@inproceedings{thakur-2024-autotrain,
title = "{A}uto{T}rain: No-code training for state-of-the-art models",
author = "Thakur, Abhishek",
editor = "Hernandez Farias, Delia Irazu and
Hope, Tom and
Li, Manling",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-demo.44",
pages = "419--423",
abstract = "With the advancements in open-source models, training(or finetuning) models on custom datasets has become a crucial part of developing solutions which are tailored to specific industrial or open-source applications. Yet, there is no single tool which simplifies the process of training across different types of modalities or tasks.We introduce AutoTrain(aka AutoTrain Advanced){---}an open-source, no code tool/library which can be used to train (or finetune) models for different kinds of tasks such as: large language model (LLM) finetuning, text classification/regression, token classification, sequence-to-sequence task, finetuning of sentence transformers, visual language model (VLM) finetuning, image classification/regression and even classification and regression tasks on tabular data. AutoTrain Advanced is an open-source library providing best practices for training models on custom datasets. The library is available at https://github.com/huggingface/autotrain-advanced. AutoTrain can be used in fully local mode or on cloud machines and works with tens of thousands of models shared on Hugging Face Hub and their variations.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="thakur-2024-autotrain">
<titleInfo>
<title>AutoTrain: No-code training for state-of-the-art models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Abhishek</namePart>
<namePart type="family">Thakur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Delia</namePart>
<namePart type="given">Irazu</namePart>
<namePart type="family">Hernandez Farias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Hope</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manling</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>With the advancements in open-source models, training(or finetuning) models on custom datasets has become a crucial part of developing solutions which are tailored to specific industrial or open-source applications. Yet, there is no single tool which simplifies the process of training across different types of modalities or tasks.We introduce AutoTrain(aka AutoTrain Advanced)—an open-source, no code tool/library which can be used to train (or finetune) models for different kinds of tasks such as: large language model (LLM) finetuning, text classification/regression, token classification, sequence-to-sequence task, finetuning of sentence transformers, visual language model (VLM) finetuning, image classification/regression and even classification and regression tasks on tabular data. AutoTrain Advanced is an open-source library providing best practices for training models on custom datasets. The library is available at https://github.com/huggingface/autotrain-advanced. AutoTrain can be used in fully local mode or on cloud machines and works with tens of thousands of models shared on Hugging Face Hub and their variations.</abstract>
<identifier type="citekey">thakur-2024-autotrain</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-demo.44</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>419</start>
<end>423</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T AutoTrain: No-code training for state-of-the-art models
%A Thakur, Abhishek
%Y Hernandez Farias, Delia Irazu
%Y Hope, Tom
%Y Li, Manling
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F thakur-2024-autotrain
%X With the advancements in open-source models, training(or finetuning) models on custom datasets has become a crucial part of developing solutions which are tailored to specific industrial or open-source applications. Yet, there is no single tool which simplifies the process of training across different types of modalities or tasks.We introduce AutoTrain(aka AutoTrain Advanced)—an open-source, no code tool/library which can be used to train (or finetune) models for different kinds of tasks such as: large language model (LLM) finetuning, text classification/regression, token classification, sequence-to-sequence task, finetuning of sentence transformers, visual language model (VLM) finetuning, image classification/regression and even classification and regression tasks on tabular data. AutoTrain Advanced is an open-source library providing best practices for training models on custom datasets. The library is available at https://github.com/huggingface/autotrain-advanced. AutoTrain can be used in fully local mode or on cloud machines and works with tens of thousands of models shared on Hugging Face Hub and their variations.
%U https://aclanthology.org/2024.emnlp-demo.44
%P 419-423
Markdown (Informal)
[AutoTrain: No-code training for state-of-the-art models](https://aclanthology.org/2024.emnlp-demo.44) (Thakur, EMNLP 2024)
ACL