessarily correct. To
assess the accuracy of automatic fact-checkers,
we gather four LLM factuality benchmarks with
human-annotated factual labels for three levels
of granularity text: claims/segments/documents
given (question, ChatGPT response) pairs, includ-
ing FacTool-QA, FELM-WK, Factcheck-Bench
and HaluEval as shown in Table 2. We refer
to them as FactBench. We use precision, recall,
and F1-score with respect to the True or False
claim/document to evaluate the effectiveness of
fact-checking systems.

Discussion about Unifying It can be argued that
the underlying philosophies of the three modules
differ, reflecting varying interpretations of factual-
ity. For example, the design view o LLMEVAL and
CHECKEREVAL differs from that of RESPONSEE-
VAL.

222



Our goal is to integrate all LLM factuality evalu-
ation functionality into a unified framework, while
preserving the individual function.

The LLMEVAL employs different metrics across
datasets. This may be debated. Similarly, we aim
to consolidate these datasets into a unified bench-
mark, enabling other studies to utilize a standard-
ized evaluation function. This approach would en-
hance the fairness of comparisons across studies,
as they would be evaluated consistently, despite the
use of dataset-specific evaluation measures.

We acknowledge the limitation of the current
CHECKEREVAL, which is restricted to evaluating
the verification step. We plan to progressively ex-
tend its capabilities to support fine-grained evalua-
tions across multiple steps.4

4 Access and Deployment

OpenFactCheck is accessible via a user-friendly
web interface and features an integrated database
that maintains a user leaderboard. It is also avail-
able as a standalone open-source Python library.

4.1 Python Library

OpenFactCheck is available as an open-source
Python library on PyPI, designed for flexibility and
ease of integration into existing projects. This li-
brary equips developers with essential components
for fact-checking in any Python environment, mak-
ing it an optimal choice for enhancing applications
with fact-checking features. The library employs a
fluent interface to ensure its usage is intuitive for
both beginners and experts alike.

Users can install the library by simply using the
pip package manager:

$ pip install openfactcheck

The library includes detailed documentation to
assist developers in customizing and extending the
functionality to meet their specific needs and it is
continually updated to ensure compatibility with
the latest research and data security standards.

Usage Examples The first step is to im-
port the necessary library components and ini-
tialize OpenFactCheckConfig configuration and
OpenFactCheck class, which requires no input val-
ues for default usage, as shown below:

4The evaluator currently supports both claim-level and
document-level verification, depending on whether users
download claim or document datasets.

from openfactcheck import OpenFactCheck,
OpenFactCheckConfig↪→

config = OpenFactCheckConfig()
ofc = OpenFactCheck(config)

Upon importing the library, users are required to
secure API keys from platforms utilized by Open-
FactCheck’s default solvers for evidence retrieval
and claim verification. These keys are available
from OpenAI5, SerpAPI6, and ScraperAPI7. After
acquiring the keys, they need to be configured as
environment variables to enable their use within
the library.

The three key functionalities outlined in Sec-
tion 3 are implemented as shown in Figure 2. We
can see that the design of the library is intuitive and
straightforward, enabling users to apply it without
extensive learning, and practioners to perform fur-
ther developments easily (e.g., reusing one example
by simply altering the evaluator name in each in-
stance). The intermediate results are also logged
on the terminal and are omitted here for brevity.

User is provided with the benchmarks for the
LLM and FactChecker evaluations, and can up-
load the responses to the library for evaluation in
the form of CSV files. CSV file format for LLM
evaluation has two columns: index and response,
while the FactChecker evaluation CSV file format
has three columns: label, time, and cost.

4.2 Web Interface

The web interface of OpenFactCheck provides a
user-friendly platform that allows general users to
interactively engage with the fact-checking func-
tionalities. It is designed to accommodate both
novice and expert users, facilitating easy access to
the comprehensive evaluations involved in the as-
sessment of LLM factuality. The web interfaces are
organized into four distinct sections as illustrated
in Figure 3 (a).

In RESPONSEEVAL page as shown in Figure 3
(b), users can click the dropdown list to select from
a range of pre-implemented claim processor,
retriever, and verifier. Then, users can input
text either written by human or generated by ma-
chine into the text box and click Check Factuality
to obtain the verification results. As the example
demonstrated in the Figure, it includes two claims.

5https://openai.com/api
6https://serpapi.com
7https://scraperapi.com
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ofc.ResponseEvaluator.evaluate(response: str)
# response: string output from LLM

ofc.LLMEvaluator.evaluate(model_name: str,
input_path: str)↪→

# model_name: evaluated model name.
# input_path: path to the CSV containing

responses for the LLM Benchmark.↪→

# Output
# A dictionary with detailed scores (precision,

recall, f1, accuracy, cost, time etc. for
each dataset subset i.e. snowballing,
selfaware, freshqa, factoolqa, felm-wk,
factcheck-bench and factscore-bio.

↪→
↪→
↪→
↪→

ofc.CheckerEvaluator.evaluate(input_path: str)
# input_path: path to the CSV containing

responses for the FactChecker Benchmark↪→

# Output
# A dictionary with detailed scores (precision,

recall, f1, accuracy, cost, time etc.)↪→

Figure 2: Usage examples of three major modules: RE-
SPONSEEVAL, LLMEVAL and CHECKEREVAL.

The system collected sixteen pieces of evidence,
and one claims is supported and one claim is re-
futed, resulting the overall credibility of 50% and
judgement “False” for this whole input.

For both the LLMEVAL and RESPONSEE-
VAL pages exhibited in Figure 3 (d), users first
download either the question set FactQA or the
claims/documents in FactBench. After being ready
to upload the responses of the LLM that users
aim to assess or the verification results of the fact-
checkers to test, users type their details including
name, email address and so on, and provide the
option to opt in or out of leaderboard inclusion
(see Figure 3 (d)). If users agree, their informa-
tion and rank will be displayed on the leaderboard,
otherwise invisible for others.

It may takes some time for LLMEVAL to gen-
erate teh evaluation report, depending on the sys-
tem’s current load. Once the report is ready, it is
emailed directly to the user, eliminating the need
to wait within the application. LLM factuality eval-
uation report presents LLM factuality from vari-
ous aspects, and specifically includes accuracy and
confusion matrix of short answers, pie chart indi-
cating accuracy over fresh questions and bar chart
showing the percentage of true, false, controver-
sial claims for free-form responses, as shown on
Figure 3 (e).

Similarly, CHECKEREVAL results present the
number of evaluated examples, the overall ac-
curacy, total time and USD cost, fine-grained
precision, recall and F1-score for false and true
classes, and a confusion matrix showing the mis-
identification of this fact-checker. The submission
in Figure 3 (f) reveals that this checker performs
equally poor over both false and true claims in ver-
ification. This evaluation is instant. 8

5 Conclusion and Future Work

We implemented a unified, easy-to-use and exten-
sible framework OpenFactCheck. It is accessible
by both Python library and web service, support-
ing the customization and evaluation of automatic
fact-checking systems and LLM factuality evalua-
tion. Specifically, OpenFactCheck allows general
users to check whether a claim and a document
are factual or not by clicking Check, and also fa-
cilitate LLM practitioners and developers to ef-
fectively and efficiently evaluate the factuality of
their LLMs from various perspectives, and to assess
the accuracy of automatic fact-checking systems.
In the future, we will continue to integrate new
techniques, features, and evaluation benchmarks to
OpenFactCheck to facilitate the research progress
of LLM fact-checking.

Limitations and Future Work

While OpenFactCheck presents a comprehensive
framework for factuality evaluation of LLMs, sev-
eral limitations must be acknowledged:

Multilingual Expansion OpenFactCheck is a
platform that combines the features of various fact-
checking systems and is designed to be language-
agnostic. While the default task solvers in the sys-
tem are configured for English, the platform can
be expanded to accommodate other languages by
developing task solvers that align with the specific
linguistic requirements of those languages. This
flexibility allows for easy adaptation and extension
to support multilingual fact-checking capabilities.

Evaluation Datasets The effectiveness of
OpenFactCheck is dependent on the quality and
diversity of the datasets used for evaluation. While
we have integrated multiple datasets to cover a
broad spectrum of domains and potential factual
errors, the evaluation is still limited by the inherent

8See more evaluation results in Wang et al. (2024b).
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Figure 3: OpenFactCheck Dashboard: (a) is the navigation bar. (b) a claim processor breaking down the input into
two atomic claims. The retriever collected 16 pieces of evidence, and the verifier assessed each claim individually,
with one true and one false, resulting 50% credibility overall. (c) shows the user information required before
uploading LLM responses or verification results to LLMEVAL and CHECKEREVAL. (d) shows the functions of
downloading and uploading. (e) and (f) exhibit the LLM and FactChecker Evaluation report respectively.
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biases and coverage gaps in these datasets. For
instance, some specialized domains may not be
adequately represented, potentially affecting the
robustness of the evaluation for LLMs in those
areas.

Latency and Costs The performance of au-
tomatic fact-checking systems integrated within
OpenFactCheck can vary significantly in terms of
latency and operational costs. High accuracy often
comes at the expense of increased computational
resources and processing time, which may not be
feasible for all users, particularly those with limited
budgets or time constraints.

Reliance on External Knowledge Sources The
fact-checking modules depend heavily on external
knowledge sources, such as Wikipedia and web
search engines. The availability and reliability of
these sources can affect the accuracy and complete-
ness of the fact-checking process. Furthermore, the
dynamic nature of web content means that the in-
formation retrieved may not always be up-to-date.

Temporal Issues The factuality of state-
ments can change over time due to evolving
events, new discoveries, or updated information.
OpenFactCheck does not explicitly account for
temporal dynamics as of now, which may lead
to discrepancies between the evaluation results
and the current state of knowledge. Authors are
already working on factuality evaluation methods
that consider temporal aspects, which will be
integrated into OpenFactCheck in future releases.

Ethical Statement

The development and deployment of
OpenFactCheck are guided by a commitment to
ethical principles, ensuring that the framework is
used responsibly and for the benefit of society:

Transparency and Accountability We strive to
maintain transparency in the design, implemen-
tation, and evaluation of OpenFactCheck. The
source code and datasets are publicly available,
enabling scrutiny and fostering trust within the re-
search community. We encourage users to report
any issues or biases they encounter, facilitating con-
tinuous improvement.

Bias Mitigation Recognizing that biases can ex-
ist in both datasets and LLMs, we are dedicated
to minimizing such biases in OpenFactCheck. By

integrating diverse evaluation benchmarks and en-
couraging the development of fair fact-checking
approaches, we aim to reduce the impact of biases
on factuality evaluation outcomes.

Social Impact By enhancing the factual accuracy
of LLMs, OpenFactCheck aims to contribute pos-
itively to society. Accurate information is crucial
for informed decision-making and public discourse.
We believe that improving the reliability of LLM
outputs can help combat misinformation and sup-
port the dissemination of truthful information.
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A Pseudo Code of RESPONSEEVAL

In this section, we present the pseudo code for the
RESPONSEEVAL, a modular system designed to
process, retrieve, and verify claims found in tex-
tual documents. The system is divided into three
primary components: the claim processor, the re-
triever, and the verifier. Each module is tasked
with a specific function—extracting claims from
the input document, retrieving relevant evidence,
and verifying the factual accuracy of the claims,
respectively. Figure 4 outlines the pseudo code
implementation of each module, showcasing the
flow from document processing to final verification.
This structured approach allows for a systematic
handling of claims, leveraging both natural lan-
guage processing tools and deep learning models
to ensure a comprehensive evaluation of document
veracity.

B Factual Error Evaluation

Type1: Knowledge error is the most common er-
ror, occurring when the model produces halluci-
nated or inaccurate information. However, LLMs
do not know what they do not know, sometimes
overestimate their capacities and confidently output
unknown information, leading to false responses.
Mitigating such errors require: (a) learning and cor-
recting parametric knowledge through the curation
of corpora used in pre-training, supervised fine-
tuning (SFT) and alignment, (b) augmenting by ex-
ternal knowledge in inference, (c) calibrating mod-
els to be aware of unknowns, and (d) configuring
the decoding strategies (sample/beam-search, tem-
perature), balancing diversity and accuracy (Zhang
et al., 2023b).

Type2: Over-commitment error occurs when the
model fails to recognize the falsehoods (or jokes)
inherent in the prompt or previously-generated
context, and provides an inaccurate or inappropri-
ate response. The left-to-right generation strategy
used by LLMs poses potential risks that LLMs
sometimes over-commit to the false premise in
the context, even when they recognize they are
incorrect (Zhang et al., 2023b). To address this
issue, engineering better prompts is helpful, such
as explicitly instructing models to first detect false
premises in the prompt (Vu et al., 2023) and asking
the same question in a different way (Is 10733 a
prime number? → What are the factors of 10733?
Let’s think step-by-step.)

def claim_processor(document: str) ->
List[str]:↪→
# FactScore
paragraphs = documents.split("\n")
sentences = [NLTK(para) for para in

paragraphs]↪→
claims = [call_LLM(sentence,

prompt="decompose into atomic claims")
for sentence in sentences]

↪→
↪→

# FacTool
claims = call_LLM(document, promot="extract

context-independent atomic claims based
on the document")

↪→
↪→

return claims

def retriever(claim: str, database: DB,
retrieval_strategy: obj, search_api_key:
str) -> List[str]:

↪→
↪→

# offline DB dump
evidence = retrieval_strategy(claim,

database)↪→

# online web pages by calling API
evidence = serper_or_serpapi(claim,

search_api_key)↪→

return evidence

def verifier(claim: str, evidence: List[str])
-> bool:↪→
# call LLMs
factual_label = call_LLM(claim, evidence,

prompt="based on the evidence and your
own knowledge, determine whether the
claim is true or false.")

↪→
↪→
↪→

# use NLI models
stance2factual = {

"entailment": true,
"contradiction": false,
"neutral": "not enough evidence"

}
stances = [nli(evid, claim) for evid in

evidence]↪→
majority_stance =

majority_vote(factual_labels)↪→
factual_label =

stance2factual[majority_stance]↪→

return factual_label

Figure 4: Pseudo code for classes in RESPONSEEVAL.

Type3: Disability error happens when the model
is unable to search up-to-date information to cor-
rectly answer questions whose answers change over
time, e.g., What is today’s gas price in New York
(fast-changing). Retrieving external knowledge and
augmenting it in the context would help for such
cases. Note that we do not consider reasoning er-
rors that arise when a claim is based on flawed
reasoning or faulty logic.
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Domain Size Domain Size

History 771 Science 143
Biography 683 Physics 136
Mathematics 612 Social Sciences 111
Transportation 519 Literature 100
Biology 259 Geography 87
Philosophy 229 Astronomy 82
Technology 208 Economics 69
Entertainment 191 Music 66
Psychology 169 Religion 63
Sports 157 General Knowledge 53

Total 4,523 (69.8%)

Table 3: FactQA’s top-20 domains and the number of
examples from each domain.

Thus, ex exclude irrelevant error concerning
that the content is unrelated to the question (Chen
et al., 2023). The former highlights LLM’s rea-
soning ability, which is more reflected in math and
reasoning tasks, and the latter has more to do with
response’s helpfulness or human preference. They
are important in LLM evaluation, and may implic-
itly influence factuality, but we will first focus on
explicit causes, leaving the implicit for future work.

C FactQA Component Datasets

Snowball dataset (Zhang et al., 2023a) comprises
three question-answering subsets: primality test-
ing, senator search, and graph connectivity, each
with 500 yes/no questions. They aim to investi-
gate snowballing hallucination when a model im-
mediately outputs an incorrect answer (yes or no)
as false generated context. Language models are
prompted to first output a yes/no answer and then to
provide explanations. When the immediate answer
is wrong, the model tends to continue to snowball
the false statements instead of correcting them.

SelfAware (Yin et al., 2023) aims to evaluate
LLMs’ ability to understand their own limitations
and unknowns. This is achieved by assessing mod-
els’ ability to identify unanswerable or unknowable
questions. They compiled a collection of 1,032
unanswerable questions from online platforms like
Quora and HowStuffWorks. In addition, they gath-
ered 2,337 answerable questions from sources such
as SQuAD, HotpotQA, and TriviaQA, resulting in
a total of 3,369 questions.

FreshQA (Vu et al., 2023) is composed of 600
natural, open-ended questions, segmented into four
primary categories based on the answer’s stability:

never-changing, for answers that rarely alter, slow-
changing, for those that evolve over several years,
fast-changing, for answers that shift within a year
or less, and false-premise, encompassing questions
with factually incorrect premises that need to be
countered.

FacTool (Chern et al., 2023) detected factual er-
rors in LLM generations across four different tasks:
knowledge-based QA, code generation, mathe-
matical reasoning, and scientific literature review.
We used 50 knowledge-based QA FacTool-QA in
FactQA.

FELM (Chen et al., 2023) collects responses
generated from LLMs and annotated factuality la-
bels in a fine-grained manner. The dataset consists
of 5 categories, with examples per category as fol-
lows: 194 math, 208 reasoning, 125 science, 184
world knowledge (wk), and 136 writing recordings.
We used 184 world-knowledge questions, referring
to FELM-WK.

Factcheck-Bench (Wang et al., 2023)
Factcheck-GPT gathered a total of 94 highly chal-
lenging questions from sources including Twitter
posts, internal brainstorming, and Dolly-15k,
encompassing 678 claims.

FactScore-Bio (Min et al., 2023) selected
183 entities, and collected responses from three
LLMs including Davinci-text-003, ChatGPT, and
PerplexityAI, and then annotated factual labels
(supported, not-supported and irrelevant) for each
atomic claim by humans.
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