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Abstract

Table data is pervasive in various industries,
and its comprehension and manipulation de-
mand significant time and effort for users seek-
ing to extract relevant information. Conse-
quently, an increasing number of studies have
been directed towards table-to-text generation
tasks. However, most existing methods are
benchmarked solely on a limited number of
datasets with varying configurations, leading to
a lack of unified, standardized, fair, and com-
prehensive comparison between methods. To
bridge this gap, this paper presents OPENT2T,
the first open-source toolkit for table-to-text
generation tasks, designed to reproduce exist-
ing table-to-text generation systems for perfor-
mance comparison and expedite the develop-
ment of new models. We have implemented
and compared a wide range of large language
models under zero- and few-shot settings on
nine table-to-text generation datasets, cover-
ing the tasks of data insight generation, table
summarization, and free-form table question
answering. Additionally, we maintain a public
leaderboard to provide insights for future work
into how to choose appropriate table-to-text
generation systems for real-world scenarios.

1 Introduction

In an era where users interact with vast amounts
of structured data every day for decision-making
and information-seeking purposes, the need for in-
tuitive, user-friendly interpretations has become
paramount (Zhang et al., 2023; Zha et al., 2023; Li
et al., 2023; Zhao et al., 2023e). Given this emerg-
ing necessity, table-to-text generation techniques,
which transform complex tabular data into compre-
hensible narratives tailored to users’ information
needs, have drawn considerable attention (Parikh
et al., 2020; Chen et al., 2020b; Nan et al., 2022b;
Zhao et al., 2024b,c). These techniques can be
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Figure 1: The overall framework of OPENT2T.

incorporated into a broad range of applications,
including but not limited to game strategy devel-
opment, financial analysis, and human resources
management.

While large language models (LLMs) have
achieved remarkable progress in the areas of
controllable text generation and data interpreta-
tion (Nan et al., 2021; Zhao et al., 2022; Gao et al.,
2023; Madaan et al., 2023; Zhou et al., 2023; Zhao
et al., 2024a), the exploration of these models in
table-to-text generation has been limited. Addition-
ally, existing table-to-text generation systems (Liu
et al., 2022b; Jiang et al., 2022; Zhao et al., 2022;
Liu et al., 2022a; Nan et al., 2022a) are bench-
marked on various datasets and configurations.
This has led to a lack of standardization, making
comprehensive evaluation between different meth-
ods challenging. Moreover, since these models are
developed or evaluated within individual systems,
they suffer from compatibility issues. Therefore,
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Dataset # Examples # Tables Control Signal Output

Data Insight Generation

LOGICNLG (Chen et al., 2020a) 37,015 7,392 Highlighted columns Single-sentence statement
TOTTO (Parikh et al., 2020) 136,161 83,141 Highlighted cells Single-sentence statement
HiTabNG (Cheng et al., 2021) 10,672 3,597 Highlighted cells Single-sentence statement

Table Summarization

ROTOWIRE (Wiseman et al., 2017) 4,953 4,953 – Paragraph-long summary
NumericNLG (Suadaa et al., 2021) 1,355 1,355 – Paragraph-long summary
SciGen (Moosavi et al., 2021) 1,338 1,338 – Paragraph-long summary

Free-form Table Question Answering

FeTaQA (Nan et al., 2022b) 10,330 10,330 Question Single-sentence answer
HiTabQA (Cheng et al., 2021) 10,672 3,597 Question Single-sentence answer
QTSUMM (Zhao et al., 2023c) 5,625 2,437 Question Paragraph-long answer

Table 1: An overview of table-to-text generation tasks included in OPENT2T.

reproducing them for result comparison in future
studies is both difficult and time-consuming. Given
that the above issues are serious hindrances to the
development of table-to-text generation systems,
there is an imperative need to develop a unified and
extensible open-source toolkit.

In this paper, we present OPENT2T, the first
OPEN-source toolkit for Table-to-Text generation.
OPENT2T features the following three key charac-
teristics:

• Modularization We develop OPENT2T with
highly reusable modules and integrated them in
a unified framework. This enables future re-
searchers to study various table-to-text genera-
tion systems at a conceptual level.

• Standardization OPENT2T includes popular
table-to-text generation datasets and models. The
evaluation of different models is standardized.
We have also created a public leaderboard to
evaluate and rank the performance of various
methods on different datasets, providing insights
into how to choose appropriate table-to-text gen-
eration systems for real-world scenarios.

• Extensibility OPENT2T enables researchers
to easily develop custom prompts for LLMs. Ad-
ditionally, they can extend the data or LLM in-
ference modules to integrate new table-to-text
generation datasets or systems.

The main structure of the paper is organized
as follows: Section 2 describes each table-to-text
generation task included in the OPENT2T frame-
work. Section 3 describes each module and its im-
plementation of OPENT2T framework. Section 4

introduces the maintained public OPENT2T leader-
board and highlights the main findings based on
the results from the leaderboard. These insights
help guide the selection of appropriate table-to-text
generation systems for real-world needs. Finally,
Section 5 discusses the related work and compares
OPENT2T with existing open-source toolkits for
the table-relevant tasks.

2 OPENT2T Tasks

OPENT2T covers three kinds of table-to-text gen-
eration tasks: data insight generation, table sum-
marization, and free-form table question answering
(as shown in Table 1). The goal of OPENT2T is to
push the development of table-to-text generation
systems that can be applied and achieved competi-
tive performance on various real-world scenarios.
Such advancement could significantly enhance ta-
ble data interpretation across industries, making
complex tabular information more accessible and
actionable for non-expert users. Due to computa-
tional constraints, we randomly sample 300 exam-
ples from each benchmark. If the test set ground
truth is available, we select examples from the test
set; otherwise, we use the validation set. The fol-
lowing subsections provide a detailed description
of each type of table-to-text generation task and the
corresponding datasets included in OPENT2T.

2.1 Data Insight Generation
Data insight generation involves generating mean-
ingful and relevant insights from tables. Such tech-
niques free users from manually combing through
vast amounts of tabular data. We include the fol-
lowing three relevant datasets in OPENT2T:
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• LOGICNLG (Chen et al., 2020a) necessitates
models to generate multiple statements that per-
form logical reasoning based on the information
in the source table. Each statement should be
factually correct with the table content.

• TOTTO (Parikh et al., 2020) requires models
to provide faithful statements from Wikipedia
tables. The generation of statements should be
controlled by corresponding highlighted cells.

• HiTabNG (Cheng et al., 2021) consists of cross-
domain tables from plenty of statistical reports
and Wikipedia pages. It requires models to pro-
duce statements from complex hierarchical tables
and highlighted cells, which needs numerical and
semantic reasoning analysis.

2.2 Table Summarization

Table summarization techniques condense the infor-
mation contained in a table into a more accessible
and concise form. By creating a summary that cap-
tures the key information and patterns, users can
quickly grasp the main insights from the data with-
out having to explore every individual entry. This
complements the process of data insight generation,
providing a streamlined way to interpret and utilize
large datasets. We include the following three table
summarization datasets in OPENT2T:

• ROTOWIRE (Wiseman et al., 2017) tasks
models with generating coherent and natural-
language summaries that accurately capture and
convey the statistical information presented in
NBA game tables.

• NumericNLG (Suadaa et al., 2021) necessitates
models to generate summaries with high fidelity
and fluency based on tables from scientific pa-
pers. The generation framework emphasizes rich
arithmetic reasoning.

• SciGen (Moosavi et al., 2021) demands models
to provide summaries in accordance with com-
plex tables containing numerical values from sci-
entific papers. It places significant emphasis on
arithmetic reasoning capability.

2.3 Free-form Table Question Answering

Table QA involves interpreting and analyzing ta-
bles to answer user queries. Unlike short-form QA,
which typically requires concise and specific ques-
tions for retrieving direct answers, free-form table

QA allows users to ask more complex and nuanced
questions about tabular data. This approach facil-
itates a deeper exploration of the data and offers
a more flexible and comprehensive way to inter-
act with complex tables. We include the following
three relevant datasets in OPENT2T:

• FeTaQA (Nan et al., 2022c) tasks models with
generating single-sentence answers after retriev-
ing, inferring, and integrating multiple support-
ing facts from the source table.

• HiTabQA (Cheng et al., 2021) requires models
to generate answers from complex hierarchical
tables and questions, involving both numerical
and semantic reasoning. The hierarchical struc-
ture demands advanced analysis to interpret rela-
tionships, perform mathmatical calculations, and
derive accurate final answers.

• QTSUMM (Zhao et al., 2023c) requires mod-
els to produce query-focused, paragraph-long an-
swers based on tables sourced from Wikipedia.
The questions cover a wide range of topics, de-
manding a precise and contextually relevant syn-
thesis of information from the table, with empha-
sis on addressing the query directly.

3 OPENT2T Framework

As shown in Figure 1, OPENT2T consists of four
main modules: configuration, data, modeling, and
evaluation. The users are able to test the existing
table-to-text models on the included dataset. They
are also allowed to add their own models or datasets
into OPENT2T by extending corresponding mod-
ules with their proposed ones.

3.1 Configuration Module

The configuration module allows users and devel-
opers to specify all experiment settings. Users are
expected to modify the main arguments of the ex-
periment settings in external configuration files or
command lines while leaving the internal configura-
tion unchanged for existing models. This approach
ensures a unified performance comparison among
different models on table-to-text tasks.

3.2 Data Module

As discussed in Section 2, OPENT2T includes pop-
ular datasets for table reasoning, which cover vari-
ous types of tasks. The data module converts raw
datasets in various formats into a unified format,
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which consists of the following five essential argu-
ments:

• table: Table headers and contents in a 2D array
format.

• title: The title of the table.

• question: The question or query about the ta-
ble. If no question is provided in the raw dataset,
this argument will be set to None.

• reference: Reference output of the table.

• linked columns: The indices of the table
columns related to the reference output. If no
linked columns are provided in the raw dataset,
this argument will be set to the indices of all
columns in the table.

• highlighted cells: The indices of the
cells in the table related to the reference output.
If no highlighted cells are provided in the raw
dataset, this argument will be set to the indices
of all cells in the table.

We apply the same strategy as Liu et al. (2022b)
for truncating a long table into a shorter version
to satisfy the model’s input length limit. It worth
noting that the processed and format-unified data
can be used as model input for both the modeling
module and the evaluation module. To enhance
adaptability, we design the data module with ex-
tensibility in mind, allowing future users to easily
incorporate new datasets. By creating subclasses
that inherit from the implemented parent classes,
users can add datasets with minimal adjustments.
We acknowledge the recent release of table-to-text
generation benchmarks (Zhang et al., 2024b) that
are not currently included in OPENT2T and encour-
age future researchers to contribute to the growth
of OPENT2T by incorporating these benchmarks.

3.3 LLM Inference Module

For the evaluation of LLMs, we provide prompts
with zero-, one-, and two-shots, both with and with-
out chain-of-thought (CoT) reasoning prompt (Wei
et al., 2022; Chen, 2022), for each dataset. We
have streamlined and standardized the inference of
the following LLMs using a parent interface class
named LLM_T2TModel:

• General: GPT-3.5&4&4o (OpenAI, 2022, 2023,
2024), Claude-3.5 (Anthropic, 2024), Llama-
2&3&3.1 (Touvron et al., 2023), Mistral (Jiang
et al., 2023), Phi-3&3.5 (Abdin et al., 2024),

Gemma-2 (Team et al., 2024), WizardLM-2 (Xu
et al., 2023), Yi-1.5 (01.AI, 2023), Qwen-
2&2.5 (Bai et al., 2023), Command R+ (Cohere,
2024b), Aya (Cohere, 2024a), and GLM-4 (GLM
et al., 2024).

• Math-specific: WizardMath (Luo et al., 2023),
DeepSeek-Math (Shao et al., 2024), and
InternLM-Math (Ying et al., 2024). We evaluate
math-specific LLMs because some T2T datasets,
such as FeTaQA and SciGen, require mathemati-
cal reasoning to generate faithful responses.

• Code-based: Codestral (AI@Mistral, 2024),
DeepSeek-Coder-V2 (also MoE architecture,
DeepSeek-AI (2024)), and StarCoder2 (Lozhkov
et al., 2024). We evaluate code-based LLMs be-
cause recent studies (Zhang et al., 2024a) have
shown that training on code generation data can
enhance model performance on tasks requiring
table reasoning.

• Mixture of Experts (MoE): Mixtral (Mistral.AI,
2023), WizardLM-2 (MoE, Xu et al. (2023)),
and DeepSeek-V2 (DeepSeek-AI, 2024).

We encourage future research to evaluate and
include their newly-developed LLMs, especially
those designed for table-related tasks (Zhang et al.,
2024a; Zheng et al., 2024), into our public leader-
board, which will be detailed in Section 4.

3.4 Evaluation Module

To evaluate and compare the performance of table
reasoning models supported by a certain dataset,
OPENT2T includes all the evaluation metrics used
in the official implementation. These metrics can
be used off-the-shelf with a one-line call, given a
prediction output file and the name of the dataset.
The uniformly formatted reference file generated
in 3.2 can be automatically found and put to use by
the module without any manual format adaption of
the dataset to specific metrics. The details of each
metric are introduced as follows:

• BLEU (Papineni et al., 2002) employs a
precision-based method, measuring how the n-
gram matches between the prediction and refer-
ence statements.

• ROUGE (Lin, 2004) applies a recall-based ap-
proach, measuring the proportions of overlapping
words and phrases between the generated predic-
tion and the reference.
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• METEOR (Lavie and Agarwal, 2007) is based
on the harmonic mean of unigram precision and
recall, with several unique features like stem-
ming and synonymy matching. This metric ad-
dresses some issues present in the BLEU metric
and maintains a strong correlation with human
evaluations at the sentence or segment level.

• BERTScore (Zhang et al., 2020) computes the
similarity between the reference and generated
summary using contextual word embeddings.

• BLEURT (Sellam et al., 2020) is a BERT-based
metric for text generation tasks that can be pre-
trained and fine-tuned with manually evaluated
data to satisfy both the robustness and expressive-
ness of the metric.

• AutoACU (Liu et al., 2023) introduces a
reference-based automated evaluation framework
that leverages atomic content units (ACUs) to
assess the degree of similarity between textual
sequences. The framework is designed to offer
more interpretable and fine-grained evaluations
by breaking down text into ACUs, which are
smaller units representing meaningful content.

We also include following two model-based met-
rics specifically designed for the faithfulness-level
evaluation:

• TAPAS-Acc (Herzig et al., 2020) employs the
TAPAS model (Herzig et al., 2020) fine-tuned on
TABFACT (Chen et al., 2020c) dataset to judge
whether the generated statements are entailed or
refuted based on the table content.

• TAPEX-Acc (Liu et al., 2022b) uses TAPEX,
fine-tuned on the TABFACT (Chen et al., 2020c)
dataset, to assess whether generated statements
are entailed or refuted. Recent studies (Liu et al.,
2022a; Wang et al., 2024) have demonstrated that
both NLI-Acc (Chen et al., 2020b) and TAPAS-
Acc tend to overestimate the accuracy of predic-
tions, whereas TAPEX-Acc has proven to be a
more reliable metric for evaluating faithfulness.

3.5 Execution

For running and evaluating LLMs using OPENT2T,
users can utilize and modify the provided zero- and
few-shot prompts for LLM inference. Users also
have the ability to evaluate existing or new LLMs
on their newly-added datasets.

4 OPENT2T Leaderboard

We maintain a public leaderboard at HuggingFace
Space for users to track, rank, and evaluate
existing table-to-text generation systems. The
detailed results of model performance can be found
at https://huggingface.co/spaces/
yale-nlp/OpenT2T_Leaderboard. Users
can also submit model output for automated eval-
uation and leaderboard updates. We believe that
such a leaderboard can provide future researchers
and developers with valuable insights into how
to choose and develop appropriate table-to-text
generation systems for real-world applications.

4.1 Expertiment Setup
The experiments for open-sourced LLMs were con-
ducted using the vLLM framework (Kwon et al.,
2023). For all the experiments, we set temperature
as 1.0, Top P as 1.0, and maximum output length
as 512, without any frequency or presence penalty
for all LLMs. We access the proprietary models
through their official APIs and run all other open-
source models locally on our servers with NVIDIA
A100 80GiB.

4.2 Main Findings
Based on the leaderboard results, we derive the
following key findings.

Data Insight Generation The current top-
performing proprietary models generally sur-
pass open-source ones in data insight generation,
demonstrating their strong capability to generate
faithful statements from tables. Among open-
source models, Llama- and Qwen-series models
achieve most competitive performance.

Free-form Table Question Answering Both
open-sourced LLMs and GPT-* models in a 2-shot
setting achieve comparable performance. More-
over, increasing the number of shots and applying
the CoT approach can both yield performance gains
for table question answering. This finding points to
the adaptability of these models to different input
formats and their ability to leverage more context
or structured reasoning to enhance performance.

Table Summarization GPT-* models in a 2-shot
setting achieve best performance. However, other
open-sourced LLMs still struggle with this type
of task. For table summarization, we also observe
that either increasing the number of shots or ap-
plying the CoT reasoning approach can generally
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improve LLM performance. These findings suggest
that although GPT-* models excel in summariza-
tion, there is potential for improving the training
methodologies of other open-source LLMs to bet-
ter manage the complexities involved in the table
summarization tasks.

Open-sourced LLMs vs GPT There remains a
significant performance gap between other open-
sourced LLMs (e.g., Mistral-Large and LLama-3.1)
and GPT-* models. This gap highlights the po-
tential for further development and innovation in
open-sourced LLMs to bridge this disparity. Fur-
thermore, among open-sourced LLMs, TableLlama
demonstrates a notable improvement over its back-
bone (i.e., Llama-2), emphasizing the effectiveness
of enhancing table-to-text generation capabilities
through instruction tuning on tabular data. This
advancement also underscores the potential for sig-
nificant gains in open-source models through tar-
geted modifications and optimizations, which could
lead to more competitive alternatives to proprietary
models in the future.

5 Related Work

Text generation from semi-structured knowledge
sources, such as web tables, has been studied ex-
tensively in recent years (Parikh et al., 2020; Chen
et al., 2020b; Cheng et al., 2022). However, exist-
ing table-to-text methods (Liu et al., 2022b; Jiang
et al., 2022; Liu et al., 2022a; Zhao et al., 2023b,
2024a) have been evaluated on different datasets
with varying configurations and developed as in-
dividual systems, resulting in difficulties in repro-
ducing them for performance comparison in future
studies. Moreover, existing works typically regard
table-to-text generation as a subtask of table reason-
ing (Zhao et al., 2023d; Zhang et al., 2024a; Deng
et al., 2024; Zheng et al., 2024; Wu et al., 2024),
which focuses primarily on numerical and logical
reasoning capabilities. The table-to-text generation
tasks, however, go beyond these reasoning aspects
and also require the model to accurately convey
information from the table in a way that is both
contextually appropriate and easily understandable
to the target audience.

More recently, Zhao et al. (2023a) developed
an open-source toolkit for table reasoning. How-
ever, it only implement one table-to-text generation
dataset (i.e., LOGICNLG) and does not include
LLMs, while OPENT2T include nine datasets cov-
ering three real-world table information-seeking

scenarios. Kasner et al. (2023) provides a visu-
alization interface for researchers to explore vari-
ous table-to-text generation datasets. In contrast,
OPENT2T offers standardized and comprehensive
evaluation benchmarks for performance compari-
son, enabling users to choose the appropriate table
pre-training model for specific real-world needs.

6 Conclusion

This work presents OPENT2T, the first open-
source framework for table-to-text generation,
aimed at enabling researchers and developers to re-
produce and benchmark existing table-to-text gen-
eration systems in a standardized and fair manner.
OPENT2T serves as a comprehensive platform that
allows users to compare different models on a uni-
fied ground, facilitating more transparent and repro-
ducible research in this area. The framework is de-
veloped with highly reusable and modular compo-
nents, making it flexible and extensible for a wide
range of use cases. Additionally, OPENT2T pro-
vides a suite of pre-built functionalities, including
data preprocessing pipelines and evaluation met-
rics, which streamline the process of testing and
evaluating new models. We welcome researchers
and engineers to join us in developing, maintaining,
and improving OPENT2T, in order to foster inno-
vation and enable the rapid development of novel
table-to-text generation techniques.

Ethical Consideration

The datasets included in OPENT2T all use licenses
that permit us to compile, modify, and publish the
original datasets. OPENT2T are also publically
avaliable with the license BSD-2-Clause1, which
allows users to modify and redistribute the source
code while retaining the original copyright.
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