Debug Smarter, Not Harder: AI Agents for Error Resolution in Computational Notebooks

Konstantin Grotov, Artem Borzilov, Maksim Krivobok, Timofey Bryksin, Yaroslav Zharov


Abstract
Computational notebooks became indispensable tools for research-related development, offering unprecedented interactivity and flexibility in the development process. However, these benefits come at the cost of reproducibility and an increased potential for bugs.With the rise of code-fluent Large Language Models empowered with agentic techniques, smart bug-fixing tools with a high level of autonomy have emerged.However, those tools are tuned for classical script programming and still struggle with non-linear computational notebooks.In this paper, we present an AI agent designed specifically for error resolution in a computational notebook. We have developed an agentic system capable of exploring a notebook environment by interacting with it—similar to how a user would—and integrated the system into the JetBrains service for collaborative data science called Datalore.We evaluate our approach against the pre-existing single-action solution by comparing costs and conducting a user study. Users rate the error resolution capabilities of the agentic system higher but experience difficulties with UI. We share the results of the study and consider them valuable for further improving user-agent collaboration.
Anthology ID:
2024.emnlp-demo.38
Volume:
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
Month:
November
Year:
2024
Address:
Miami, Florida, USA
Editors:
Delia Irazu Hernandez Farias, Tom Hope, Manling Li
Venue:
EMNLP
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
363–371
Language:
URL:
https://aclanthology.org/2024.emnlp-demo.38
DOI:
Bibkey:
Cite (ACL):
Konstantin Grotov, Artem Borzilov, Maksim Krivobok, Timofey Bryksin, and Yaroslav Zharov. 2024. Debug Smarter, Not Harder: AI Agents for Error Resolution in Computational Notebooks. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 363–371, Miami, Florida, USA. Association for Computational Linguistics.
Cite (Informal):
Debug Smarter, Not Harder: AI Agents for Error Resolution in Computational Notebooks (Grotov et al., EMNLP 2024)
Copy Citation:
PDF:
https://aclanthology.org/2024.emnlp-demo.38.pdf