
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
System Demonstrations, pages 291–300

November 12-16, 2024 ©2024 Association for Computational Linguistics

Xinference: Making Large Model Serving Easy

Weizheng Lu1, Lingfeng Xiong1, Feng Zhang1, Xuye Qin2*, Yueguo Chen1∗
1Renmin University of China, 2Xorbits Inc.

{luweizheng,lenfeng2022,fengzhang,chenyueguo}@ruc.edu.cn, qinxuye@xprobe.io

Abstract

The proliferation of open-source large mod-
els necessitates dedicated tools for deployment
and accessibility. To mitigate the complexities
of model serving, we develop Xinference, an
open-source library designed to simplify the
deployment and management of large mod-
els. Xinference effectively simplifies deploy-
ment complexities for users by (a) preventing
users from writing code and providing built-
in support for various models and OpenAI-
compatible APIs; (b) enabling full model serv-
ing lifecycle management; (c) guaranteeing ef-
ficient and scalable inference and achieving
high throughput and low latency. In compara-
tive experiments with similar products like Ben-
toML and Ray Serve, Xinference outperforms
these tools and offers superior ease of use. Xin-
ference is available at https://github.com/
xorbitsai/inference.

1 Introduction

Recently, open-source large models are quickly
catching up with the closed-source mod-
els (MetaAI, 2024; Google, 2024; Yang et al.,
2024a). There is a growing demand to deploy these
open-source models in private user environments,
as an increasing number of AI applications
and even non-ML/AI practitioners require a
straightforward and effective inference toolkit for
managing model deployment. Although there
are inference engines and frameworks for large
model inference (Miao et al., 2023), many current
inference toolkits are not as simple and convenient
to use. Therefore, this paper focuses on how to
build an efficient and easy-to-use inference toolkit.

Streamlining large model inference is crucial.
Open-source large models, customizable and free
from data privacy concerns, are highly suitable for
private deployment. A simple toolkit can enable

*Corresponding authors: Xuye Qin and Yueguo Chen.

more users to access the capabilities of large mod-
els and focus on AI applications rather than spend
time managing inference services.

However, building an easy-to-use inference
toolkit is a non-trivial task. First, AI applications
often rely on different types of models, such as chat,
embedding, or multimodal models, along with tech-
nologies like function calling (Wang et al., 2024) or
retrieval-augmented generation (RAG) (Karpukhin
et al., 2020). Each model type or technology
mentioned possesses distinct characteristics and
may require specific configurations. Second, the
landscape of inference engines and hardware is
vast, with options like vLLM (Kwon et al., 2023),
llama.cpp (Gerganov, 2023), SGLang (Zheng et al.,
2024), and various CPUs and GPUs, such as x86,
Apple Silicon, NVIDIA, AMD. A particular infer-
ence engine is typically designed for specific users
and application scenarios. Third, users need to
scale inference workloads onto clusters to achieve
high throughput and low latency. Therefore, there
is a need for a framework-agnostic inference toolkit
to manage multiple models and various inference
engines while providing users with convenient and
user-friendly services.

Several toolkits, such as Ray Serve (Moritz et al.,
2018; Ray Team, 2024) and BentoML (Yang et al.,
2024b), aim to facilitate serving services for de-
ploying various models across diverse hardware
platforms. However, we have found that these tools
fail in user-friendliness, often requiring extensive
coding, or suffer performance degradation. For ex-
ample, first, BentoML and Ray Serve both require
users to write code to deploy models, which can
be quite challenging for users who are not familiar
with model inference. Second, these two tools do
not cover the full model serving lifecycle and lack
essential features. Third, BentoML suffers perfor-
mance degradation when scaling models replicas.

To address the aforementioned issues, we have
developed Xinference, an inference toolkit de-

291

https://github.com/xorbitsai/inference
https://github.com/xorbitsai/inference

signed to streamline the serving of large models.
First, it is designed for ease of use, eliminating
the need for users to write additional code, and
provides built-in support for various of models,
features, and inference engines. Second, it can
manage the entire lifecycle of model serving, from
scaling models to clusters to managing computing
resources. Third, it has minimal performance loss
when integrating with an inference engine, ensur-
ing high throughput and low latency on clusters,
and offers scheduling optimizations. Xinference
leverages Xoscar (Xorbits, 2024; Lu et al., 2024),
an actor programming framework we designed, as
its core component to manage machines, devices,
and inference engines. Each actor serves as a ba-
sic unit for model inference tasks and different
inference engines can be integrated into the actor,
enabling us to manage multiple inference engines
and model replicas.

Xinference targets a broad range of audiences,
including AI application developers, ML engi-
neers, and even non-AI/ML practitioners who sim-
ply wish to use large AI models. It is open-
sourced with the Apache 2.0 license and available
on GitHub1.

Experiments demonstrate that, compared to Ben-
toML and Ray Serve, Xinference maintains excel-
lent latency and throughput across various work-
load scenarios. When deploying a single model
replica, compared to the original inference engine,
Xinference’s performance loss is within 3.64%.

2 Background and Motivation

In this section, we outline the motivation and the
design principles for the user-centric inference ser-
vice.

2.1 User-Centric Design for Inference

Building a large model inference service typically
requires three modules: the inference engine, the
model specification, and an endpoint or a Web User
Interface (Web UI). Inference engines are the back-
end for model serving, with notable works such as
PyTorch (Paszke et al., 2019; Ansel et al., 2024),
Transformers (Wolf et al., 2020), vLLM (Kwon
et al., 2023), and llama.cpp (Gerganov, 2023). Typ-
ically, these inference engines can only serve with
one model replica, lacking the capability to scale
out. To manage different models, tools such as
BentoML (Yang et al., 2024b) and Ray Serve (Ray

1https://github.com/xorbitsai/inference

Team, 2024) require users to write code and pro-
vide model specifications for configuration. These
model specifications include the system prompt
and the end-of-sequence (EOS) token of the model,
settings for ingress traffic, as well as replica and
device management, among other configurations.
These tools offer OpenAI-style endpoints but do
not provide a Web UI to assist users with the afore-
mentioned configuration and management tasks.
Moreover, they do not cover all aspects of model
serving lifecycle, leaving users to manage these
stuff themselves. Therefore, we develop Xinfer-
ence to address the usability issues of large model
serving.

2.2 Design Principles

To provide an easy-to-use inference service, we
adhere to the following principles in the design and
implementation of Xinference.

• Simplicity. Users do not need to write code
or configure model specifications; these con-
figurations are integrated and implemented
by the serving toolkit. Users simply need to
specify which model to launch via the Web
UI or command line. The toolkit should be
engine/hardware-agnostic and can integrate
various inference engines and different hard-
ware. The toolkit supports fully OpenAI-
compatible APIs and offers all model types
and features, including function calling. All
these features will facilitate users’ easy migra-
tion of their applications from closed-source
models to this toolkit.

• Full Lifecycle Management. The toolkit
should handle the entire lifecycle of model
serving, allowing users to launch and utilize
models as well as monitor and terminate them.
It can also manage computing resources and
enable models to scale across a cluster.

• Efficiency. When using inference engines like
vLLM, Xinference should not bring extra per-
formance loss, and with multiple model repli-
cas, it should guarantee high throughput and
low latency. It can provide necessary opti-
mizations like continuous batching.

Table 1 compares Xinference and other plat-
forms, highlighting Xinference’s features.

292

https://github.com/xorbitsai/inference

Table 1: A comparative feature analysis that showcases
the strengths of Xinference. The! symbol indicates
built-in support within the framework, andd denotes
that the framework requires users to implement the func-
tionality by writing additional code by users themselves.

Feature BentoML Ray
Serve Xinference

OpenAI-style
Endpoint ! ! !

Web UI d d !

Cluster
Deployment ! ! !

Serving Lifecycle
Management ! d !

External Tool
Function Calling d d !

Muli-Inference
Engines Support d d !

Muli-Hardware Support d d !

Multi-Types
Models Support d d !

3 Xinference Usage: Designing for
User-Friendliness

This section discusses Xinference’s usage and high-
lights its user-friendly features. We describe the fol-
lowing aspects: launching services, managing the
model serving lifecycle, interacting with its user in-
terfaces, integrating inference engines, multi-tenant
serving, and use case study.

3.1 Launch Service

Xinference can be deployed on a local machine or
a cluster.

Local Server. On a local machine, users can
execute the following command to start the ser-
vice. Then, users can access the Web UI by visiting
http://127.0.0.1:9997/.� �
xinference-local --port 9997� �

Cluster. To start a Xinference cluster, users need
to execute the following commands:� �
on the supervisor server
xinference-supervisor -H '${sv_host}'

on the worker server
xinference-worker -e 'http ://${sv_host

}:9997 '� �
Users should first launch the supervisor, and start

workers on other servers. The supervisor is respon-
sible for coordination, whereas the worker manages
the available resources (i.e., CPUs or GPUs) and

executes the inference requests. The workers estab-
lish connections to the supervisor, thereby setting
up a Xinference cluster. In the local mode, both the
supervisor and worker are launched on the same
local computer.

3.2 Model Serving Lifecycle

(B) Register
Custom Models

(C) Launch
a Model

(D) List
Running Models

(G) Terminate a
Running Model Model

(E) Use
a Model

(A) Built-in
Models

(F) Monitor Models
and Cluster

Model Serving Lifecycle

Figure 1: Lifecycle of model serving.

Xinference manages the entire process of model
serving, as illustrated in Figure 1. Figure 2 is the
Web UI with each stage in the lifecycle denoted.
Xinference’s lifecycle of model serving is centered
around models, including managing models (using
built-in open-source models or registering custom
models), launching a model, listing running mod-
els, using a model, monitoring, and terminating
running models. Here, we highlight only a few
key stages that make Xinference a user-friendly
platform different from other toolkits.

Launch a Model. During this step, Xinference
helps users choose an inference engine and a quan-
tization method. Xinference automatically detects
available devices on the machine and provides cor-
responding options. For instance, on a Mac lap-
top, Xinference suggests engines such as PyTorch
and MLX. On a server equipped with NVIDIA
GPUs, it recommends options like vLLM, SGLang,
or llama.cpp. Xinference checks the chosen en-
gine and quantization settings, eliminating the need
for users to worry about installing quantization li-
braries or selecting the right quantization methods.
Moreover, Xinference supports LoRA (Hu et al.,
2022) fine-tuned models, which are commonly
used by enterprises to tackle domain-specific is-
sues.

Using a Model. Users can interact with a model
through the OpenAI-compatible RESTful API. Un-
like other tools or frameworks that support only a
subset of OpenAI APIs, Xinference fully supports
all model types and features. As shown in Table 2,
Xinference offers built-in support for various model
types and model families, including chat, generate,

293

(A) Built-in Models

(D) List Running Models

(C) Launch a Model

(E) Use a Model

(B) Register
Custom Models

(G) Terminate a Running Model

Launch Chat UI

(F) Monitor Models
and Cluster

Figure 2: Web UI of Xinference, with each stage of serving lifecycle denoted.

vision language, embedding, rerank, audio, and
image. Xinference releases new versions weekly,
supporting the latest models published within that
week. Besides various models, we also support
external tool function calling, which is crucial for
building agents. With these models and APIs, Xin-
ference can serve as a drop-in replacement for Ope-
nAI, while other framework users need to write
additional code to build a specific model service.

Table 2: Xinference supports a wide range of models.
The abbreviations for the ‘Type’ column are as follows.
C: Chat, G: Generate, VL: Vision Language, E: Embed-
ding, R: Rerank, A: Audio, and I: Image. The ‘Models’
column counts the number of model families; for exam-
ple, the Llama 3.1 is a model family with 8B, 70B, and
405B parameters.

Type Models Example Model

C 81 Llama 3.1 instruct (MetaAI, 2024)
G 33 Code Llama (Rozière et al., 2024)

VL 8 Qwen-VL (Bai et al., 2023)
E 29 BGE Embedding (Xiao et al., 2023)
R 7 BGE Reranker (Xiao et al., 2023)
A 16 Whisper (Radford et al., 2023)
I 8 Stable Diffusion (Rombach et al., 2022)

3.3 User Interface

We offer users easy-to-use interfaces to interact
with our system.

Web UI. Users can access the Web UI in their
browser, as illustrated in Figure 2. The entire life
cycle of the model serving can be completed on
the graphical user interfaces. This interface suits
beginners or non-AI/ML practitioners with limited

technical knowledge.

Command Line and RESTful Client. Users
can also interact with Xinference on the node where
the supervisor is located using command lines such
as xinference launch for launching a model,
and xinference terminate for shutting down
a model. Xinference also offers RESTful APIs that
enable users to perform the aforementioned model
management tasks using Python, Node.js, or curl
scripts. The command lines and RESTful client
target users with programming experience.

3.4 Inference Engines

Our platform currently supports five state-of-the-
art inference engines: PyTorch, vLLM, SGLang,
llama.cpp, and MLX. PyTorch is a widely used
framework for both training and inference, with
numerous models initially released based on the
Transformers library. However, it is not a dedicated
large model serving toolkit and may not be ideal
for high-concurrency scenarios. To enhance perfor-
mance, Xinference implements continuous batch-
ing (Yu et al., 2022), which is compatible with all
Transformers models. This feature enables models
without dedicated engine support to achieve sub-
stantial throughput enhancements. To help users
make informed choices on selecting the optimal in-
ference engine, we conduct benchmarks and show
results in Appendix A.3.

294

3.5 Multi-tenant Serving

To support users operating in a multi-user or multi-
tenant setting, we offer features such as user au-
thentication and isolation of computing resources.

User Authentication. Xinference currently pro-
vides user authentication, ensuring that access to
the Xinference service is limited to verified users,
thereby enhancing security.

Computing Resource Isolation. Xinference it-
self is incapable of isolating computing resources.
Users can deploy Xinference using the Kubernetes
Helm charts or Docker images we provide to en-
able effective resource isolation and avoid resource
contention with other software.

3.6 Use Case Study

Xinference has been integrated into many well-
known AI tools, such as LlamaIndex (Liu, 2022), a
retrieval framework, and Dify (Zhang, 2023), an AI
application development platform. As a specific ex-
ample of an AI application, LangChain-Chatchat2

is a popular question answering application on
GitHub. It enable users to build RAG or agent
applications based on local knowledge bases and
utilizes Xinference as its default inference service
toolkit.

4 System Implementation

In this section, we show how Xinference manages
models and supports scalable inference.

4.1 Architecture

Figure 3a illustrates the system architecture of
Xinference, which consists of three layers: API,
Core Service, and Actor. The API layer offers
users RESTful APIs based on FastAPI. The Core
Service layer implements several actor classes
based on Xoscar, with key actor classes including
SupervisorActor, WorkerActor, ModelActor,
etc. Xoscar is a lightweight Python actor frame-
work that we have developed, which abstracts low-
level concurrency, communication, and device man-
agement tasks.

4.2 Core Service on Actor

In our system, the SupervisorActor plays
a key role in management and coordination,
supervising multiple WorkerActors. Each
WorkerActor manages computing resources and

2https://github.com/chatchat-space/
Langchain-Chatchat

several ModelActors, which load and execute mod-
els within the ActorPool. The ActorPool is like a
resource pool that manages all CPU and GPU com-
puting devices.

Actor Call Workflow. Figure 3b illustrates the
workflow of a launch request from a user. Upon re-
ceiving the request, the RESTful API sends a mes-
sage instructing the SupervisorActor to execute
launch_builtin_model. The SupervisorActor
then communicates with the WorkerActor, which
checks for available computing resources across all
workers within the actor pool and allocates GPU de-
vices as needed. Subsequently, the ModelActor is
invoked to load model checkpoints utilizing a des-
ignated inference engine. Note that, in Figure 3b,
multiple replicas indicate that ModelActors are as-
signed to multiple GPU devices. After the model
is launched, it is assigned a unique model iden-
tifier (model_uid), which will be returned to the
user. In addition to the actor calls in Figure 3b, the
SupervisorActor records and monitors the newly
launched model and the GPU devices the model
occupies.

Actor Usage. In Appendix A.1, we describe
some usage guides of our actor framework, using
ModelActor as an example to demonstrate the im-
plementation of model inference tasks and how
actors communicate with each other. The corre-
sponding code can be found in Listing 1.

4.3 Scheduling and Concurrency

Continuous Batching. Continuous Batching (CB)
is a scheduling mechanism that can substantially
enhance throughput and GPU memory utilization
in high-concurrency scenarios. We’ve supported
this feature in Xinference by a) incorporating a
SchedulerActor, which dynamically groups re-
quests into batches; b) developing the batch infer-
ence code using PyTorch, while ensuring compati-
bility with all models in the PyTorch Transformers
library.

Concurrency and Async IO. Our inference
framework is designed in an asynchronous, non-
blocking manner, enabling it to handle concurrent
requests. We have extensively used the philosophy
of coroutine (Pythons’s asyncio (Python, 2024))
in our internal implementation. We treat the model
inference task as an asynchronous task: we push
the task into the actor pool when the request arrives
and pull the task when the computing resource is
available.

295

https://github.com/chatchat-space/Langchain-Chatchat
https://github.com/chatchat-space/Langchain-Chatchat

actor framework

Supervisor
Actor

Worker
Actor

Scheduler
Actor

Model
Actor

API

Core Service

Actor

Command
Line

Web
UI

Python
Client

Continuous
Batching

Scheduling

Concurrency
and

Async IO

Core Services
on Actor

Model
Management

(a) System Architecture.

RESTful
API

Supervisor
Actor

Worker
Actor

1. xinference launch

2. launch_builtin_model

3. check_workers
4. allocate_device

Model
Actor

5. load_model

6. return model_uid

ActorPool
ModelActor

Qwen VL

ModelActor

Llama 3.1

ModelActor

Llama 3.1

replica 1

replica 2
LLaVA 1.6

ModelActor

GPU

(b) Actor Call Workflow when launch a Model.

Figure 3: Xinference is built on our actor framework.

4.4 Model Management

For the inference engine management part, we have
written modular code that includes loading models,
formatting prompts, and stopping when encounter-
ing EOS tokens. Different models can reuse these
codes. We utilize JSON files to manage the meta-
data of emerging open-source models. Adding a
new model does not necessitate writing new code;
it merely requires appending new metadata to the
existing JSON file. In Appendix A.2, we present a
snippet of a JSON file that registers a Llama model.

5 Experiments and Evaluation

5.1 Experimental Setup

We compare Xinference’s performance and scal-
ability with BentoML and Ray Serve, two simi-
lar frameworks that aim for engine-agnostic serv-
ing. We also evaluate the improvements of our
scheduling optimization in high-concurrency sce-
narios. We use Llama 3 8B and 70B models and
execute them on three platforms: an on-premises
NVIDIA A800 GPU cluster, an Alibaba Cloud in-
stance with NVIDIA A10 GPUs, and a MacBook
laptop with Apple M3 chip. We measure latency
and throughput, two metrics widely recognized in
the industry. Latency is the total average response
time, denoting user waiting time. Throughput as-
sesses the number of tokens generated per second
by the inference service, and is expressed in tokens
per second (token/s).

5.2 Performance: Latency and Throughput

We evaluate the latency and throughput of Xinfer-
ence, BentoML, and Ray Serve, along with the bare
vLLM engine without any wrapper. We conduct
experiments on a NVIDIA A800 GPU cluster.

As shown in Figure 4a, Xinference exhibits
lower latency with the 70B model. Subsequently,
we scale the number of replicas of the 8B model
from 1 to 16, conducting tests under two different
scenarios. The first is a low concurrency case where

we simulate 10 concurrent requests at a time, and
the results are depicted in Figure 4b. The second
is a high concurrency one where we generate 50
concurrent requests, and the results are presented
in Figure 4c. Both Xinference and Ray Serve can
scale inference workloads nearly linearly with mul-
tiple replicas. While BentoML scales poorly with
8 replicas and cannot directly scale to 16 without
third-party tools. In the low concurrency scenario,
Xinference demonstrates superior throughput with
4, 8, and 16 replicas. In the high concurrency sce-
nario, Xinference’s throughput is on par with Ray
Serve. In both scenarios, with a single replica, the
performance loss of Xinference compared to the
backend inference engine is within 3.64%, while
BentoML is 5.66%.

In summary, Xinference can efficiently manage
a single model as well as scale to multiple replicas,
ensuring high throughput and low latency.

5.3 Scheduling Optimization Analysis

We assess the performance gains of our continuous
batching scheduling using the PyTorch backend, as
depicted in Figure 4d. In this experiment, we test
three concurrency scenarios. The horizontal axis
represents the number of concurrent requests that
can be handled. The far left is the PyTorch Trans-
former backend, which lacks continuous batching.
It only supports one concurrent request. With con-
tinuous batching, Xinference can support higher
concurrency levels. When there are 100 concur-
rent requests, the throughput of Xinference with
continuous batching is 2.7× that of PyTorch Trans-
formers without it.

In conclusion, Xinference’s continuous batching
scheduling effectively enhances throughput, and it
can benefit a broader range of models that are only
available in the Transformers library.

5.4 Inference Engines Analysis

Xinference can support various inference engines.
We test the performance and usability of all Xinfer-

296

8B 70B
Model Size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
(s

)
Latency

Xinference
Ray Serve
BentoML
vLLM

(a) Latency.

1 4 8 16
Number of Replicas

480

500

520

540

560

580

600

620

640

Ou
tp

ut
 T

hr
ou

gh
pu

t (
to

ke
n/

s)

Throughput
 Concurrent Requests: 10

Xinference
Ray Serve
BentoML
vLLM

(b) Throughput Case 1.

1 4 8 16
Number of Replicas

1200

1400

1600

1800

2000

2200

2400

2600

2800

Ou
tp

ut
 T

hr
ou

gh
pu

t (
to

ke
n/

s)

Throughput
 Concurrent Requests: 50

Xinference
Ray Serve
BentoML
vLLM

(c) Throughput Case 2.

1 10 50 100
Concurrent Requests

0

20

40

60

80

100

Ou
tp

ut
 T

hr
ou

gh
pu

t (
to

ke
ns

/s
)

Continuous Batching
w/o CB
w/ CB

(d) Continuous Batching.

Figure 4: Xinference’s performance comparing with other toolkits.

ence inference engines across three environments.
Detailed performance data and discussion are pre-
sented in Appendix A.3. With this information,
users can make informed choices about the right
inference engine.

6 Conclusion

In conclusion, Xinference is a user-friendly tool de-
signed for large model serving. This tool eliminates
the need for users to write additional code or con-
figurations, allowing users to focus on building AI
applications. It can manage the entire lifecycle of
large model serving. Xinference can scale serving
workloads onto a cluster and achieve high through-
put and low latency. At its foundation, Xinference
employs the actor framework that we developed to
handle the management of inference engines and
hardware.

Acknowledgments

We thank all contributors who have committed
code to the Xinference project. This work was
partly supported by the Fundamental Research
Funds for the Central Universities and the Research
Funds of Renmin University of China under Grant
No.24XNKJ22, and partly supported by the Na-
tional Science Foundation of China under Grant
No.62272466. The computing resources were from
the Public Computing Cloud of Renmin University
of China and Alibaba Cloud.

Ethics Statement

The Xinference system presented in this paper aims
to make large model serving as easy as possible,
thereby helping people better access AI models.
It’s worth noting that Xinference does not supply
the model itself, hence it cannot be responsible for

the content generated by the model. If our system is
used in certain circumstances considered sensitive
or critical, it should be used with caution, and the
generated content may be investigated by domain
experts.

References
Jason Ansel, Edward Yang, Horace He, Natalia

Gimelshein, Animesh Jain, Michael Voznesensky,
Bin Bao, Peter Bell, David Berard, Evgeni Burovski,
Geeta Chauhan, Anjali Chourdia, Will Constable,
Alban Desmaison, Zachary DeVito, Elias Ellison,
Will Feng, Jiong Gong, Michael Gschwind, Brian
Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Lau-
rent Kirsch, Michael Lazos, Mario Lezcano, Yanbo
Liang, Jason Liang, Yinghai Lu, CK Luk, Bert Ma-
her, Yunjie Pan, Christian Puhrsch, Matthias Reso,
Mark Saroufim, Marcos Yukio Siraichi, Helen Suk,
Michael Suo, Phil Tillet, Eikan Wang, Xiaodong
Wang, William Wen, Shunting Zhang, Xu Zhao,
Keren Zhou, Richard Zou, Ajit Mathews, Gregory
Chanan, Peng Wu, and Soumith Chintala. 2024. Py-
torch 2: Faster machine learning through dynamic
python bytecode transformation and graph compi-
lation. In 29th ACM International Conference on
Architectural Support for Programming Languages
and Operating Systems, Volume 2, La Jolla, CA, USA.
ACM.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023. Qwen-VL: A Versatile
Vision-Language Model for Understanding, Local-
ization, Text Reading, and Beyond.

Georgi Gerganov. 2023. llama.cpp. https://github.
com/ggerganov/llama.cpp.

Google. 2024. Gemma: Open models based on gemini
research and technology. Technical report, Google
DeepMind.

Carl Hewitt, Peter Boehler Bishop, and Richard Steiger.
1973. A universal modular ACTOR formalism for

297

https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3620665.3640366
http://arxiv.org/abs/2308.12966
http://arxiv.org/abs/2308.12966
http://arxiv.org/abs/2308.12966
https://github.com/ggerganov/llama.cpp
https://github.com/ggerganov/llama.cpp
https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf
https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf
http://ijcai.org/Proceedings/73/Papers/027B.pdf

artificial intelligence. In Proceedings of the 3rd Inter-
national Joint Conference on Artificial Intelligence,
pages 235–245. William Kaufmann.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense Passage Retrieval for
Open-Domain Question Answering. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 6769–
6781, Online. Association for Computational Lin-
guistics.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
Memory Management for Large Language Model
Serving with PagedAttention. In Proceedings of the
29th Symposium on Operating Systems Principles,
pages 611–626, Koblenz Germany. ACM.

Jerry Liu. 2022. LlamaIndex. https://github.com/
run-llama/llama_index.

Weizheng Lu, Kaisheng He, Xuye Qin, Chengjie Li,
Zhong Wang, Tao Yuan, Xia Liao, Feng Zhang,
Yueguo Chen, and Xiaoyong Du. 2024. Xorbits:
Automating Operator Tiling for Distributed Data Sci-
ence. In 2024 IEEE 40th International Conference
on Data Engineering (ICDE), pages 5211–5223.

MetaAI. 2024. The llama 3 herd of mod-
els. https://ai.meta.com/research/
publications/the-llama-3-herd-of-models/.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao
Cheng, Hongyi Jin, Tianqi Chen, and Zhihao Jia.
2023. Towards Efficient Generative Large Language
Model Serving: A Survey from Algorithms to Sys-
tems.

Philipp Moritz, Robert Nishihara, Stephanie Wang,
Alexey Tumanov, Richard Liaw, Eric Liang, Melih
Elibol, Zongheng Yang, William Paul, Michael I.
Jordan, and Ion Stoica. 2018. Ray: A distributed
framework for emerging AI applications. In Proceed-
ings of the 13th USENIX Conference on Operating
Systems Design and Implementation, OSDI’18, pages
561–577, USA. USENIX Association.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Pro-
cessing Systems, volume 32. Curran Associates, Inc.

Python. 2024. asyncio — Asynchronous I/O. https:
//docs.python.org/3/library/asyncio.html.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine Mcleavey, and Ilya Sutskever. 2023.
Robust speech recognition via large-scale weak su-
pervision. In Proceedings of the 40th International
Conference on Machine Learning, volume 202, pages
28492–28518. PMLR.

Ray Team. 2024. Ray Serve: Scalable and
programmable serving. https://github.com/
ray-project/ray.

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. 2022. High-
resolution image synthesis with latent diffusion mod-
els. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
10684–10695.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron
Grattafiori, Wenhan Xiong, Alexandre Défossez,
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Mar-
tin, Nicolas Usunier, Thomas Scialom, and Gabriel
Synnaeve. 2024. Code Llama: Open Foundation
Models for Code.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei,
and Jirong Wen. 2024. A survey on large language
model based autonomous agents. Frontiers of Com-
puter Science, 18(6):186345.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas
Muennighoff. 2023. C-Pack: Packaged Resources
To Advance General Chinese Embedding.

Xorbits. 2024. Xoscar: Python actor framework for
heterogeneous computing. https://github.com/
xorbitsai/xoscar.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai,

298

http://ijcai.org/Proceedings/73/Papers/027B.pdf
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.5281/zenodo.1234
https://github.com/run-llama/llama_index
https://github.com/run-llama/llama_index
https://doi.org/10.1109/ICDE60146.2024.00392
https://doi.org/10.1109/ICDE60146.2024.00392
https://doi.org/10.1109/ICDE60146.2024.00392
https://ai.meta.com/research/publications/the-llama-3-herd-of-models/
https://ai.meta.com/research/publications/the-llama-3-herd-of-models/
http://arxiv.org/abs/2312.15234
http://arxiv.org/abs/2312.15234
http://arxiv.org/abs/2312.15234
https://www.usenix.org/system/files/osdi18-moritz.pdf
https://www.usenix.org/system/files/osdi18-moritz.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://proceedings.mlr.press/v202/radford23a.html
https://proceedings.mlr.press/v202/radford23a.html
https://github.com/ray-project/ray
https://github.com/ray-project/ray
https://openaccess.thecvf.com/content/CVPR2022/papers/Rombach_High-Resolution_Image_Synthesis_With_Latent_Diffusion_Models_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Rombach_High-Resolution_Image_Synthesis_With_Latent_Diffusion_Models_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Rombach_High-Resolution_Image_Synthesis_With_Latent_Diffusion_Models_CVPR_2022_paper.pdf
https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.1007/s11704-024-40231-1
https://doi.org/10.1007/s11704-024-40231-1
https://aclanthology.org/2020.emnlp-demos.6/
https://aclanthology.org/2020.emnlp-demos.6/
http://arxiv.org/abs/2309.07597
http://arxiv.org/abs/2309.07597
https://github.com/xorbitsai/xoscar
https://github.com/xorbitsai/xoscar

Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Ke-
qin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni,
Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize
Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan,
Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge,
Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren,
Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing
Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan,
Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang,
Zhifang Guo, and Zhihao Fan. 2024a. Qwen2 Tech-
nical Report.

Chaoyu Yang, Sean Sheng, Aaron Pham, Shenyang
Zhao, Sauyon Lee, Bo Jiang, Fog Dong, Xipeng
Guan, and Frost Ming. 2024b. BentoML: The frame-
work for building reliable, scalable and cost-efficient
ai application. https://github.com/bentoml/
bentoml.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo-
jeong Kim, and Byung-Gon Chun. 2022. Orca: A
distributed serving system for Transformer-Based
generative models. In 16th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 22), pages 521–538, Carlsbad, CA. USENIX
Association.

Luyu Zhang. 2023. Dify. https://github.com/
langgenius/dify.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue
Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao, Christos
Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark
Barrett, and Ying Sheng. 2024. SGLang: Efficient
Execution of Structured Language Model Programs.

A Appendix

A.1 Xoscar Actor Framework

The actor programming model is a paradigm for
addressing distributed and concurrency (Hewitt
et al., 1973). Each actor is a basic computational
unit with certain computing resources and can ex-
ecute actions or behaviors based on given inputs.
Ray (Moritz et al., 2018) is a widely used actor pro-
gramming framework, while our actor framework
is more lightweight. Here, we use the ModelActor
in Listing 1 as an example to illustrate how we
build Xinference with the actor framework.

Listing 1: Code snippet of ModelActor.
1 import xoscar as xo
2

3 class ModelActor(xo.Actor):
4 def __init__(self, *args, **kwargs):
5 ...
6 async def load(self):
7 # load checkpoints of a model
8 ...
9 async def generate(self, prompt):

10 # generate content using a model
11 ...

12 async def handle_batch_request(self,
prompt):

13 # call the SchedulerActor to handle
continuous batching requests

14 ...
15 async def __post_create__(self):
16 # called after the actor instance is

created
17 ...
18 async def __pre_destroy__(self):
19 # called before the actor instance is

destroyed
20 ...

Actor Class. Each actor class is a standard
Python class that inherits from xoscar.Actor.
Each actor instance requests resources such as CPU
or GPU from the actor pool. There are two spe-
cial methods worth noting. The __post_create__
is invoked when the actor is created, allowing for
necessary initialization. The __pre_destroy__ is
called when the actor is destroyed, allowing for
cleanup or finalization.

Define Actor Actions. Each actor needs to de-
fine certain actions or behaviors to accomplish
specific tasks. For instance, the ModelActor
class loads the model and performs model infer-
ence. The load method loads model checkpoints,
the generate method generates content given a
prompt, and the handle_batch_request handles
continuous batching requests as it would call the
SchedulerActor.

Reference Actors and Invoke Methods. When
an actor is created, it yields a reference so that
other actors can reference it. The actor ref-
erence can also be referenced with the IP ad-
dress. Suppose the ModelActor is created and
the reference variable is model_ref, which can
be managed by WorkerActor. The load method
of the ModelActor can be invoked by calling
model_ref.load().

A.2 Register Model

Listing 2 shows an example of how to register the
Llama 3.1 instruct model.

Listing 2: Register Llama 3.1 instruct model in JSON.
1 {
2 "model_name": "llama-3.1-instruct",
3 "model_ability": ["chat"],
4 "model_specs": [
5 {
6 "model_format": "ggufv2",
7 "model_size_in_billions": 8,
8 "quantization": ["q8_0", ...],
9 "model_id": "lmstudio-community/Meta-

Llama-3.1-8B-Instruct-GGUF",
10 },
11 ...

299

http://arxiv.org/abs/2407.10671
http://arxiv.org/abs/2407.10671
https://bentoml.com/
https://bentoml.com/
https://bentoml.com/
https://github.com/bentoml/bentoml
https://github.com/bentoml/bentoml
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://github.com/langgenius/dify
https://github.com/langgenius/dify
http://arxiv.org/abs/2312.07104
http://arxiv.org/abs/2312.07104

12],
13 "prompt_style": {
14 "style_name": "LLAMA3",
15 "system_prompt": "You␣are␣a␣helpful␣

assistant.",
16 "roles": ["user", "assistant"],
17 "stop_token_ids": [128001, 128009],
18 "stop": ["<|end_of_text|>", "<|eot_id|>"]
19 }
20 }

The model_specs define the information of the
model, as one model family usually comes with
various sizes, quantization methods, and file for-
mats. The model_id defines the repository of the
model hub from which Xinference downloads the
checkpoint files. The prompt_style specifies how
to format prompts for this particular model. The
current JSON format also supports registering cus-
tom models, as users give the aforementioned fields
to Xinference.

A.3 Choose the Right Inference Engine
Table 4 summarizes the different inference engines
supported by Xinference, and Table 3 is our bench-
mark result of these inference engines.

Table 3: Benchmark results of different inference en-
gines when serving Llama 3 8B model. L is for latency
and T is for throughput. For throughput tests, we mimic
two cases: the first (C1) is 10 concurrent requests, which
is a low concurrency scenario, and the second (C2) is
50 requests, which is a high concurrency scenario.

(a) NVIDIA A800 80GB on-premises cluster.

Engine L (s) T@C1 (token/s) T@C2 (token/s)

PyTorch 3.56 36.69 37.10

vLLM 1.85 487.94 1276.29

SGLang 1.51 627.83 2087.81

llama.cpp 2.07 77.68 77.99

(b) NVIDIA A10 24GB cloud instance.

Engine L (s) T@C1 (token/s) T@C2 (token/s)

PyTorch 9.16 14.56 14.72

vLLM 5.53 190.74 466.37

SGLang 5.25 205.94 599.18

llama.cpp 6.06 24.23 24.56

(c) Apple M3 36GB laptop.

Engine L (s) T@C1 (token/s)

PyTorch 19.68 6.41

MLX 15.13 8.12

llama.cpp 9.00 13.81

In terms of model support, PyTorch has the most,
but as shown in Table 3, it exhibits the poorest in-
ference performance. Regarding the model format,

llama.cpp has its own unique format, and PyTorch-
compatible checkpoints need to be converted into
gguf or ggml. The two model formats are often
quantized to lower than 8-bit. llama.cpp users may
face additional burdens when getting the model,
either by downloading from a model hub or by con-
verting from PyTorch checkpoints. According to
Table 3, llama.cpp is not adept at handling high
concurrent requests and is more commonly used in
scenarios with limited memory, such as personal
computers or edge devices. vLLM and SGLang of-
fer the strongest performance, with SGLang show-
ing the best latency and throughput. The vLLM has
a more active open-source community and supports
a greater variety of models. The inference engine
with precompiled packages facilitates easier instal-
lation. Otherwise, building from source often leads
to compilation issues, resulting in poor usability.

Table 4: The models, model formats, hardware, and
installation of different inference engines.

Engine Models Model
Format Hardware Precompiled

Package

PyTorch 180+ PyTorch
CPU !

CUDA !

ROCm !

vLLM 60+ PyTorch
CPU !

CUDA !

ROCm

SGLang 20+ PyTorch CUDA !

llama.cpp 50+ gguf
ggml

CPU !

CUDA !

ROCm

Metal

MLX 20+ mlx Metal !

300

