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Abstract

Travel planning is a challenging and time-
consuming task that aims to find an itinerary
which satisfies multiple, interdependent con-
straints regarding flights, accommodations, at-
tractions, and other travel arrangements. In
this paper, we propose To the Globe (TTG),
a real-time demo system that takes natural
language requests from users, translates it to
symbolic form via a fine-tuned Large Lan-
guage Model, and produces optimal travel
itineraries with Mixed Integer Linear Program-
ming solvers. The overall system takes ∼ 5
seconds to reply to the user request with guar-
anteed itineraries. To train TTG, we develop
a synthetic data pipeline that generates user
requests, flight and hotel information in sym-
bolic form without human annotations, based
on the statistics of real-world datasets, and fine-
tune an LLM to translate NL user requests to
their symbolic form, which is sent to the sym-
bolic solver to compute optimal itineraries. Our
NL-symbolic translation achieves ∼ 91% exact
match in a backtranslation metric (i.e., whether
the estimated symbolic form of generated natu-
ral language matches the groundtruth), and its
returned itineraries have a ratio of 0.979 com-
pared to the optimal cost of the ground truth
user request. When evaluated by users, TTG
achieves consistently high Net Promoter Scores
(NPS [6]) of 35-40% on generated itinerary.

1 Introduction

Travel planning is a routine activity that typically
requires a significant amount of human time and
effort to find an optimal itinerary satisfying many
implicit and explicit constraints which interact and
change over time. Ideally, a human would only
need to provide natural language instructions (e.g.,

“I want to go to Hawaii for three days with a budget
of $1,000.”) and an AI agent provides solutions
which are optimal with respect to certain objectives
(e.g., total expense) and feasible (i.e., satisfy all
constraints). Moreover, the quality of the agent’s

decision should be reliable enough such that hu-
mans can fully delegate the task, or approve with a
glimpse of check.

Designing such an AI system remains non-trivial.
First, it involves complex planning with poten-
tially vague natural language instructions, sophisti-
cated objectives and constraints (e.g., hotels, flights,
restaurants, attractions, budgets) and requiring mul-
tiple back-and-forth reasoning steps without a clear
and predefined decision path. Despite impressive
performance achieved by Large Language Models
(LLMs), they are still weak at complex reasoning
and planning [23, 28, 10], and may hallucinate [11]
or be inconsistent [10], in particular during compli-
cated reasoning. This raises concerns on whether
its decision can be trusted [21]. Second, travel
planning is a time-dependent task that requires con-
stantly re-planning due to ever-changing situations.
Even with exactly the same request, the optimal
itinerary may be different given varying prices and
availability. Third, such a decision is highly per-
sonalized depending on the private constraints and
preferences. Users may speak a few brief words
and expect the agent to give a solution that satisfies
all of their implicit constraints, which can be quite
subtle to capture from past conversations.

In this paper, we propose TTG, a demo system
that takes natural language instructions from users
and outputs optimal travel itineraries in seconds.
To achieve this, our system leverages the power of
LLMs and existing symbolic solvers, e.g., Mixed
Integer Linear Programming (MILP). It first con-
verts natural language instructions into a symbolic
representation, which is solved by the symbolic
solver, and then replies to the user with natural lan-
guage outputs and a rich visualization. Compared
to pure LLM-based systems (e.g., ClaudeAtlas1,
Expedia Romie2), TTG provides an up-to-date, pre-

1https://devpost.com/software/kickass-team
2https://partner.expediagroup.com/en-us/

innovation/labs
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Figure 1: Front-end interface of TTG. Users send their natural language requests to the demo system (TTG), and TTG replies with
itineraries that satisfy user constraints and is optimal with respect to various criteria (e.g., minimal cost).

cise and executable itinerary with guarantees, in
almost real time (∼ 5 seconds per request).

2 Related Works

LLM for reasoning/planning. Teaching LLMs to
do well in reasoning and planning tasks remains
a challenging problem, even for SoTA LLMs [31,
15]. Previous works like CoT [24], ToT [29], Re-
Act [30], Reflexion [18], using synthetic data [17,
16], and multi-agent frameworks [26, 9] improve
the reasoning power of LLMs in complicated prob-
lems but still cannot guarantee feasibility and opti-
mality [28, 27]. More importantly, due to the black-
box nature of LLMs, it remains an open problem on
understanding failure modes in reasoning [25, 4],
let alone generate guaranteed results that can be
trusted by users.
Hybrid System of LLM and Solvers. Combin-
ing symbolic solvers with LLMs has been explored
in many abstract planning (e.g, [14, 19, 20]) and
real-world planning scenarios [22]. For travel plan-
ning, [8, 5] show that prompt engineering in pre-
trained language models can be used to generate
code (or symbolic specification) to invoke sym-
bolic solvers such as formal verification tools like
SMT [3] solvers, or A∗ [16], to solve travel plan-
ning problems (e.g., [28]). In contrast, our TTG
chooses to focus on real-world travel planning that
may last for multiple days with realistic constraints
(Table 1). TTG uses JSON format as symbolic spec-
ification because it has much simpler structures
than generated codes, and can be guaranteed by
constrained generation techniques using finite state

Item Description

Airline Constraints

price range, (soft) departure
and arrival constraints, cabin class,
refundablity, non-stopness,
plane type, airline preferences.

Hotel Constraints price range, rating, brands.

Budget Constraints Total budget, everyday budget.

Table 1: Factors considered in travel request generation.

machine (FSA) [7], which makes self-consistency-
based verification, benchmarking, and training eas-
ier (see Sec. 5 for details). This also makes TTG
independent of the specific solver (e.g., SCIP [2],
Gurobi, etc.) and language used to solve the under-
lying MILP problem. Instead of prompt engineer-
ing, TTG also does model fine-tuning with thorough
performance evaluation, including self-consistency
and a thorough human study with ∼ 1.3k partici-
pants, which is not provided in previous works.

3 Overview of TTG

Fig. 1 shows the front-end interface of TTG. Users
can obtain travel itineraries in a few seconds by
sending natural language requests in the semi-
transparent dialog box. Users can also visualize
candidate itineraries on the rendered map of the
globe, and select based on their preferences. We
use a hybrid design leveraging both LLMs and sym-
bolic solvers that can deal with natural language
input and still guarantee the feasibility and opti-
mality of the output itineraries, if user requests are
translated correctly by the fine-tuned LLM.
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{
    ”itinerary”: [
         {
            “flight number”: 
“A134”,
            “depart”: “6:05pm”,
            “duration”: ”1:50”,
         }, 
         { “hotel”: “Marriott” }
     ]
}

{
    ”from”: ”Seattle”, 
    ”to”: “San Francisco”,
    “budget”: “1000”,
    ”constraints”: [
         “lodging”: [“entire 
room”, ”pet friendly”]
    ], 
    ”candidate_flights”: […], 
    “candidate_hotels”: […]
}

MILP 
Solver

Symbolic description of 
the user request

Symbolic description of 
the optimal itinerary

“You can take flight A134, 
departing at 6:05pm, …”

AgentUser

“I want to go to SFO for 3 
days.  I have a budget of 
$1000 …”

Inference Training

Travel
Generator request 𝑥!

Creator

Estimated 
request "𝑥!

Translator

Solution 𝑠!
Estimated 
solution �̂�! 

loss

NL request 𝑦!

Flight/hotel 
information

Flight/hotel 
information 𝐺!

MILP Solver

Figure 2: Overview of the workflow of TTG. Inference: our system first translates the user travel request in natural language
(NL) into the symbolic description of a Mixed Integer Linear programming (MILP) solver using a fine-tuned Large Language
Model (LLM), calls the solver to find its optimal solution that satisfies all constraints, and then returns the itinerary in natural
language. Training: TTG has three components. A Travel Generator that generates flight/hotel information training data based
on real-world data, and symbolic user request xi. An Instruction Translator a pre-trained LLM fine-tuned to translate the NL
user request yi to its symbolic form x̂i, learned by self-consistency between the groundtruth request xi and the estimated user
request x̂i. A Travel solver that solves the estimated symbolic request x̂i and yields the estimated solution ŝi.

Fig. 2 shows the overview of the TTG workflow.
The components are: (1) A Symbolic Travel Gen-
erator which generates available flight and hotel
information Gi using existing real-world data as
well as symbolic user requests xi (both in JSON
format) where i is the sample index. (2) Instruction
Creator and Translator that converts a user request
xi from JSON to a natural language (NL) request
yi, and a translator to convert the NL requests yi
back to its symbolic form in JSON x̂i (Sec. 4.1).
(3) Travel Solver, a Mixed Integer Linear Program-
ming (MILP) solver that solves the underlying com-
binatorial optimization in its symbolic form, param-
eterized by (xi, Gi), and gives the optimal solution
si. That is, si = argmins′ f(s

′;xi, Gi), where
f > 0 is the cost function to be minimized. During
the user interaction, the solver only has access to
an estimate of the user request x̂i, and the corre-
sponding solution ŝi = argmins′ f(s

′; x̂i, Gi).

4 Methodology

4.1 Symbolic Travel Generator

Since the existing TravelPlanner dataset [28] has
a limited number of samples and does not provide
symbolic grounding of user requests, we created
our own Travel Generator that generates user re-
quests and the corresponding flight and hotel infor-
mation in symbolic form.

Travel Request. We consider a variety of vari-
ables when generating travel requests (see Table 1
for a complete list). We mostly consider round trips
of 2 or 3 cities (1 or 2 stops) over multiple days
(include <5% one-way for diversity). We randomly

sample values for the constraints in Table 1 and
prompt Llama-3 70B [1] to convert the symbolic
representation into natural language. We generate
238k training samples and 29.8k test samples.

As is common in synthetic data generation with
LLMs [12], there was some degree of inconsistency
between the symbolic representation and genera-
tions, primarily in the ordering of departure and
return dates. We again prompted Llama-3 70B
to filter samples with this inconsistency as a few-
shot task, removing approximately 27% of samples
leaving 173.7k training and 21.8k test samples.

Generated Flight and Hotel information Gi.
We use the flight price dataset3 which contains
existing real-world, one-way US domestic flight
information from Expedia from Apr. 16, 2022 to
Oct. 5, 2022 to build our travel generator. We
replicate the data to cover a longer time frame. For
hotels, we include public information and then add
noise to prices, departure/arrival dates, and other
attributes. We combine the two to create synthetic
flight and hotel information Gi.

4.2 Travel Solver

We build a combinatorial solver to compute optimal
solutions to the MILP formulation of the travel
planning problem using SCIP [2]. We discretize
the time into T slots, over the travel span (e.g.,
3 days). A traveller is at location l at time t if
and only if the corresponding variable ul(t) = 1.
The traveller must maintain location continuity and
cannot teleport unless some event happens: e(t) =

3https://www.kaggle.com/datasets/dilwong/
flightprices
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0 ⇒ ul(t + 1) = ul(t). A traveller may be sleep
at time slot t, which is represented as m(t) = 1.
A hotel j (or a flight j) is booked if hj = 1 (or
fj = 1). All the variables are binary.

To make sure the resulting solution is feasible,
we impose the following three types of constraints.

Commonsense constraints. The traveller can
only be present at a single location at time t, which
means

∑
l ul(t) = 1. The traveller needs a minimal

L time slots per day, which can be represented as∑
t∈[day evening]m(t) ≥ L.
Flight constraints. If the traveller takes the

flight j (i.e., fj = 1) that departs from location
src to location dst, then the following constraints
should be satisfied:

fj = 1 ⇒
{

usrc(tdep) = 1, uair(tdep + 1) = 1
udst(tland) = 1, uair(tland − 1) = 1

e(tdep) = e(tland − 1) = 1
(1)

where, tdep and tland are the departure and landing
time slots, and e(t) is a binary variable suggesting
whether there is an event happening at time slot t.

Hotel constraints. If the traveller decided to
reside in hotel j (i.e., hj = 1) at location l, then
the following constraints need to be satisfied:

hj = 1 ⇒
{

ul(tckin : tckout) ≥ m(tckin : tckout)
m(tckin : tckout) allowed to be 1

(2)

where, tckin and tckout are the earliest and latest
check-in and check-out times for hotel j.

Encoding (“implies” ⇒) conditions. Note that
MILP is able to encode conditional constraints
(e.g., Eqn. 1 and Eqn. 2). Please check Appendix A
for details.

5 Experiments

5.1 Automatic Evaluation by Self-consistency

Quality of Instruction Translator. We evaluate
the quality of the generated symbolic form x̂i from
the Translator, by comparing with the original sym-
bolic form xi that is used to generate the natural
language request yi.

To compare the original symbolic user request xi
and reconstructed request x̂i (both in JSON) from
natural language request yi, we use exact match
(EM) accuracy that scores 0 if any of the entries in
the two JSONs do not match. Additionally, since
the Translator is generating output structured as
JSON, we use vLLM logits_processors to ensure
the model output is properly structured [13]. We
refer to this as Constrained Decoding.

Decoding EM Accuracy Valid JSON

Constrained 92.0% 100.0%
Unconstrained 91.2% 99.1%

Table 2: Exact Match accuracy and validity of generations as
JSON of TTG with Constrained and Unconstrained decoding
on 21.8k test samples.

In Table 2, we report exact match accuracy
and validity of the output as JSON for both Con-
strained and Unconstrained Decoding on the test
set. With constrained decoding, the Translator
achieves 92.0% exact match accuracy with output
being valid JSON 100% of the time (because we
forced it to be). Unconstrained decoding is surpris-
ingly close to constrained decoding with an EM of
91.2% and produces valid JSON 99% of the time.
We find that the filtering step discussed in Sec. 4.1
to be critical for unconstrained decoding to produce
valid JSON at such a high degree. Constrained de-
coding is roughly 10% slower than unconstrained
decoding but the 1% failure rate leads to a worse
user experience, so we deploy constrained decod-
ing in the demo.

Table 3 provides a breakdown of the errors and
number of samples by the number of hotel con-
straints, airline constraints and cities. We point
out that EM accuracy decreases as the number of
airline constraints increases but is relatively ro-
bust across the number of hotel constraints and
cities. We hypothesize the decreasing performance
with airline constraints is due to data imbalance
(i.e., there are only 173 samples with 8 constraints
versus 9777 with 5 constraints) which can be ad-
dressed by changing the sampling parameters dur-
ing data generation.

Hotel Constraints 2 3 4

EM Accuracy 91.5% 92.5% 91.7%
# samples 3345 10438 8001

Airline Constraints 4 5 6 7 8

EM Accuracy 95.9% 92.8% 91.1% 77.0% 78.6%
# samples 4974 9777 5555 1299 173

Cities 2 3

EM Accuracy 91.9% 93.0%
# samples 18998 2786

Table 3: Exact Match (EM) accuracy of TTG and the number
of samples when sorting by the number of hotel constraints,
airport constraints and cities. Accuracy decreases as the num-
ber of airline constraints increases but is relatively robust
across the number of hotel constraints and cities.

Fig. 3 provides a breakdown of the sources of
error of our model. The three major sources are
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Figure 3: The breakdown of sources of error in EM accu-
racy. The three major sources of error are the airline con-
straints must_not_basic_economy, departure_time, and
avoid_red_eye.

the airline constraints must_not_basic_economy,
departure_time, and avoid_red_eye. A man-
ual inspection reveals that Llama-3 is somewhat
insensitive to these constraints and a common fail-
ure mode is that they simply do not appear in the
generated NL requests. To further filter for these
samples, as we did with issues with departure and
return dates discussed above, is left for future work.

Quality of solutions. When there is no exact
match, we instead evaluate the end-to-end perfor-
mance by checking the feasibility and optimality
of the response ŝi, by checking the quality ratio
of the cost f(ŝi;xi, Gi) of generated solution ŝi
(as a function of estimated user request x̂i), to the
minimal cost f(si;xi, Gi) if the solver is fed with
a groundtruth user request xi. Note, ŝi is computed
by solving the estimated symbolic user request x̂i
but we evaluate the cost with respect to the ground
truth xi.

score(i) = f(si;xi, Gi)/f(ŝi;xi, Gi) (3)

Since f(ŝi;xi, Gi) ≥ f(si;xi, Gi), we know 0 ≤
score(i) ≤ 1 where a score of 0 corresponds vio-
lating one or more constraints and 1 corresponds
to the optimal solution. A score between 0 and
1 corresponds to finding sub-optimal solutions to
some constraints. We partition the 21.8k test sam-
ples into 8 subsets of 2.7k samples. The mean and
standard deviation for TTG over the 8 subsets is
0.979± 0.002, which is very close to 1 (optimal).
Within the samples where the generated constraints
are not an exact match, the score is 0.726± .0234.

5.2 Efficiency of TTG
We also evaluate the performance of TTG by profil-
ing the two major components: generation speed
of the Translator and the speed of the MILP solver,

Response phase Time (s)

Instruction Translator 2.508±0.116
MILP Solver
- Loading constraints 0.047±0.061
- Solving 0.527±0.457
- Total 0.575±0.507

Table 4: Time spent on each phase of TTG. We report the
average and standard deviation over 100 examples.

tested on a AWS P4de node using one A100 for
LLM inference and one CPU (Intel Xeon Platinum
8275CL@3GHz) core for the solver. As shown
in Table 4, the primary bottleneck in our system
is the model inference cost which takes 81.3% of
the compute time. Overall, TTG is light-weight and
provides responses in real-time.

5.3 Human evaluation
We performed an online survey and qualitative in-
terviews to collect human judgment and feedback
about our system’s performance. The goal of the
human evaluation study was two-fold: (1) validate
performance and subjective perception of our sys-
tem’s outputs through a large pool of lay-people
who routinely travel, and (2) identify factors that
contribute to perceived itinerary quality to inform
future work.

We screened from a broad pool of US-based par-
ticipants who travel four or more times per year to
complete a survey evaluating model performance.
To maximize evaluation coverage, we randomly
sampled 50 natural language travel queries from
our generated test set, stratifying by number of
stops (60% one-/40% two-stop) and encompassing
a variety of trip durations and budgets. We then
ran the queries through TTG, rendering the map
and detailed travel itinerary per trip presented in
tabular form (see Fig. 1) via a chat interface. We
randomly assigned each of the 1385 participants
to 5 of the sampled query-itinerary pairs and ask
them to evaluate along three axes (see below). In
addition, we also ask the participants to rank the
factors that affect their travel decisions, and con-
duct in-depth interviews to find ways to improve
TTG (see Appendix B for details).

5.3.1 On Satisfaction, Value and Efficiency
For each query-itinerary pair, participants answered
three questions: (1) how much the query was sat-
isfied, (2) the value and (3) the efficiency of the
itinerary. Participants noted that they require ex-
tensive comparison on many hard (e.g., price) and
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soft (e.g., aesthetic) criteria as part of assessing op-
timality, often over many hours of research. Conse-
quently, measuring whether a given itinerary was
optimal via human evaluation was determined in-
feasible. Therefore, we use subjective metrics like
(2) and (3) as proxy evaluations for the optimal-
ity of each itinerary, absent being able to assess
optimality via human evaluation.

We evaluated the survey responses by comput-
ing a score constructed similarly to Net Prompter
Scores (NPS [6]). This system used a five-point
scale (percentage of supporters minus detractors
where 5s are coded as promoters and 1-3s as detrac-
tors), as shown in Table 5. Our primary ‘satisfies
the request’ question received a 40.0. Our sec-
ondary ‘value’ and ‘efficiency’ questions scored
35.1 and 36.9, respectively. Overall, we consider
these promising results, indicating user acceptance
on all three evaluation metrics. We note that while
this evaluation does not use the original NPS lan-
guage, the method of analysis still enables us to
understand the relative proportion of respondents
who view our model favorably. Additionally, no
material difference is seen between user evalua-
tions of the one- and two-stop itinerary.

Question Detractors % Promoters % Net %

...fully satisfies the...request -13.3 +53.3 +40.0

...offers good value for the money... -16.8 +52.0 +35.1

...is efficient... -16.2 +53.1 +36.9

Table 5: Net Prompter-like Score (NPS) and its breakdown
in survey questions. Please check the complete form of the
questions (as well as other details) in Appendix B.

5.3.2 Preference ranking
Price and preferred travel times were ranked as the
most important criteria in trip assessment, reinforc-
ing the selection of these proxy criteria. We see
these preferences manifesting in at least two large
and distinct user clusters: the first group includes
price sensitive travelers, looking for high value; the
second cares more about departure times, service
levels, and brands. Future work may include per-
sonalization; we expect closer alignment to user
optimality by inferring user groups to re-weight
criteria before computing itineraries.

5.3.3 In-depth Interviews
We then conducted in-depth user interviews with
8 participants who matched the recruitment crite-
ria for the survey. These interviews followed a
semi-structured, in-depth format. Participants were
asked to reflect on recent travel, walking through

their tools used, process of searching for and select-
ing flights and accommodations, including points
of high and low friction and heuristics for prioriti-
zation. Finally participants assessed stimuli, which
were generated via the same criteria as used to pop-
ulate the survey.

Together, the survey and user interviews illumi-
nated the following themes for future improvement.
Prioritization. User requests demonstrate a hi-
erarchy of importance, e.g., flight selection often
precedes hotel bookings. Flexibility. Trip details
should be changed with ease and enable compar-
ison. Personalization. Users have a variety of
preferences, e.g., cheap vs. cozy, business vs. ca-
sual, family vs. solo trips, etc. Many of them are
implicit. Moreover, special needs like “The room
door opens to a hallway” may not be available but
can be part of user’s ideal selection criteria. Trust
of AI agents. Decisions made by the agent should
be readily verifiable by users as feasible, optimal
and fit to their personal use cases. For this, more
convenient tools are needed to visualize copious in-
formation for confidence boost. While TTG moves
towards these goals (e.g., guaranteed quality of
solutions by solver), more works can to be done.

6 Conclusion and Future Work

In this work, we propose TTG, and end to end sys-
tem which plans travel itineraries from user re-
quests in natural language. TTG uses a hybrid archi-
tecture that combines an LLM with combinatorial
solvers, dynamically formulating travel requests
into a well-defined MILP problem, and translat-
ing the solution computed by the solver back to
natural language. Overall, the system responds
almost in real-time (∼ 5 seconds), and outputs
feasible and optimal guaranteed travel itineraries,
given correctly understood user requests by the fine-
tuned LLM, which happens > 90% of the time for
queries up to 6 airline constraints and up to 4 hotel
constraints. For this, a data generation pipeline is
developed to provide synthetic symbolic and natu-
ral language pairs for model training.

We recognize that achieving true optimality re-
quires a system that enables robust personalization,
and human-driven filtering and selection. As a
result, we anticipate the need for a human bench-
mark task that enables respondents to stipulate a
travel goal in real time and compare between a few
near-optimal results, both to measure system per-
formance and to collect signal for improvement.
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Future developments will therefore explore multi-
round dialog and personalization to further improve
user experience, and end-to-end trainable pipelines
to make the system more adaptive.
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A Using MILP solver to encode conditional constraints

Suppose {zj} are binary variables, then the conditional constraint “if all zj = 1, then x = y” can be
formulated as the the following:

x ≤ y +M
∑

j

(1− zj), y ≤ x+M
∑

j

(1− zj) (4)

where M is a big constant. Intuitively, if all zj = 1, then the above two constraints are equivalent to
x ≤ y and y ≤ x, which is x = y; if k of the binary variable {zj} are zero, then the above two constraints
become x ≤ y + kM and y ≤ x+ kM , which becomes trivial for big M .

B Details of the User Study

1. Survey Design
Q1. [RANK]- What matters most to you when selecting a travel itinerary (airfare and hotels)? • Total

Price • Value per dollar • Minimal Time in Transit • Simple or Few Steps • Travel/stay with preferred
brands • Travel at preferred times • Travel at specific level of service (e.g. hotel stars, airfare class)

Q2-Q6. [SCALE]- For the following question, please reference the image shown. How much do you
agree or disagree with the following statements? (5 Point Scale: Strongly Disagree - Strongly Agree)
(Repeated 5 times)

• This travel itinerary fully satisfies the corresponding travel request. • This travel itinerary is efficient,
given the corresponding travel request. • This travel itinerary offers good value for the money, given the
corresponding travel request.

Q7. [OPEN END]- How could the format or quality of these itineraries be improved?

C Details of TTG Demo

We introduce the key features of our demo in detail, using the same example as shown in Fig. 1.
User request. The user request in our example is “Embark on a thrilling journey with these requirements.

Flights: coach class, non-stop, no basic economy or mixed cabin, with a total budget of $1383. Hotels:
daily budget $317, total budget $952. Travel dates: January 15th, 2025, DEN to MIA, January 17th, 2025,
MIA to JFK, and January 18th, 2025, JFK to DEN. The adventure awaits!”

Itinerary Options. For a user travel request, TTG gives three itinerary options with three different
considerations: 1) Minimum Cost: the total cost (flights+hotels) is minimized; 2) Better Hotel: More
tolerant of hotel costs for a better hotel experience; and 3) Better Flight: More tolerant of flight costs for a
better flight experience. These options are materialized by different objectives in the MILP travel solver.
We show the user interface of three itinerary options in Fig. 4.

Figure 4: Itinerary options in TTG demo.

Planned Itinerary. Fig. 5 (a) showcases the planned itinerary with minimum cost as objective. TTG
presents this itinerary in a tabular format, detailing the total budget, flight specifics, and hotel information.

Flight Routes. As shown in the detailed view in Fig. 5 (b), TTG presents a sequence of flights according
to the user’s request (DEN to MIA, MIA to JFK, and JFK to DEK), with the corresponding prices of
flights hovering above each each route.
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(a) Planned Itinerary (b) Flight Routes (c) Hotel Information

Figure 5: Details of demo. (a) Planned itinerary is shown in tabular view; (b) Flights routes are shown on the map
with prices on each travel segment; (c) Hotel infomation, including name, rating and price.

Hotel Information. Once clicking the hotel icon, TTG provides a zoomed-in view of the suggested
hotels with their ratings and prices. For instance, as shown in Fig. 5 (c), TTG has booked the "Hampton
Inn & Suites Miami-Airport South-Blue Lagoon" for the user’s stay in Miami (MIA). This selection meets
the user’s daily hotel budget constraint of $317. Note that if a user specifies a minimum hotel rating, the
MILP solver in TTG ensures this requirement is also met.

Packages Acknowledgement. Our TTG demo is built upon Mapbox 4 and BotUI 5.

4https://www.mapbox.com/
5https://github.com/botui/botui
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