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Abstract

Large language models (LLMs) have shown
remarkable achievements across various lan-
guage tasks. To enhance the performance of
LLMs in scientific literature services, we de-
veloped the scientific literature LLM (SciLit-
LLM) through pre-training and supervised fine-
tuning on scientific literature, building upon
the iFLYTEK Spark LLM. Furthermore, we
present a knowledge service system Spark
Research Assistant (SparkRA) based on our
SciLit-LLM. SparkRA is accessible online1

and provides three primary functions: litera-
ture investigation, paper reading, and academic
writing. As of July 30, 2024, SparkRA has gar-
nered over 50,000 registered users, with a total
usage count exceeding 1.3 million.

1 Introduction

Large language models (LLMs) have achieved sig-
nificant success in natural language processing, in-
cluding text generation and language understanding
(Brown et al., 2020; Chowdhery et al., 2023). Ow-
ing to their strong capabilities, LLMs have shown
immense potential across many downstream fields,
such as education, medicine, and finance (Kasneci
et al., 2023; Thirunavukarasu et al., 2023; Clus-
mann et al., 2023; Shah et al., 2023).

As the performance of LLMs in scientific lit-
erature does not fully meet the needs of scholars,
we developed a Scientific Literature LLM (SciLit-
LLM). We began by collecting a large dataset
of scientific literature, including academic papers
and patents, and performed data cleaning to en-
sure high-quality academic text. We then contin-
ued pre-training the open-source iFLYTEK Spark
LLM (13B)2 using an autoregressive training task,
followed by supervised fine-tuning, to create our
SciLit-LLM.

1https://paper.iflytek.com/
2https://gitee.com/iflytekopensource/iFlytekSpark-13B
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Figure 1: The process of building SparkRA system.

Traditional knowledge service systems generally
provide limited functionalities, such as the retrieval
of scholarly articles and assistive reading services.
In this paper, we introduce the Spark Research
Assistant (SparkRA), a knowledge service system
based on our scientific literature LLM. SparkRA
offers a comprehensive, one-stop solution for scien-
tific literature services. Figure 1 depicts the process
of constructing the SparkRA system. The features
of SparkRA are as follows:

• Literature investigation: this sub-system can
automatically analyze and summarize re-
search areas, and generate research reviews.

• Paper reading: this sub-system can intelli-
gently interpret papers and quickly answer
questions.

• Academic writing: this sub-system can pro-
vide the functions for writing academic papers
including one-click translation, polishing, and
automatic error detection.

Experimental evaluation demonstrates that
SparkRA outperforms existing models, including
GPT-3.5 and Llama3-8B, across all tasks, establish-
ing its efficacy in enhancing the productivity and
accuracy of academic research activities.
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2 Scientific Literature LLM

2.1 Base model

To build the LLM for scientific literature services,
we selected the Spark LLM as the foundation
model for building our scientific literature LLM
(ScLlit-LLM). The Spark LLM, developed by iFLY-
TEK Research, demonstrates impressive perfor-
mance in processing both English and Chinese lan-
guages. iFlytekSpark-13B has consistently ranked
among the top in numerous well-known public
benchmarks, demonstrating its superiority. Its per-
formance is notably superior to other open-source
models of equivalent size.

2.2 Continual pre-training

While the Spark LLM exhibits strong capabilities
in language comprehension and text generation, it
may struggle to directly provide accurate responses
to scholarly inquiries without targeted training in
the scientific domain. Consequently, we have de-
signed a Scientific literature LLM that is specifi-
cally oriented towards parsing and understanding
scientific literature.

Inspired by the existing research (Beltagy et al.,
2019; Hong et al., 2022), we have further pre-
trained the spark model on an extensive corpus of
academic texts to enhance the model’s performance
in processing and generating scientific literature

Data preparation. To enhance the foundational
large language model (LLM), it is imperative to
amass a vast corpus of high-quality data, which in-
cludes kinds of scholarly literature like papers and
patents. We collected a vast number of academic
papers from various publicly accessible websites,
such as arXiv3.

Given that academic documents are predomi-
nantly archived in PDF format, it is crucial to con-
vert these PDFs into text while meticulously elimi-
nating any extraneous elements. For this purpose,
we employed a sophisticated PDF parsing tool de-
veloped by iFLYTEK. In the process of advancing
our scientific literature LLM, we have incorporated
a dataset comprising over 10M academic papers.

To prevent LLM from losing its general capa-
bilities, we also incorporated a significant amount
of general corpora. This strategy ensures that af-
ter continual pre-training, the scientific literature
LLM performs better in the field of science while
maintaining the general capabilities.

3https://arxiv.org/

Pre-training. Similar to the traditional LLM pre-
training process, the scientific literature LLM em-
ploys the same next-word prediction task for its
continual pre-training on a corpus of scientific lit-
erature comprising billions of tokens.

Upon evaluation, the scientific literature LLM,
continual pre-training, exhibits improved perfor-
mance on general scholarly inquiries. Moreover,
for specialized academic queries without provided
context, the scientific literature LLM demonstrates
a higher rejection tendency, effectively reducing
instances of hallucination.

2.3 Supervised fine-tuning

Supervised fine-tuning (SFT) is a technique used to
enhance large language models (LLMs) by further
training a pre-trained model to improve its accuracy
and relevance for specific tasks or domains. The ef-
ficacy of SFT in refining LLMs is well-documented
(Wei et al., 2022; Ouyang et al., 2022). This pro-
cess involves utilizing a carefully curated dataset
with labeled examples that illustrate the desired
output. During SFT, the model learns from these
examples to comprehend the intricacies of the task
more thoroughly. Consequently, SFT enables the
model to retain its broad knowledge base while
acquiring specialization in targeted areas, result-
ing in enhanced user experiences and more precise
information delivery.

Data preparation. In the construction of our
datasets for supervised fine-tuning, each instance
within datasets is composed of three elements: an
instruction, an input, and an output. We utilize a
dual approach in formulating instructions, lever-
aging both Self-instruct (Wang et al., 2023b) and
human writing.

To exemplify, consider the instruction: “Please
translate the input English sentence into Chinese”;
here, the input component would be an English sen-
tence. For the generation of outputs corresponding
to given instructions and inputs, we employ metic-
ulously devised manual methods to craft expert
responses.

Training. Upon completing the construction of
SFT datasets, we commenced the Supervised Fine-
Tuning (SFT) of scientific literature LLM. The in-
stances within the dataset serve as labeled data for
the SFT of the model. Since each instance is metic-
ulously crafted by experts, they are of higher qual-
ity compared to the generic data used during the
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Figure 2: The system architecture of SparkRA integrates iFLYTEK Spark LLM and Scientific Literature LLM to
facilitate literature investigation, paper reading, and academic writing.

pre-training phase. Moreover, these labeled data en-
hance the LLM’s ability to answer questions. The
scientific literature LLM that has undergone SFT
with domain-specific data can learn from experts’
responses to research-related inquiries and general-
ize this knowledge to a broader array of questions.

3 SparkRA

Based on our SciLit-LLM, we developed a liter-
ature services system SparkRA. This platform is
comprised of three functions: literature investiga-
tion, paper reading, and academic writing. Notably,
SparkRA is equipped to process inputs in both Chi-
nese and English, thereby catering to a diverse lin-
guistic user base. The architecture of SparkRA is
shown in Figure 2 and the demonstration video has
been published on YouTube4.

3.1 Literature investigation

This function is designed to facilitate the explo-
ration of academic literature and is comprised of
three integral components: an investigation copilot,
a research topic search engine, and a review gener-
ation module. The architecture and screenshot of
the literature investigation function are respectively
shown in Figure 3 and Figure 4.

Investigation copilot. This copilot assists users
in deepening their understanding of specific re-
search domains and various scholars through in-
teractive natural language dialogue.

4https://youtu.be/bdUMTr3pMfY
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Figure 3: The architecture of RAG-based literature in-
vestigation.

(1) Area-based survey. Users can easily obtain
the summarization and papers of a specific research
area. For example, the user can send the query
“What are the recent papers of fake news section in
2023”. SparkRA will show the papers and give a
summary.

(2) Scholar-based survey. This function can out-
put the papers of the input scholar and divide the pa-
pers into different research areas. For example, the
user can send the query “What research has Chris
Manning from Stanford University conducted”.

Topic search engine. The search interface ac-
commodates queries pertaining to research topics
in both Chinese and English. Upon receiving a
specified topic, SparkRA retrieves relevant papers
from an extensive academic library and provides
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Figure 4: Literature investigation page.

concise summaries of their content.
(1) Query rewriting. There is a diversity of user

retrieval query formats and the occasional inclu-
sion of noise, such as “In the library, what LLM
technologies can assist users in improving the effi-
ciency of finding books?”. Upon receiving a user’s
query, scientific literature LLM is used to revise
the query into a format more suited for retrieval,
like “Applications of large models in library search
domain”. This strategy can significantly enhance
the system’s ability to locate the desired literature.

(2) Precise Retrieval. Upon completion of the
rewriting process, the revised query is subjected
to information extraction through natural language
understanding technologies, such as Named Entity
Recognition (NER). The extracted information en-
compasses scholars, institutions, dates, domains,
and keywords, among others. Based on the ex-
tracted content, the corresponding search plugin
interfaces are invoked to obtain precise search re-
sults.

(3) Literature-based summary. Building on the
retrieval outcomes, the scientific literature LLM
synthesizes findings, encompassing the distribution
of publication years, trends in literature popularity,
recent focal topics, and potential future directions
of development.

Review generation. This function enables the
generation of a report based on a selection of pa-
pers, with a maximum limit of 30 papers. The
generated report facilitates an expedited compre-
hension of a substantial volume of literature within

a specific domain or authored by an individual.
In this function, we leveraged the clustering ca-

pabilities and inductive summarization prowess of
LLM. Through the clustering of dozens of litera-
ture papers, the model structured the introduction,
body, and conclusion of a comprehensive review,
including the formulation of pertinent headings.
Subsequently, the model demonstrated its robust
capacity for inductive reasoning and summariza-
tion. It also featured the capability to annotate the
analytical text with hyperlinks, serving as citations
that facilitate reference validation at the end of the
review and enable user verification.

3.2 Paper reading
This function can assist scholars and students in
reading academic papers. With the rapid develop-
ment of artificial intelligence technology, a large
number of cutting-edge papers emerge every day.
It is necessary to develop an intelligent system to
help people understand papers.

For paper reading, LLMs with longer context
windows are required because the full article of pa-
per is usually long. However, training an LLM with
long context windows from scratch requires signif-
icantly larger investments. To facilitate this, we
employ a retrieval-augmented approach to enhance
the effectiveness of the large model’s answers. We
initiate text splitting as a primary step and engage
in chapter recognition to preserve the semantic in-
tegrity of segments. For the cross-language re-
trieval embedding model, firstly, we generate ques-
tions from paper segments using an LLM and con-
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struct a large set of (question, positive sample, neg-
ative samples) pairs for training. Subsequently, we
use XLM-RoBERTa (Conneau et al., 2020) as the
language encoder and fine-tune the model via con-
trastive learning. The input question and retrieved
segments are finally fed into the SciLit-LLM to
generate answers.

Reading Copilot enhances paper comprehen-
sion through natural language interactions. Ques-
tions fall into two categories: those within the pa-
per, which SciLit-LLM answers using the input
paper alone, and those outside the paper, which re-
quire a search engine plugin to retrieve relevant
information. For the latter, answers are gener-
ated through retrieval-augmented generation using
SciLit-LLM.

Multi-Document Comparison allows for the
comparison of two to five papers. For each se-
lected paper, SparkRA provides the abstract and
contributions separately. It also generates a com-
parative analysis table that highlights the proposed
approaches and advantages of each paper. SparkRA
can identify and output both the similarities and
differences among the selected papers.

3.3 Academic writing

This function is directly powered by SciLit-LLM
and includes polishing and translation.

Paper polishing. This function is used to assist
the scholar and students in polishing the academic
paper draft. We construct a large corpus of texts
requiring polishing based on a multitude of well-
written academic papers, utilizing few-shot learn-
ing and chain-of-thought (COT) prompting method-
ologies, followed by supervised learning for in-
struction fine-tuning.

Academic translation. In order to accurately
translate domain-specific terminology, we have
implemented a dynamic perception prompts ap-
proach to guide the model in completing transla-
tion tasks. Based on the user’s input prompts, we
obtain prompts with professional terminology trans-
lations from a terminology translation lexicon in
the knowledge base, which are then fed into the
large language model.

4 Experiments

4.1 Experiment setting

To validate the results of SparkRA, we adopt the
following LLMs as the baseline models:

• Llama: a large-scale language model devel-
oped and open-sourced by Meta, was com-
pared to SciLit-LLM using three versions:
Llama2-7B, Llama2-13B, and Llama3-8B.

• ChatGPT (GPT-3.5): it is a large-scale lan-
guage model in the field of artificial intelli-
gence developed by OpenAI.

• GPT-4: GPT-4 Turbo serves as our baseline
model, consistently outperforming in a range
of NLP tasks.

We evaluate the performance of models using the
mean opinion score (MOS) on a scale of 1 (poor-
est) to 5 (optimal), with evaluations conducted by
more than five individuals per task. For the ma-
chine translation task, we also use the BLEU met-
ric (Papineni et al., 2002) for model evaluation. We
gathered 100 academic parallel paragraphs from
public Chinese journals with Chinese and English
abstracts to serve as test sets. The highest results
in the table are highlighted in bold, and the second-
highest results are underlined.

To assess paper reading performance, we employ
following two measures:

• Factuality: evaluates the accuracy of the sys-
tem’s response to factual information;

• Informativeness: assesses the completeness of
the system’s response.

To evaluate paper polishing and academic trans-
lation performance, we use three criteria:

• Fluency: assesses the language coherence of
model’s outputs;

• Fidelity: measures content faithfulness to the
original text;

• Academic: evaluates adherence to academic
language standards.

4.2 Results
The results of the paper reading are shown in Ta-
ble 1. SparkRA outperforms other models across
all metrics. It achieves the highest score in Factu-
ality with a score of 4.68, surpassing the closest
competitor, GPT-4, which scores 4.67. In terms of
Informativeness, SparkRA attains a score of 4.45,
again leading over GPT-4, which scores 4.43. Over-
all, SparkRA achieves the highest average score
of 4.57, demonstrating superior performance com-
pared to other models like Llama3-8B and Spark
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Factuality Informativeness Avg.
Llama2-7B 3.98 3.50 3.74
Llama2-13B 4.47 3.72 4.10
Llama3-8B 4.63 4.19 4.41
GPT-3.5 4.20 3.97 4.09
GPT-4 4.67 4.43 4.55
SparkRA 4.68 4.45 4.57

Table 1: Results of paper reading task.

Fluency Fidelity Academic Avg.
Llama2-7B 4.59 3.94 4.44 4.32
Llama2-13B 4.59 3.53 4.06 4.06
Llama3-8B 4.56 3.97 4.47 4.33
GPT-3.5 4.26 4.23 4.38 4.29
GPT-4 4.26 4.29 4.41 4.32
SparkRA 4.41 4.45 4.61 4.49

Table 2: Results of paper polishing task.

v3. These results underscore SparkRA’s effective-
ness in producing factually accurate and informa-
tive text, establishing it as a state-of-the-art model
in the paper reading task.

Table 2 shows the results of the paper polishing
task. While Llama2-13B generates coherent text,
it struggles with fidelity due to non-existent ele-
ments. Although Spark v3 performs well across
tasks, our SparkRA model, pre-trained on scientific
literature and fine-tuned with 13 billion parame-
ters, shows even greater improvement. SparkRA
achieves state-of-the-art results compared to widely
used LLMs like GPT-3.5 and GPT-4 across all eval-
uation metrics, excelling particularly in academic
relevance.

Table 3 presents the academic translation re-
sults. SparkRA excels with the highest fidelity
score (4.91) and the second-highest academic qual-
ity (4.75), showcasing its superior ability to pre-
serve meaning and produce contextually appropri-
ate translations. Additionally, SparkRA’s BLEU
score of 0.198 reflects its robustness in both human
and automatic evaluations. Despite lower human
evaluation scores than GPT-4, SparkRA’s 13B pa-
rameter size offers flexibility, ease of training, and
cost-effectiveness.

5 Related Work

Scientific literature pre-trained language model
Since the release of the pre-trained models
(Vaswani et al., 2017; Radford et al., 2018; De-
vlin et al., 2019), the language models for scien-
tific literature have attracted the attention of schol-

Fluency Fidelity Academic Avg. BLEU
Llama2-7B 4.53 3.93 4.13 4.20 0.104
Llama2-13B 4.73 4.03 4.33 4.36 0.116
Llama3-8B 4.64 4.46 4.43 4.51 0.168
GPT-3.5 4.41 4.75 4.54 4.57 0.193
GPT-4 4.50 4.88 4.84 4.74 0.180
SparkRA 4.34 4.91 4.75 4.67 0.198

Table 3: Results of academic translation task.

ars. These models are trained on various scientific
datasets, with SciBERT on PubMed Central (Belt-
agy et al., 2019), BioBERT and BioMegatron on
biomedical literature (Lee et al., 2020; Shin et al.,
2020), Galactica on multilingual articles (Taylor
et al., 2022), and ScholarBERT on ACL Anthology
Corpus (Hong et al., 2022).

Retrieval augmented generation to LLM
Retrieval-Augmented Generation (RAG), intro-
duced by Lewis et al. (2020), mitigates halluci-
nations in Large Language Models (LLMs) by in-
tegrating external data. Ma et al. (2023) advanced
RAG with query rewriting, while Chen et al. (2023)
benchmarked its effects, creating the RGB. Lyu
et al. (2023) developed an algorithm for assessing
retrieved data significance.

AI for science Artificial intelligence has signifi-
cantly impacted scientific research, enhancing effi-
ciency and literature growth (Merchant et al., 2023;
Szymanski et al., 2023). Wang et al. (2023a) pro-
posed an AI-based scientific research method that
can automatically extract useful information from a
large amount of data and then use this information
to conduct scientific research and discovery. Artifi-
cial intelligence technology has great potential in
scientific research and discovery.

6 Conclusion

The SparkRA system, built on the SciLit-LLM,
provides a comprehensive solution for academic
tasks, including literature investigation, paper read-
ing, and academic writing. Through extensive ex-
periments, SparkRA demonstrated superior perfor-
mance compared to existing models like ChatGPT,
and even surpassed GPT-4 in specific tasks such
as paper polishing, demonstrating its potential to
enhance productivity for researchers and students
with its precise and context-aware support for aca-
demic activities.
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