@inproceedings{devasier-etal-2024-claimlens,
title = "{C}laim{L}ens: Automated, Explainable Fact-Checking on Voting Claims Using Frame-Semantics",
author = "Devasier, Jacob and
Mediratta, Rishabh and
Le, Phuong Anh and
Huang, David and
Li, Chengkai",
editor = "Hernandez Farias, Delia Irazu and
Hope, Tom and
Li, Manling",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-demo.32",
doi = "10.18653/v1/2024.emnlp-demo.32",
pages = "311--319",
abstract = "We present ClaimLens, an automated fact-checking system focused on voting-related factual claims. Existing fact-checking solutions often lack transparency, making it difficult for users to trust and understand the reasoning behind the outcomes. In this work, we address the critical need for transparent and explainable automated fact-checking solutions. We propose a novel approach that leverages frame-semantic parsing to provide structured and interpretable fact verification. By focusing on voting-related claims, we can utilize publicly available voting records from official United States congressional sources and the established Vote semantic frame to extract relevant information from claims. Furthermore, we propose novel data augmentation techniques for frame-semantic parsing, a task known to lack robust annotated data, which leads to a +9.5{\%} macro F1 score on frame element identification over our baseline.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="devasier-etal-2024-claimlens">
<titleInfo>
<title>ClaimLens: Automated, Explainable Fact-Checking on Voting Claims Using Frame-Semantics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jacob</namePart>
<namePart type="family">Devasier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rishabh</namePart>
<namePart type="family">Mediratta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phuong</namePart>
<namePart type="given">Anh</namePart>
<namePart type="family">Le</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengkai</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Delia</namePart>
<namePart type="given">Irazu</namePart>
<namePart type="family">Hernandez Farias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Hope</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manling</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present ClaimLens, an automated fact-checking system focused on voting-related factual claims. Existing fact-checking solutions often lack transparency, making it difficult for users to trust and understand the reasoning behind the outcomes. In this work, we address the critical need for transparent and explainable automated fact-checking solutions. We propose a novel approach that leverages frame-semantic parsing to provide structured and interpretable fact verification. By focusing on voting-related claims, we can utilize publicly available voting records from official United States congressional sources and the established Vote semantic frame to extract relevant information from claims. Furthermore, we propose novel data augmentation techniques for frame-semantic parsing, a task known to lack robust annotated data, which leads to a +9.5% macro F1 score on frame element identification over our baseline.</abstract>
<identifier type="citekey">devasier-etal-2024-claimlens</identifier>
<identifier type="doi">10.18653/v1/2024.emnlp-demo.32</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-demo.32</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>311</start>
<end>319</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ClaimLens: Automated, Explainable Fact-Checking on Voting Claims Using Frame-Semantics
%A Devasier, Jacob
%A Mediratta, Rishabh
%A Le, Phuong Anh
%A Huang, David
%A Li, Chengkai
%Y Hernandez Farias, Delia Irazu
%Y Hope, Tom
%Y Li, Manling
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F devasier-etal-2024-claimlens
%X We present ClaimLens, an automated fact-checking system focused on voting-related factual claims. Existing fact-checking solutions often lack transparency, making it difficult for users to trust and understand the reasoning behind the outcomes. In this work, we address the critical need for transparent and explainable automated fact-checking solutions. We propose a novel approach that leverages frame-semantic parsing to provide structured and interpretable fact verification. By focusing on voting-related claims, we can utilize publicly available voting records from official United States congressional sources and the established Vote semantic frame to extract relevant information from claims. Furthermore, we propose novel data augmentation techniques for frame-semantic parsing, a task known to lack robust annotated data, which leads to a +9.5% macro F1 score on frame element identification over our baseline.
%R 10.18653/v1/2024.emnlp-demo.32
%U https://aclanthology.org/2024.emnlp-demo.32
%U https://doi.org/10.18653/v1/2024.emnlp-demo.32
%P 311-319
Markdown (Informal)
[ClaimLens: Automated, Explainable Fact-Checking on Voting Claims Using Frame-Semantics](https://aclanthology.org/2024.emnlp-demo.32) (Devasier et al., EMNLP 2024)
ACL