
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
System Demonstrations, pages 328–335

November 12-16, 2024 ©2024 Association for Computational Linguistics

PyMarian: Fast Neural Machine Translation and Evaluation in Python

Thamme Gowda1 Roman Grundkiewicz1 Elijah Rippeth2

Matt Post1 Marcin Junczys-Dowmunt1

1 Microsoft Translator
{thammegowda,rogrundk,mattpost,marcinjd}@microsoft.com

2 University of Maryland
erip@cs.umd.edu

Abstract
The deep learning language of choice these
days is Python; measured by factors such as
available libraries and technical support, it is
hard to beat. At the same time, software writ-
ten in lower-level programming languages like
C++ retain advantages in speed. We describe a
Python interface to Marian NMT, a C++-based
training and inference toolkit for sequence-to-
sequence models, focusing on machine transla-
tion. This interface enables models trained with
Marian to be connected to the rich, wide range
of tools available in Python. A highlight of the
interface is the ability to compute state-of-the-
art MT evaluation metrics, such as COMET
and BLEURT, from Python but using Marian’s
inference engine, with a speedup factor of up
to 7.8× the existing implementations. We also
briefly spotlight a number of other integrations,
including Jupyter notebooks, connection with
prebuilt models, and a web app interface pro-
vided with the package. PyMarian is available
in PyPI via pip install pymarian.

1 Introduction

Marian NMT1 (Junczys-Dowmunt et al., 2018a)
was one of the earliest training and inference toolk-
its for sequence-to-sequence-based machine trans-
lation. Originally written under the name amun
and providing fast inference for Groundhog-trained
models,2 it was quickly built up to also provide
speedy, reliable multi-GPU and multi-node training
of Transformer models, along with many other fea-
tures. It has been widely used in commercial pro-
duction settings (Junczys-Dowmunt et al., 2018b),
for academic and industrial research, for the distri-
bution of pre-trained models (Tiedemann and Thot-
tingal, 2020a), and as the basis for extremely fast
in-browser translation (Bogoychev et al., 2021).

Many of these features were enabled by its effi-
cient C++-backend, but it must be admitted that this

1https://marian-nmt.github.io
2https://github.com/pascanur/GroundHog

dependency is also a barrier to many researchers,
who increasingly work with Python. This paper
describes a new set of Python bindings that have
been added to Marian. Written using Pybind11,
these bindings are available as a pip-installable
Python package via the Python Package Index3 or
can be installed from Marian’s source. We describe
several features and applications facilitated by Py-
Marian:

• Inference and training (§ 2). It is easy to load
Marian-trained models and send data through
them for translation. This also makes it easy to
translate with publicly-available models, and
to plug them into other Python codebases.

• Fast evaluation (§ 3). Model-based metrics
such as COMET and BLEURT have demon-
strated their superiority, but their provided
toolsets make them slow to compute. We
provide pymarian-eval, which makes use of
converted models, packaged in a Python CLI
interface.

• Example applications (§ 4). We demonstrate
the versatility of pymarian with a number of
examples including a web-based demonstra-
tion framework.

A particular focus of the paper is in benchmarking
popular COMET models reimplemented in Marian
and available through PyMarian (§ 3.3), which run
significantly faster than in their native implementa-
tions, providing up to 7.8× speedup in a multi-GPU
setting.

2 PyMarian API

PyMarian offers pymarian Python package con-
taining convenient high level APIs. We use Py-
bind114 to bind the Python calls to Marian C++

3https://pypi.org/project/pymarian
4https://github.com/pybind/pybind11

328

https://marian-nmt.github.io
https://github.com/pascanur/GroundHog
https://pypi.org/project/pymarian
https://github.com/pybind/pybind11


APIs. PyMarian uses the same configuration sys-
tem as Marian, however makes it Pythonic by of-
fering keyword-argument (i.e., **kwargs).

At the package’s top level, we have three classes:
Translator, Trainer and Evaluator. First two
are described in this section, while the evaluator is
presented in details later in Section 3.

2.1 Translator
The Python API for decoding Marian models with
beam search is provided by Translator class.

from pymarian import Translator
mt = Translator(
models="model.ende.npz",
vocabs=["vocab.spm", "vocab.spm"]

)
hyp = mt.translate("Hello world!")
print(hyp) # "Hallo Welt!"

It offers the same hyperparameters and functionali-
ties as the translation service in C++, such as:

• Translation speed optimization with custom
beam search sizes (beam_size), batch or-
ganization (mini_batch, mini_batch_sort),
and fp16;

• n-best lists translation (n_best=True);

• Word alignments (e.g., alignment="hard")
and word-level scores (word_scores=True)
when more detailed subword-level informa-
tion is needed (no_spm_encode=True);

• Noised sampling from full distribution and
top-K sampling with custom temperatures
(e.g., output_sampling="topk 100 0.1");

• Force-decoding of given target language pre-
fixes (force_decode=True).

2.2 Trainer
Python API for training models supported in Mar-
ian toolkit is provided by the Trainer class.

from pymarian import Trainer
args = {
"type": "transformer",
"model": "model.npz",
"train_sets": ["train.en", "train.de"],
"vocabs": ["vocab.spm", "vocab.spm"],

}
trainer = Trainer(**args)
trainer.train()

Complete examples are available in Marian’s
source code in src/python/tests/regression.

3 Fast MT Evaluation in PyMarian

The Marian NMT had been a toolkit for translation
and language modeling with the emphasis on speed.
With the recent revision of Marian toolkit, we have
implemented evaluation metrics, for both training
and fast inferencing, while retaining its emphasis
on speed. In addition, we have also enabled eval-
uator APIs in Python module, via a class named
Evaluator.

3.1 Evaluator

Evaluator supports scoring MT hypothesis with
either source, or reference, or both. Generally, eval-
uators are classified into reference-free (quality es-
timation) and reference-based types. We provide
implementations of both types.

from pathlib import Path
from pymarian import Evaluator

evaluator = Evaluator.new(
model_file="marian.model.bin",
vocab_file="vocab.spm",
like="comet-qe", quiet=True,
fp16=False, cpu_threads=4)

srcs = ['Hello', 'Howdy']
mts = ['Howdy', 'Hello']
lines = (f'{s}\t{t}'

for s,t in zip(srcs, mts))
scores = evaluator.evaluate(lines)
for score in scores:

print(f'{score:.4f}')

3.2 Metrics

Along with providing implementation for the eval-
uator framework, we also provide checkpoints for
some of the popular MT metrics, such as COMETs
and BLEURT. Since the checkpoint file format of
the existing metrics are incompatible with Marian
toolkit, we have converted them to the required for-
mat and released on Huggingface.5 Table 1 shows
the available models and their IDs on HuggingFace
hub.

Using the Evaluator API, we have devel-
oped a convenient command-line utility named
pymarian-eval, which internally takes care of

5https://huggingface.co/models

329

https://huggingface.co/models


Metric Fields Reference HuggingFace ID

bleurt-20 T, R Sellam et al. (2020) marian-nmt/bleurt-20
wmt20-comet-da S, T, R Rei et al. (2020b) unbabel/wmt20-comet-da-marian
wmt20-comet-qe-da S, T " unbabel/wmt20-comet-qe-da-marian
wmt20-comet-qe-da-v2 S, T " unbabel/wmt20-comet-qe-da-v2-marian
wmt21-comet-da S, T, R Rei et al. (2021) unbabel/wmt21-comet-da-marian
wmt21-comet-qe-da S, T " unbabel/wmt21-comet-qe-da-marian
wmt21-comet-qe-mqm S, T " unbabel/wmt21-comet-qe-mqm-marian
wmt22-comet-da S, T, R Rei et al. (2022a) unbabel/wmt22-comet-da-marian
wmt22-cometkiwi-da S, T Rei et al. (2022b) unbabel/wmt22-cometkiwi-da-marian
wmt23-cometkiwi-da-xl S, T Rei et al. (2023) unbabel/wmt23-cometkiwi-da-xl-marian
wmt23-cometkiwi-da-xxl S, T " unbabel/wmt23-cometkiwi-da-xxl-marian
cometoid22-wmt21 S, T Gowda et al. (2023) marian-nmt/cometoid22-wmt21
cometoid22-wmt22 S, T " marian-nmt/cometoid22-wmt22
cometoid22-wmt23 S, T " marian-nmt/cometoid22-wmt23
chrfoid-wmt23 S, T " marian-nmt/chrfoid-wmt23

Table 1: List of metrics supported in pymarian, their required fields, reference, and HuggingFace model IDs. Fields
S, T, and R are source, translation (also variously called the candidate or hypothesis), and reference, respectively.

downloading models from HuggingFace model hub
and caching them locally.

We provide -a|—-average option for obtaining
the system level score only (-a only), segment
level scores only (-a skip), or both where the
average is appended (-a append). For example,

pymarian-eval -m wmt22-cometkiwi-da \
-s src.txt -t mt.txt -a only

The current toolkits that originally implement
the popular metrics consume higher memory and
time for loading the checkpoints than necessary.
This is increasingly problematic as metric check-
point files are getting bigger over the years. The
format used by Marian is optimized for faster
loading with minimal memory overhead. We
present the model loading time and memory
utilization in Table 2. For instance, consider
wmt23-cometkiwi-da-xl, whose checkpoint file
is 13.9GB.6 The original tool (comet-score) takes
27GB RAM and 530 seconds to warmup on 8
GPUs, where as pymarian-eval achieves the same
in half the RAM and only 12 seconds.

3.3 Benchmarks

A concern with new implementations is the risk
of producing incompatible results. We therefore
compare our model conversion and implementa-
tions carefully so as to ensure that pymarian-eval
produces the same results.

Our benchmark setup is as follows:

6wmt23-cometkiwi-da-xxl is 42.9GB and we were un-
able to load it on the GPUs used for benchmarks in this paper
(32GB V100).

• Dataset: WMT23 General Translation sub-
missions (Kocmi et al., 2023); we combine all
systems for all languages pairs, which results
in a total of 364,200 examples.

• COMET’s original implementation:
unbabel-comet v2.2.2 (Rei et al., 2020a);
transititive dependencies: torch v2.4.0,
pytorch-lightning v2.3.3, transformers
v4.43.3

• BLEURT original implementation is installed
from source repository;7 transititive dependen-
cies: tensorflow v2.17.0

• Marian v1.12.31, compiled with GCC v11.

• Python v3.10.12, Ubuntu 22.04.3, on Intel(R)
Xeon(R) Platinum 8168 CPU @ 2.70GHz

• GPU: 8x Nvidia Tesla V100 (32GB); Driver
v525.105.17, CUDA v12.3

• Batch size is 128, except for wmt23-
cometkiwi-xl, the largest batch size that
worked are: 64 for eight GPUs and 32 for
one GPU.

In Table 3, we report the time taken by original
toolkits (Pytorch based comet-score and Tensor-
flow based bluert) and our implementation. For
ours, we report Marian (binary produced by C++),
and pymarian-eval (with float32 and float16 pre-
cisions). In addition, we also present the aver-
age of segment scores, and error, i.e., the abso-
lute difference between the scores produced by the

7https://github.com/google-research/bleurt/
tree/cebe7e6f

330

https://huggingface.co/marian-nmt/bleurt-20
https://huggingface.co/unbabel/wmt20-comet-da-marian
https://huggingface.co/unbabel/wmt20-comet-qe-da-marian
https://huggingface.co/unbabel/wmt20-comet-qe-da-v2-marian
https://huggingface.co/unbabel/wmt21-comet-da-marian
https://huggingface.co/unbabel/wmt21-comet-qe-da-marian
https://huggingface.co/unbabel/wmt21-comet-qe-mqm-marian
https://huggingface.co/unbabel/wmt22-comet-da-marian
https://huggingface.co/unbabel/wmt22-cometkiwi-da-marian
https://huggingface.co/unbabel/wmt23-cometkiwi-da-xl-marian
https://huggingface.co/unbabel/wmt23-cometkiwi-da-xxl-marian
https://huggingface.co/marian-nmt/cometoid22-wmt21
https://huggingface.co/marian-nmt/cometoid22-wmt22
https://huggingface.co/marian-nmt/cometoid22-wmt23
https://huggingface.co/marian-nmt/chrfoid-wmt23
https://github.com/google-research/bleurt/tree/cebe7e6f
https://github.com/google-research/bleurt/tree/cebe7e6f


Time (seconds) Memory (MB)
1 GPU 8 GPUs 1 GPU 8 GPUs

Model Orig Ours Speedup Orig Ours Speedup Orig Ours Orig Ours

bleurt-20 23.7 3.0 7.9x NA 8.4 NA 6,606 2,640 NA 3,455
wmt20-comet-da 37.0 4.6 8.0x 193.8 9.7 19.9x 5,387 2,782 5,388 3,598
wmt20-comet-qe-da 32.6 3.8 8.6x 197.3 8.9 22.1x 5,276 2,682 5,278 3,499
wmt22-comet-da 37.9 4.5 8.5x 193.5 9.7 20.0x 5,365 2,786 5,364 3,603
wmt22-cometkiwi-da 33.9 3.3 10.2x 199.1 8.8 22.7x 5,244 2,623 5,246 3,438
wmt23-cometkiwi-da-xl 108.5 7.5 14.4x 530.2 12.1 43.9x 27,554 13,815 27,554 14,631

Table 2: Model load time (seconds) and memory (megabytes) taken to initialize the models and score a single
example. Marian and pymarian use memory-mapped files, which enable faster loading than original implementation.
Numbers are the average of three runs.

Time (seconds) Speedup
Metric Original Marian PyM PyM FP16 Marian PyM PyM FP16

1 GPU

bleurt-20 2312±2.2 635±0.3 656±0.3 467±0.6 3.6x 3.5x 4.9x
wmt20-comet-da 3988±0.8 954±1.0 968±4.7 783±5.1 4.2x 4.1x 5.1x
wmt20-comet-qe-da 2529±0.4 608±3.7 623±3.6 501±0.3 4.2x 4.1x 5.0x
wmt22-comet-da 3772±1.3 858±4.6 884±4.5 676±0.8 4.4x 4.3x 5.6x
wmt22-cometkiwi-da 2357±2.0 419±0.4 437±1.7 327±1.0 5.6x 5.4x 7.2x
wmt23-cometkiwi-da-xl 17252±0.7 3405±4.7 3480±3.9 1949±3.1 5.1x 5.0x 8.8x

8 GPUs

bleurt-20 NA 85±0.1 99±0.1 76±0.4 NA NA NA
wmt20-comet-da 926±1.0 125±0.1 146±0.7 124±1.0 7.4x 6.3x 7.5x
wmt20-comet-qe-da 622±0.1 82±0.1 95±0.2 81±0.2 7.6x 6.5x 7.7x
wmt22-comet-da 896±0.8 114±0.1 135±0.3 111±0.7 7.8x 6.6x 8.1x
wmt22-cometkiwi-da 562±0.7 59±0.1 72±0.1 58±0.1 9.5x 7.8x 9.6x
wmt23-cometkiwi-da-xl 3288±1.8 662±2.6 862±13.3 258±0.7 5.0x 3.8x 12.7x

Table 3: Time taken (seconds) to score the benchmark datasets having 364,200 examples, and the speedup of our
implementation with respect to the original. Numbers are the average of three runs on one and eight GPUs. PyM is
short for PyMarian. The column with FP16 is half-precision, and the rest are full-precision (32-bit).

original and ours. The scores and derived errors
for our implementation remain consistent regard-
less of whether the C++ implementation is invoked
via the command line binary (marian evaluate) or
through the Python bindings wrapper (pymarian-
eval). Additionally, the scores are identical whether
the benchmarks are conducted on a single GPU
or parallelized across multiple GPUs. We avoid
repetition, and instead present only the values for
full-precision (FP32) and half-precision (FP16). As
shown in Table 4, ours yield the same scores as the
original, with minor discrepancies attributable to
floating-point calculations.

In addition to providing significantly faster pro-
cessing times, pymarian-eval provides a flex-
ible CLI tool with a natural POSIX interface
(e.g., STDIN/STDOUT, use of TSV formats).
This allows it to integrate well with other tools,
such as SacreBLEU’s testset downloading capabili-

ties (Post, 2018).

4 Example applications

A Python API makes it simple to incorporate Mar-
ian models into the many Python-native settings
that researchers are accustomed to. In this section
we illustrate example use cases and applications of
PyMarian, demonstrating its versatility.

4.1 Jupyter notebook

PyMarian makes it easy to use Marian-trained
models in interactive sessions such as Jupyter
Notebook-like8 environments. We provide
an example notebook for translation, train-
ing, and evaluation via Google Colab at
https://colab.research.google.com/drive/
1Lg_W5K2nLtvaKfLuHjc-LAajenI_SGL3

8https://jupyter.org

331

https://colab.research.google.com/drive/1Lg_W5K2nLtvaKfLuHjc-LAajenI_SGL3
https://colab.research.google.com/drive/1Lg_W5K2nLtvaKfLuHjc-LAajenI_SGL3
https://jupyter.org


Score Error
Metric Original Marian FP32 Marian FP16 Marian FP32 Marian FP16

bleurt-20 0.7255 0.7252 0.7211 0.0003 0.0044
wmt20-comet-da 0.5721 0.5720 0.5716 0.0001 0.0005
wmt20-comet-qe-da 0.1933 0.1932 0.1924 0.0001 0.0009
wmt22-comet-da 0.8462 0.8461 0.8427 0.0000 0.0034
wmt22-cometkiwi-da 0.7984 0.7984 0.7981 0.0000 0.0003
wmt23-cometkiwi-da-xl 0.6840 0.6839 0.6862 0.0001 0.0023

Table 4: The average scores produced by the original implementation and ours. The columns named ‘Error’ are the
absolute difference between the average of scores from the original and our implementations.

4.2 OPUS-MT models
Over the years, Marian NMT has been widely
adopted by the community to train and release
open-sourced machine translation systems. One
of the largest projects developing such resources
is OPUS-MT, which offers over 1,000 pre-trained
models (Tiedemann and Thottingal, 2020b; Tiede-
mann et al., 2023). PyMarian provides a seam-
less interface to decode with these existing Marian-
trained models.

4.3 Web-based interface
PyMarian permits easy connection from Marian
models to Python’s visualization libraries. We in-
corporate a Flask-based web server that can display
a range of models side by side.9 It supports loading
of models from local disk (type “base”) or connect-
ing to Microsoft’s API (type “mtapi”).

translators:
en-de-research:
type: base
name: research
model: /path/to/marian.npz
vocab: /path/to/vocab.spm

en-de-prod:
type: mtapi
name: prod
subscription-key: {redacted}
source-language: en
target-language: de

Figure 1 provides an example of this interface. Due
to the flexibility of Python, extending the model to
support other types is simple.

5 Related Work

A wide range of Python toolkits exist for training
and inference for the “classical” (i.e., not LLM-
based) sequence-to-sequence approach to machine

9https://github.com/marian-nmt/
pymarian-webapp

translation. One of the most popular is Meta’s
fairseq (Ott et al., 2019), which supports a wide
range of training and inference features, includ-
ing multi-GPU and multi-node training. Amazon’s
Sockeye (Hieber et al., 2022) is another option;
while it has fewer features than fairseq, it is known
for its strong software engineering practices and
flexibility. Both of these toolkits are based on Py-
torch (Paszke et al., 2019), and support research
and production use cases. Sockeye has recently (as
of June 7, 2024) been end-of-lifed.10

A significant amount of research and develop-
ment activity takes place using HuggingFace’s pop-
ular transformers package (Wolf et al., 2020).
Work in this area tends to be much more research-
focused, however, which means that software-
engineering practices and speed are sacrificed in
favor of rapid development. HuggingFace also
provides a data store for a huge range of datasets
and models. VLLM is a recent project that pro-
vides fast, production-oriented inference for Hug-
gingFace models (Kwon et al., 2023). However,
at the time of writing, VLLM primarily focused
on decoder-only language models; it lacked sup-
port for MT evaluation metrics like BLEURT
and COMETs, and encoder-decoder NMT models.
Consequently, this difference has hindered direct
comparison with our work. There is support for
loading Marian models in HuggingFace transform-
ers, largely provided by Tiedemann and Thottingal
(2020a). However, not all Marian model features
are supported. pymarian provides Python-based
access to any Marian model, with C++ inference
speeds.

Although pymarian does not aim to enhance the
efficiency of Marian, it ensures that any impact
on processing speed remains minimal while invok-
ing highly efficient Marian C++ codebase from
Python (see Table 3). Comparison of C++ Mar-

10https://github.com/awslabs/sockeye/commit/
e42fbb30be9bca1f5073f092b687966636370092

332

https://github.com/marian-nmt/pymarian-webapp
https://github.com/marian-nmt/pymarian-webapp
https://github.com/awslabs/sockeye/commit/e42fbb30be9bca1f5073f092b687966636370092
https://github.com/awslabs/sockeye/commit/e42fbb30be9bca1f5073f092b687966636370092


Figure 1: PyMarian web demo with two outputs, the diff between them, and a set of chosen quality-estimation
metrics.

ian Translator with other NMT toolkits are in
prior works that evaluate efficiency across frame-
works, for both training (Wang et al., 2018) and
inference.11 Additionally, shared tasks that em-
phasize MT efficiency (Heafield et al., 2020, 2021,
2022) also offer valuable insights for such compar-
isons.

6 Summary

We have introduced pymarian, a set of Python
bindings that export Marian’s fast training and in-
ference capabilities to Python settings, without re-
quiring any model conversion into much slower
frameworks.

These bindings enable a range of integrations
with Python—the preferred language for research
in NLP and MT—making available Marian’s high
training and inference speeds. In particular, it
enables pymarian-eval, an implementation of
COMET and BLEURT models yielding speedups
as high as 7.8× (for wmt22-cometkiwi-da) on eight
GPUs, and never less than 3.5×. pymarian-eval
is also significantly faster at loading models, and up
to 44x (for wmt23-cometkiwi-da-xl) on eight GPUs.
These models are made available on HugginFace
and are seamlessly downloaded at runtime.

11https://github.com/OpenNMT/CTranslate2#
benchmarks

Limitations

PyMarian aims to enhance the accessibility and
usability of Marian NMT and publicly available
machine translation models trained with the toolkit.
The primary limitation of PyMarian is that it is
designed specifically for Marian-trained models,
which may restrict its flexibility for users who wish
to integrate models trained using other frameworks
or custom architectures. Additionally, we have
implemented only the most popular evaluation met-
rics, such as COMET and BLEURT, which may
not encompass all the evaluation metrics required
for specific research or application needs.

COMET-Kiwi models require users to accept a
custom license and terms of use. To ensure that the
license is preserved in the Marian-trained versions,
we collaborated with the original authors. They
now host our models exclusively on HuggingFace,
where users must accept the same license before
downloading. The availability of these models is
subject to their decisions.

The reported benchmarks are based on specific
hardware and software settings and may not fully
capture the variability in real-world scenarios. De-
spite the optimizations, running MT evaluation met-
rics can be resource-intensive, requiring significant
computational power. This limitation may pose
challenges for users with limited access to high-
performance computing resources.

Finally, as with any open-source project, the

333

https://github.com/OpenNMT/CTranslate2#benchmarks
https://github.com/OpenNMT/CTranslate2#benchmarks


long-term maintenance and support of PyMarian
depend on the community’s contributions and en-
gagement. Ensuring the project’s sustainability
requires continuous collaboration and support from
the community.

References
Nikolay Bogoychev, Jelmer Van der Linde, and Ken-

neth Heafield. 2021. TranslateLocally: Blazing-fast
translation running on the local CPU. In Proceedings
of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 168–174, Online and Punta Cana, Dominican
Republic. Association for Computational Linguistics.

Thamme Gowda, Tom Kocmi, and Marcin Junczys-
Dowmunt. 2023. Cometoid: Distilling strong
reference-based machine translation metrics into
Even stronger quality estimation metrics. In Pro-
ceedings of the Eighth Conference on Machine Trans-
lation, pages 751–755, Singapore. Association for
Computational Linguistics.

Kenneth Heafield, Hiroaki Hayashi, Yusuke Oda, Ioan-
nis Konstas, Andrew Finch, Graham Neubig, Xian Li,
and Alexandra Birch. 2020. Findings of the fourth
workshop on neural generation and translation. In
Proceedings of the Fourth Workshop on Neural Gen-
eration and Translation, pages 1–9, Online. Associa-
tion for Computational Linguistics.

Kenneth Heafield, Biao Zhang, Graeme Nail, Jelmer
Van Der Linde, and Nikolay Bogoychev. 2022. Find-
ings of the WMT 2022 shared task on efficient trans-
lation. In Proceedings of the Seventh Conference on
Machine Translation (WMT), pages 100–108, Abu
Dhabi, United Arab Emirates (Hybrid). Association
for Computational Linguistics.

Kenneth Heafield, Qianqian Zhu, and Roman Grund-
kiewicz. 2021. Findings of the WMT 2021 shared
task on efficient translation. In Proceedings of the
Sixth Conference on Machine Translation, pages 639–
651, Online. Association for Computational Linguis-
tics.

Felix Hieber, Michael Denkowski, Tobias Domhan, Bar-
bara Darques Barros, Celina Dong Ye, Xing Niu,
Cuong Hoang, Ke Tran, Benjamin Hsu, Maria Nade-
jde, Surafel Lakew, Prashant Mathur, Anna Currey,
and Marcello Federico. 2022. Sockeye 3: Fast neural
machine translation with pytorch.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T.
Martins, and Alexandra Birch. 2018a. Marian: Fast
neural machine translation in C++. In Proceedings of
ACL 2018, System Demonstrations, pages 116–121,
Melbourne, Australia. Association for Computational
Linguistics.

Marcin Junczys-Dowmunt, Kenneth Heafield, Hieu
Hoang, Roman Grundkiewicz, and Anthony Aue.
2018b. Marian: Cost-effective high-quality neural
machine translation in C++. In Proceedings of the
2nd Workshop on Neural Machine Translation and
Generation, pages 129–135, Melbourne, Australia.
Association for Computational Linguistics.

Tom Kocmi, Eleftherios Avramidis, Rachel Bawden,
Ondřej Bojar, Anton Dvorkovich, Christian Fed-
ermann, Mark Fishel, Markus Freitag, Thamme
Gowda, Roman Grundkiewicz, Barry Haddow,
Philipp Koehn, Benjamin Marie, Christof Monz,
Makoto Morishita, Kenton Murray, Makoto Nagata,
Toshiaki Nakazawa, Martin Popel, Maja Popović,
and Mariya Shmatova. 2023. Findings of the 2023
conference on machine translation (WMT23): LLMs
are here but not quite there yet. In Proceedings of the
Eighth Conference on Machine Translation, pages
1–42, Singapore. Association for Computational Lin-
guistics.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, SOSP
’23, page 611–626, New York, NY, USA. Association
for Computing Machinery.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48–53, Minneapolis, Minnesota. Association
for Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Ricardo Rei, José G. C. de Souza, Duarte Alves,
Chrysoula Zerva, Ana C Farinha, Taisiya Glushkova,
Alon Lavie, Luisa Coheur, and André F. T. Martins.
2022a. COMET-22: Unbabel-IST 2022 submission
for the metrics shared task. In Proceedings of the
Seventh Conference on Machine Translation (WMT),
pages 578–585, Abu Dhabi, United Arab Emirates
(Hybrid). Association for Computational Linguistics.

334

https://doi.org/10.18653/v1/2021.emnlp-demo.20
https://doi.org/10.18653/v1/2021.emnlp-demo.20
https://doi.org/10.18653/v1/2023.wmt-1.62
https://doi.org/10.18653/v1/2023.wmt-1.62
https://doi.org/10.18653/v1/2023.wmt-1.62
https://doi.org/10.18653/v1/2020.ngt-1.1
https://doi.org/10.18653/v1/2020.ngt-1.1
https://aclanthology.org/2022.wmt-1.4
https://aclanthology.org/2022.wmt-1.4
https://aclanthology.org/2022.wmt-1.4
https://aclanthology.org/2021.wmt-1.68
https://aclanthology.org/2021.wmt-1.68
http://arxiv.org/abs/2207.05851
http://arxiv.org/abs/2207.05851
https://doi.org/10.18653/v1/P18-4020
https://doi.org/10.18653/v1/P18-4020
https://doi.org/10.18653/v1/W18-2716
https://doi.org/10.18653/v1/W18-2716
https://doi.org/10.18653/v1/2023.wmt-1.1
https://doi.org/10.18653/v1/2023.wmt-1.1
https://doi.org/10.18653/v1/2023.wmt-1.1
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://aclanthology.org/2022.wmt-1.52
https://aclanthology.org/2022.wmt-1.52


Ricardo Rei, Ana C Farinha, Chrysoula Zerva, Daan
van Stigt, Craig Stewart, Pedro Ramos, Taisiya
Glushkova, André F. T. Martins, and Alon Lavie.
2021. Are references really needed? unbabel-IST
2021 submission for the metrics shared task. In Pro-
ceedings of the Sixth Conference on Machine Trans-
lation, pages 1030–1040, Online. Association for
Computational Linguistics.

Ricardo Rei, Nuno M. Guerreiro, JosÃ© Pombal, Daan
van Stigt, Marcos Treviso, Luisa Coheur, José G.
C. de Souza, and André Martins. 2023. Scaling up
CometKiwi: Unbabel-IST 2023 submission for the
quality estimation shared task. In Proceedings of the
Eighth Conference on Machine Translation, pages
841–848, Singapore. Association for Computational
Linguistics.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020a. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702, Online. Association
for Computational Linguistics.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020b. Unbabel’s participation in the WMT20
metrics shared task. In Proceedings of the Fifth Con-
ference on Machine Translation, pages 911–920, On-
line. Association for Computational Linguistics.

Ricardo Rei, Marcos Treviso, Nuno M. Guerreiro,
Chrysoula Zerva, Ana C Farinha, Christine Maroti,
José G. C. de Souza, Taisiya Glushkova, Duarte
Alves, Luisa Coheur, Alon Lavie, and André F. T.
Martins. 2022b. CometKiwi: IST-unbabel 2022 sub-
mission for the quality estimation shared task. In
Proceedings of the Seventh Conference on Machine
Translation (WMT), pages 634–645, Abu Dhabi,
United Arab Emirates (Hybrid). Association for Com-
putational Linguistics.

Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020.
BLEURT: Learning robust metrics for text genera-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7881–7892, Online. Association for Computational
Linguistics.

Jörg Tiedemann, Mikko Aulamo, Daria Bakshandaeva,
Michele Boggia, Stig-Arne Grönroos, Tommi Niem-
inen, Alessandro Raganato Yves Scherrer, Raul
Vazquez, and Sami Virpioja. 2023. Democratizing
neural machine translation with OPUS-MT. Lan-
guage Resources and Evaluation, (58):713–755.

Jörg Tiedemann and Santhosh Thottingal. 2020a.
OPUS-MT – building open translation services for
the world. In Proceedings of the 22nd Annual Confer-
ence of the European Association for Machine Trans-
lation, pages 479–480, Lisboa, Portugal. European
Association for Machine Translation.

Jörg Tiedemann and Santhosh Thottingal. 2020b.
OPUS-MT — Building open translation services for

the World. In Proceedings of the 22nd Annual Con-
ferenec of the European Association for Machine
Translation (EAMT), Lisbon, Portugal.

Xiaolin Wang, Masao Utiyama, and Eiichiro Sumita.
2018. Cytonmt: an efficient neural machine transla-
tion open-source toolkit implemented in c++. arXiv
preprint arXiv:1802.07170.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

335

https://aclanthology.org/2021.wmt-1.111
https://aclanthology.org/2021.wmt-1.111
https://doi.org/10.18653/v1/2023.wmt-1.73
https://doi.org/10.18653/v1/2023.wmt-1.73
https://doi.org/10.18653/v1/2023.wmt-1.73
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://aclanthology.org/2020.wmt-1.101
https://aclanthology.org/2020.wmt-1.101
https://aclanthology.org/2022.wmt-1.60
https://aclanthology.org/2022.wmt-1.60
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.1007/s10579-023-09704-w
https://doi.org/10.1007/s10579-023-09704-w
https://aclanthology.org/2020.eamt-1.61
https://aclanthology.org/2020.eamt-1.61
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

