
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
System Demonstrations, pages 424–435

November 12-16, 2024 ©2024 Association for Computational Linguistics

Sailor: Open Language Models for South-East Asia

Longxu Dou1* Qian Liu1 ∗ Guangtao Zeng2 Jia Guo1 Jiahui Zhou1

Xin Mao1 Ziqi Jin2 Wei Lu2 Min Lin1

1Sea AI Lab, Singapore 2SUTD, Singapore

Abstract
We present Sailor, a family of open language
models ranging from 0.5B to 14B parameters,
tailored for South-East Asian (SEA) languages.
From Qwen1.5, Sailor models accept 200B
to 400B tokens during continual pre-training,
primarily covering the languages of English,
Chinese, Vietnamese, Thai, Indonesian, Malay,
and Lao. The training leverages several tech-
niques, including BPE dropout for improving
the model robustness, aggressive data clean-
ing and deduplication, and small proxy mod-
els to optimize the data mixture. Experimen-
tal results on four typical tasks indicate that
Sailor models demonstrate strong performance
across different benchmarks, including com-
monsense reasoning, question answering, read-
ing comprehension and examination. We share
our insights to spark a wider interest in devel-
oping large language models for multilingual
use cases. Our demo can be found at https:
//hf.co/spaces/sail/Sailor-14B-Chat.

1 Introduction

Large language models (LLMs) have seen remark-
able improvements recently, driven by the rapid
growth of Internet data (Rana, 2010) and advances
in pre-training techniques. However, mainstream
LLMs (Touvron et al., 2023a; AI et al., 2024; Bai
et al., 2023) primarily rely on English data for train-
ing. For example, 89.70% of the training data of
Llama-2 is English (Touvron et al., 2023b). Conse-
quently, these English-centric LLMs often struggle
to achieve comparable performance across other
languages (e.g., Thai), due to their inadequate ex-
posure to those languages during pre-training.

In this paper, we aim to develop the LLMs that
perform well across the South-East Asia (SEA)
region, encompassing a range of languages that in-
clude English, Chinese, Vietnamese, Thai, Indone-
sian, Malay, and Lao. To cater to varying needs,

*The first two authors contributed equally. Contact
doulx@sea.com for more information.

we release both base model and chat model in
five variant size (0.5B, 1.8B, 4B, 7B and 14B)1,
offering greater flexibility. Additionally, we open
source all of our data cleaning and deduplication
pipeline2 that turns out to be extremely important
for the quality of LLMs, especially in the scenario
of continual pre-training.

Besides the open models, we explore several
techniques in a fully transparent manner to ac-
celerate the development of multilingual LLMs,
which encompasses three main areas of investi-
gation. First, we employ small-scale models as
proxies to optimize hyperparameters for continual
pre-training, focusing on learning rates and data
mixture ratios from diverse sources. Second, we
examine the efficacy of various data processing
techniques, including the merging of adjacent short
examples, as well as document-level and word-
level code-switching. Finally, we address tokeniza-
tion challenges by investigating the use of BPE
dropout (Provilkov et al., 2020) to improve the ro-
bustness of LLMs.

With exploring the above techniques, we sum-
marize the key insights for multilingual LLM
continual pre-training, as illustrated in Figure 1:
(1) Language models struggle with multiple lan-
guages, and continual pre-training presents an op-
portunity to improve specific language capabilities.
(2) Code-switching techniques can be beneficial
in multilingual scenarios, improving the ability to
handle language mixing. (3) Language models
are sensitive to subword segmentation, and tech-
niques like BPE dropout can improve model robust-
ness. (4) Even available high-quality multilingual
corpora may still require further data deduplica-
tion and cleaning. (5) Simulation experiments on
smaller models can provide insights into perfor-
mance trends for large-scale experiments.

1https://hf.co/models?search=sail-Sailor
2https://github.com/sail-sg/sailcraft
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Figure 1: The pipeline of building Sailor, with key insights marked by blue stars.

2 Continue Pre-training for Base Model

A crucial aspect of continual pre-training is meticu-
lous data processing and the selection of a suitable
LLM as the foundation. This section outlines our
data processing pipeline, model selection criteria,
and implementation details.

2.1 Data Processing

Data Sourcing (1) For English and Chinese, we
choose SlimPajama (Soboleva et al., 2023) and
SkyPile (Wei et al., 2023) as replay data. (2) For
SEA languages, we choose CC100 (Wenzek et al.,
2020), MADLAD-400 (Kudugunta et al., 2023)
and Wikipedia3 as multilingual dataset. (3) To
enrich the SEA corpus, we collect the Malay, In-
donesian, Thai and Vietnamese subtitles from the
OPUS OpenSubtitles category4. (4) To improve
the document-level code-switching, we curate a se-
lection of English-SEA language translation pairs
(e.g., TED2020 talks) from OPUS project5.

Data Cleaning The data quality is crucial for
model pre-training. We find that the publicly
available multilingual datasets (e.g., CC100 and
MADLAD-400) could be further cleaned and dedu-
plicated. To improve the data cleaning process
for SEA languages specifically, we expanded the
list of filtering words, trained new filtering models,
and implemented a more aggressive deduplication
strategy. Eventually, we extracted 61.19% of data
for SEA languages from public datasets, and con-
structed the final SailCraft dataset. The specific
removal rates are shown in Figure 2.

3https://huggingface.co/datasets/wikimedia/
wikipedia

4https://opus.nlpl.eu/OpenSubtitles-v2018.php
5https://opus.nlpl.eu/

Extract
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Data
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Figure 2: This forms the SailCraft dataset, used to train
the Sailor models. The reported removal rate (grey) is
with respect to each previous stage, and the kept rate
(colored) demonstrates the overall rate.

Data Mixture We aim to develop an SEA tai-
lored LLM but kept the original capability (e.g., En-
glish) simultaneously, requiring the balanced rep-
resentation across all target languages. To achieve
this, we develop the algorithm RegMix that de-
termines the appropriate weights for various lan-
guages during pre-training. As depicted in Figure 3,
we begin by training a set of proxy models (e.g.,
64 in total here) on a variety of data mixtures for a
limited number of training steps (e.g., 1000 steps).
We then fit a linear regression model, using the
data mixture as the input feature and the joint loss
considering all languages as the target6. With this
model, we can perform numerous simulation exper-
iments (e.g., 1,000,000) on randomly sampled data
mixtures to explore the vast array of possibilities
within seconds. The linear model then guides us
in selecting the combination that yields the lowest
predicted joint loss. Once this data mixture has
been optimized, it can be directly applied to large-
scale training. More details and findings could be
found in the RegMix paper (Liu et al., 2024) .

6We use the product of individual losses as the joint loss.
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Id English Chinese Lao Malay Indonesian Thai Vietnamese Joint Loss

1 0.2356 0.09388 0.0172 0.1487 0.2131 0.1603 0.1312 2.516

2 0.1076 0.1656 0.0722 0.1838 0.0892 0.1434 0.2372 2.421

…

64 0.2004 0.1258 0.1236 0.1937 0.0714 0.1431 0.1419 2.342

Linear Regression Model

A New Data Mixture:

English … Vietnamese

0.1359 … 0.0987

Joint Loss
2.115

Figure 3: We employ the experimental results from proxy models across a variety of data mixtures (e.g., 64 distinct
data mixture here) to fit a linear regression model. The model is then utilized to predict the validation loss of
simulate numerous random data mixtures, enabling us to identify the most effective data mixture for optimizing
joint loss. Subsequently, the best data mixture is applied to large-scale training.

Language Source Tokens (B) Epoch

EN SlimPajama 37.20 0.06

ZH SkyPile 22.64 0.15

LO CC100 0.03 0.97
MADLAD 0.31 0.97

MY

CC100 2.02 1.34
MADLAD 5.54 1.54

OpenSubtitles 0.04 1.07
Wikipedia 0.17 1.32

ID

CC100 23.72 0.90
MADLAD 25.62 0.66

OpenSubtitles 0.24 1.07
Wikipedia 0.45 1.32
Translation 0.50 1.16

TH

CC100 3.00 1.28
MADLAD 32.07 1.35

OpenSubtitles 0.13 1.01
Wikipedia 0.28 1.32
Translation 0.34 1.14

VI

CC100 14.25 0.82
MADLAD 26.16 0.44

OpenSubtitles 0.05 1.08
Wikipedia 0.50 1.32
Translation 0.43 1.20

Table 1: The data composition of the final corpus.

Data Composition To achieve better mixture per-
formance, we further incorporate the data source
factor into RegMix implementation. This means
we treat each language from every source as a dis-
tinct dataset and try to optimize the data mixture
of these datasets. Empirically, we adopt Qwen1.5-
0.5B model as the proxy model, then apply it for op-
timizing the data mixture for continual pre-training
process across all model sizes. The effective tokens
and equivalent epochs in SailCraft are documented
in Table 1. We could observe that CC100 exhibits a
relative advantage over MADLAD-400, in terms of
quality or diversity, particularly for Indonesian and
Vietnamese. The final pre-training corpus is com-
posed of approximately 200B tokens, integrating
both SEA tokens and replay tokens.

2.2 Model Selection

We select Qwen1.5 family models as the founda-
tion for Sailor models due to their extensive vocab-
ulary (151K tokens) and multilingual-friendly byte
distribution, which offer significant potential for
future enhancements (Tao et al., 2024). We adopt
most of the pre-training settings and model archi-
tectures from Qwen1.5 (Bai et al., 2023). It follows
the standard transformer architecture (Vaswani
et al., 2017), adopts the pre-normalization with
RMSNorm (Jiang et al., 2023b), SwiGLU activa-
tion (Shazeer, 2020) and rotary positional embed-
dings (Su et al., 2022).

2.3 Implementation Details

Codebase To balance the training efficiency and
debugging convenience, we leverage two code-
bases for different size model. For relatively large
models (i.e., 4B, 7B, 14B), we utilize Megatron-
LM7 (Shoeybi et al., 2019), which supports ten-
sor parallel and pipeline parallel to maximize the
model flops utilization (MFU) of NVIDIA GPUs.
For relatively small models (i.e., 0.5B and 1.8B),
we employ the TinyLlama (Zhang et al., 2024)
codebase8, which follows a compact structure and
allows easy modifications for diverse purposes.

Hyper-parameters We employ a batch size of
4M tokens and a learning rate of 1e-4. After a 500-
step warmup period, the learning rate is maintained
at a constant level following Hu et al. (2024). This
scheduling strategy encourages more transferable
conclusions from simulations and allows for easier
recovery from interrupted training sessions. Sailor
models typically train on 200B tokens (one epoch
of SailCraft corpus), except for Sailor-0.5B which
trains on 400B tokens (two epochs). We train mod-
els with BFloat16 mixed precision to balance the
training efficiency and stability.

7https://github.com/epfLLM/Megatron-LLM
8https://github.com/jzhang38/TinyLlama
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3 Post-training for Chat Model

3.1 Supervised Fine-tuning
Training Dataset The instruction tuning corpus
includes four open instruction tuning datasets: Aya
Collection (Singh et al., 2024), Aya Dataset (Singh
et al., 2024), SlimOrca (Lian et al., 2023) and Ul-
traChat (Ding et al., 2023)9. For Aya Collection
and Aya Dataset, we select the English, Chinese,
and SEA language subsets for fine-tuning. For
SlimOrca and UltraChat, we use NLLB (Costa-
jussà et al., 2022) to translate them from English
into SEA languages. Additionally, we extract the
system prompts from SlimOrca, and translate them
into SEA languages to augment the other three
datasets. The final number of tokens used for fine-
tuning is approximately 5.6B.

Training Details During the SFT training stage,
following Llama (Touvron et al., 2023c), we mask
out the tokens loss of system prompt and user to-
kens, only optimizing the assistant tokens. That
is, we restrict backpropagation to only the answer
tokens. For 0.5B model to 7B model, we utilize a
training batch size of 4M and a learning rate of 1e-
5. For 14B model, we utilize a training batch size
of 1M and a learning rate of 2e-6. For each model
size, we train the SFT dataset for three epochs.

3.2 Preference Optimization
Training Dataset Due to the high cost of con-
structing preference data for Southeast Asian lan-
guages, we use NLLB 3.3B model (Costa-jussà
et al., 2022) to translate the UltraFeedback dataset
(Cui et al., 2023) into Thai, Vietnamese, Malay,
and Indonesian. After filtering out samples with ex-
cessively low perplexity, the remaining preference
data is used for preference optimization.

Training Details During the RLHF stage, we use
DPO (Rafailov et al., 2023) to align the model with
human preferences and improve generation quality.
During the training, we set the learning rate to 5e-7,
β to 0.05, and the batch size to 128.

4 Evaluation

In this section, we evaluate Sailor base models and
other baseline models, on four typical NLP tasks
across three main SEA languages (i.e., Indonesian,
Thai, Vietnamese).

9We employ the filtered version of the UltraChat:
https://huggingface.co/datasets/HuggingFaceH4/
ultrachat_200k.

4.1 Benchmark

Question Answering XQuAD (Artetxe et al.,
2020) (for Thai and Vietnamese) and Ty-
diQA (Clark et al., 2020) (for Indonesian) are
question-answering benchmarks. XQuAD con-
tains 1,190 translated question-answer pairs from
SQuAD v1.1’s development set (Rajpurkar et al.,
2016). TydiQA includes 204,000 pairs with origi-
nal language data and human-written questions.

Commonsense Reasoning XCOPA (Ponti et al.,
2020) (Indonesian, Thai, and Vietnamese) presents
premises with two choices. Models must select the
option that best represents either the cause or effect
of the given event.

Reading Comprehension BELEBELE (Ban-
darkar et al., 2023) is a multilingual reading com-
prehension dataset covering 122 languages. We
use its Indonesian, Thai, and Vietnamese subsets
for evaluation. Each question includes a context
paragraph and four answer choices.

Examination The M3Exam dataset (Zhang et al.,
2023) (Javanese, Thai, Vietnamese) is a multi-
lingual exam benchmark collected from official
school tests used in nine countries10.

4.2 Evaluation Protocol

We employed the evaluation platform OpenCom-
pass (Contributors, 2023) to build up our evalu-
ation code11. The performance of all models is
assessed based on the 3-shot Exact Match (EM)
and F1 performance, with prompts provided in na-
tive languages (e.g., Indonesian task description for
Indonesian tasks).

For XCOPA and BELEBELE evaluations, we
adopt the approach used by OpenCompass and
the Eleuther AI evaluation framework (Gao et al.,
2023) on the HellaSwag benchmark (Zellers et al.,
2019). We reformulate these tasks as the contin-
uation writing task. Each potential answer is ap-
pended to the given input or question, with the
lowest perplexity score determining the prediction.
As for M3Exam evaluation, we employ the official
method described by Zhang et al. (2023). This
approach involves directly prompting language
models to generate the correct option ID when
presented with a question and its corresponding
choices.

10Note that we chose its Javanese subset since the Indone-
sian version has yet to be released when submitting this paper.

11https://github.com/sail-sg/sailor-llm.
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3-shot (EM) QA Commonsense RC Examination Total Score

Llama-2-7B 44.75 59.60 36.52 26.42 167.29
Mistral-7B-v0.1 55.25 60.40 39.00 34.71 189.35
Sea-Lion-7B 45.35 63.07 36.30 24.12 168.83
SeaLLM-7B-Hybrid 49.98 65.80 41.30 29.77 186.84
SeaLLM-7B-v2 44.45 61.80 42.15 38.63 187.02

Qwen1.5-0.5B 18.25 52.33 29.00 24.53 124.12
Sailor-0.5B 22.47 55.73 31.81 24.75 134.76 (+10.65)
Qwen1.5-1.8B 28.71 52.53 31.15 28.78 141.18
Sailor-1.8B 35.94 60.40 34.81 27.07 158.23 (+17.05)
Qwen1.5-4B 42.02 55.40 34.74 32.16 164.32
Sailor-4B 49.48 63.60 38.78 29.31 181.17 (+16.85)
Qwen1.5-7B 55.86 60.87 41.07 40.04 197.84
Sailor-7B 57.41 67.80 43.74 42.05 211.00 (+13.16)
Qwen1.5-14B 57.76 68.73 42.66 45.56 214.72
Sailor-14B 55.40 74.80 45.19 49.55 224.94 (+10.22)

Table 2: Each model’s average score across three SEA languages for various tasks. The total score is the sum of
scores from four tasks, representing the model’s comprehensive performance. We also highlight the improvement of
Sailor models over the Qwen1.5 models (in parentheses). Detailed experimental results can be found in Appendix A.

4.3 Baseline Setup

We choose three types of baseline models:

General LLMs general multilingual models,
whose training corpus cater to multilingual tokens,
but mainly focus on Western languages. It includes
Llama-2 (Touvron et al., 2023b), Mistral (Jiang
et al., 2023a), Qwen1.5 (Bai et al., 2023).

SEA-specific LLMs by continual pretraining
train the General LLMs with SEA corpus, in-
cluding VinaLLaMA (Nguyen et al., 2023a),
SeaLLM (Nguyen et al., 2023b) and Typhoon (Pi-
patanakul et al., 2023).

SEA-specific LLMs by training from scratch
training corpus consists of a significant number of
SEA tokens and employ SEA friendly tokenizer,
including Sea-Lion (AI Singapore, 2023).

4.4 Experimental Results

Experimental results shown in Table 2 indicate that
Sailor models obviously outperform the baseline
models in all variant sizes. Notably, we omit the
results of VinaLLaMA and Typhoon, since they are
solely optimized for one SEA language and incur
performance degeneration in other languages.

We could observe that: (1) Sailors exceed the
Qwen1.5 baseline model, highlighting the success
of continual pre-training; (2) Sailors surpass other
SEA-specific models, demonstrating the impor-
tance of careful data cleaning and data dedupli-
cation.

5 Insights

During Sailor development, we perform ablation
studies on small LMs to understand the impact of
various strategies12. We then apply the key insights
gained from these studies to improve LLM. All
techniques are listed in Table 3.

5.1 Data

Merging Adjacent Short Examples While
deduplication improves data efficiency, it can dis-
rupt contextual relevance. To address this, we ran-
domly combine adjacent examples before global
shuffling. This method works because deduplicated
paragraphs retain their original order, allowing con-
text reconstruction. We also apply this approach to
inherently short-sentence sources like subtitles.

Code-Switching Code-switching involves using
multiple languages within one context. We ex-
plore two types: document-level and word-level.
Document-level mixing combines texts from var-
ious languages during pre-training. Word-level
switching replaces 10% of words in SEA language
documents with English equivalents. Our experi-
ments with TinyLlama show that document-level
switching outperforms word-level or combined
approaches. Thus, we only use document-level
switching in continual pre-training.

12Most of the experimental results are obtained from three
series of models: our internal 120M model trained on 20B
English tokens using SlimPajama (Soboleva et al., 2023), the
TinyLlama 1.1B model (Zhang et al., 2024), and the Qwen1.5-
0.5B model (Bai et al., 2023).
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Technique Stage Used Note

Merging Adjacent Short Examples Data Yes Improve Performance
Document-Level Code-Switching Data Yes Improve Performance

Word-Level Code-Switching Data No Marginal Effect w. Document-Level
Aggressive Data Deduplication Data Yes Improve Performance

Aggressive Data Cleaning Data Yes Improve Performance
BPE Dropout Tokenization Yes Improve Robustness

Vocabulary Expansion Tokenization No Challenging to Apply
Learning Rate Tuning Training Yes Accelerate the Training

Data Mixture Simulation Training Yes Balance Different Languages

Table 3: The techniques we mainly consider during our development.

Aggressive Data Cleaning and Deduplication
Even though we started with well-curated open
datasets, e.g., MADLAD-400 clean set (Kudugunta
et al., 2023), we still further removed 31.11% in
data cleaning and 11.16% in data deduplication.
By extensively filtering out noisy, harmful, and
duplicated content, we are able to significantly im-
prove the efficiency of the pre-training process and
the stability of the optimization procedure.

5.2 Tokenization

Question: ␣ Siapakah pastur/ketua Ibadah pertama GBI KA?
Answer: ␣ Dr. Petrus Octavianus.
Question: ␣ Apakah nama film yang masuk nominasi FFI 2005 , 
diproduksi oleh PT Sinemart Pictures karya Hanung Bramantyo?

10000000␣ Tentang Dia

LLM

with 
trailing 

space (␣)

no 
trailing 
space

Answer: ␣Answer:

(a) Minor variations in prompts such as a trailing space
visualized by can drastically change the prediction.

Ablation Prompt Exact Match

Sailor-1.8B no space 40.88
with space 38.41

w.o. BPE dropout no space 38.94
with space 18.76

(b) Experiments on the TydiQA dataset indicate that ap-
plying BPE dropout significantly enhances the robustness
of the Sailor-1.8B model when handling trailing spaces.

Figure 4: Initially, Sailor models were trained on 200B
tokens using a greedy tokenization strategy. Subse-
quently, they were fine-tuned using BPE dropout for
an additional 2B tokens, with a dropout rate of 0.1. As
observed, BPE dropout improves the robustness.

BPE Dropout for Robust Tokenization We
have observed that the model is unreasonably sensi-
tive to small variations of the prompt, especially on
spaces. As illustrated in Figure 4a, when prompting
the model with the string “Answer:” without any

trailing space yields a substantially improved per-
formance compared to “Answer: ”13. The same
phenomenon is observed in Qwen1.5, Mistral and
Llama 2, and a similar issue has been discussed at
lm-evaluation-harness library14 (Gao et al., 2023).
We attribute this kind of vulnerability to the tok-
enization strategy used in data processing. Mod-
ern tokenization methods usually employ the Byte
Pair Encoding (BPE) (Sennrich et al., 2016) under
the greedy segmentation setting15, which means
that sentences are segmented into subwords us-
ing the optimal tokenization strategy. The always-
optimal strategy can make models vulnerable to
unexpected subwords, such as an unexpected space
in “Answer: ”. To address this, we use BPE-
Dropout during continual pre-training to randomly
alter the BPE segmentation, providing subword reg-
ularization. While BPE-Dropout slightly increases
loss on greedy subword segmentation, it improves
both model performance and robustness, as demon-
strated in Figure 4b.

Vocabulary Expansion We have tried our best
to do vocabulary expansion on models like Mis-
tral (Jiang et al., 2023a) and Llama-2 (Touvron
et al., 2023b). However, similar to the observation
in concurrent works (Zhao et al., 2024), it is chal-
lenging to expand the vocabulary with maintaining
the original performance.

5.3 Training

In continual pre-training, we explore various con-
figurations of learning rates and language data mix-
ture. Starting with small proxy models, we ran-
domly select learning rates from 20 intervals within
a log range of 1e-5 to 4e-4, allowing efficient ex-

13We use “ ” to represent space.
14https://github.com/EleutherAI/

lm-evaluation-harness/issues/614
15The default BPE class is initialized with no dropout in the

HuggingFace tokenizers library.
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(c) The average SEA loss with increasing the learning rate.

Figure 5: Quadratic function between language propor-
tion and learning rate.

perimentation. By evaluating English and SEA
languages trade-offs on these models, we identify
an optimal learning rate. We then fine-tune the
data mixture to balance loss across languages, as
detailed in Sec 2.1, for final model training.

Learning Rate Tuning The loss trend on the
source domain (i.e., English) is primarily influ-
enced by two factors: the proportion of English
data during continual pre-training and the learning
rate. Under the same token budget, the model’s
loss on English can be accurately modeled as a
quadratic function of log(English Proportion) −
log(Learning Rate), as shown in Figure 5a. In sum-
mary, increasing the learning rate, while holding

the English data proportion constant, may nega-
tively impact the model’s performance on English.

Meanwhile, the loss trend on the target domain
(i.e., SEA languages) is also mainly affected by the
proportion of the target domain and the learning
rate. However, there is a different modeling among
the model loss on SEA languages, the proportion
and the learning rate, as demonstrated by Figure 5b.
From the observation, it becomes evident that the
learning rate serves as a crucial hyper-parameter.
A well-tuned learning rate plays a pivotal role in
striking a balance between the acquisition of SEA
languages and the forgetting of English. As shown
in Figure 5c, considering that increasing the learn-
ing rate beyond 1e-4 does not yield significant im-
provements in the loss on SEA languages, we set
the peak learning rate to 1e-4 in our experiments.

Best Practise for Continual Pre-training Draw-
ing from the above insights, we highlight the impor-
tance of selecting the learning rate and the propor-
tion of source domain data to mitigate catastrophic
forgetting. We focus on the proposed quadratic
function, which we refer to as the magic metric
below. We suggest the following steps:

1. Fit a parametric quadratic function modeling
the relationship between loss source and the
magic metric via experiments varying learn-
ing rates and proportions.

2. Estimate the boundary of the magic metric
value beyond which the model’s loss source
starts to deviate significantly from the orig-
inal one.

3. Balance the learning progress on the target
domain with the retention rate on the source
domain by selecting a suitable magic metric
larger than the boundary.

4. If the magic metric substantially exceeds the
estimated boundary, it indicates that the model
retains more knowledge from the source do-
main; conversely, it facilitates a more rapid
learning pace on the target domain.

6 Conclusion

In this paper, we present the Sailor family of open
language models (Apache License 2.0), tailored for
South-East Asian languages, which exhibit strong
performance across various multilingual tasks and
benchmarks, fostering advancements in multilin-
gual language models for the SEA region.
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Ethics Statement

All datasets and models used in this paper are pub-
licly available, and our usage follows their licenses
and terms. While we have made efforts to en-
sure safety and accuracy, our open-source language
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tentially harmful content. Users must conduct their
own safety assessments and implement necessary
security measures before deployment. Usage must
comply with local regulations. The authors bear no
liability for any damages or claims arising from the
use of these models, code, or demos.
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3-shot (EM) Thai Indonesian Vietnamese

Llama-2-7B 31.78 39.78 38.00
Mistral-7B-v0.1 34.33 41.33 41.33
Typhoon-7B 36.56 – –
VinaLLaMA-7B – – 39.56
Sea-Lion-7B 36.33 35.56 37.00
SeaLLM-7B-Hybrid 37.78 43.11 43.00
SeaLLM-7B-v2 36.33 43.11 47.00

Qwen1.5-0.5B 29.89 26.89 30.22
Sailor-0.5B 32.22 30.89 32.33
Qwen1.5-1.8B 30.11 32.00 31.33
Sailor-1.8B 34.22 34.89 35.33
Qwen1.5-4B 32.78 36.22 35.22
Sailor-4B 36.11 41.33 38.89
Qwen1.5-7B 38.33 42.00 42.89
Sailor-7B 41.56 44.33 45.33
Qwen1.5-14B 41.44 46.22 40.33
Sailor-14B 42.11 47.56 45.89

Table 4: Experimental results of different models on the
Belebele benchmark.

A Experimental Results

Detailed experimental results of different models
on reading comprehension (Table 4), examination
(Table 5), question answering (Table 6) and com-
monsense reasoning (Table 7) tasks.
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3-shot (EM) M3Exam (Thai) M3Exam (Javanese) M3Exam (Vietnamese)

Llama-2-7B 21.13 23.99 34.15
Mistral-7B-v0.1 29.59 31.00 43.54
Typhoon-7B 36.71 – –
VinaLLaMA-7B – – 36.95
Sea-Lion-7B 23.90 21.56 26.89
SeaLLM-7B-Hybrid 25.98 24.53 38.79
SeaLLM-7B-v2 35.60 29.92 50.36

Qwen1.5-0.5B 22.38 22.10 29.12
Sailor-0.5B 21.87 28.84 23.53
Qwen1.5-1.8B 23.81 26.15 36.39
Sailor-1.8B 23.90 29.65 27.67
Qwen1.5-4B 26.26 30.19 40.02
Sailor-4B 27.23 29.11 31.58
Qwen1.5-7B 35.88 33.15 51.09
Sailor-7B 38.33 35.85 51.98
Qwen1.5-14B 43.18 35.04 58.47
Sailor-14B 48.22 39.89 60.54

Table 5: Experimental results of different models on the examination task.

3-shot (EM / F1) XQuAD (Thai) TydiQA (Indonesian) XQuAD (Vietnamese)

Llama-2-7B 30.64 / 43.80 56.64 / 72.14 46.96 / 66.16
Mistral-7B-v0.1 48.48 / 63.27 63.54 / 78.73 53.72 / 72.75
Typhoon-7B 51.70 / 68.92 – –
VinaLLaMA-7B – – 44.82 / 64.81
Sea-Lion-7B 43.52 / 59.75 50.09 / 67.72 42.43 / 61.17
SeaLLM-7B-Hybrid 49.70 / 67.62 50.62 / 75.21 49.62 / 70.74
SeaLLM-7B-v2 34.55 / 55.13 52.21 / 77.00 46.19 / 72.11

Qwen1.5-0.5B 14.19 / 23.35 20.71 / 32.64 19.85 / 35.38
Sailor-0.5B 15.84 / 27.58 30.44 / 54.74 21.13 / 40.57
Qwen1.5-1.8B 27.24 / 43.56 29.73 / 53.76 29.17 / 48.15
Sailor-1.8B 32.72 / 48.66 40.88 / 65.37 34.22 / 53.35
Qwen1.5-4B 34.03 / 53.40 48.32 / 72.68 43.71 / 63.86
Sailor-4B 46.82 / 63.34 53.98 / 73.48 47.65 / 67.09
Qwen1.5-7B 53.79 / 69.30 57.17 / 77.28 56.63 / 76.99
Sailor-7B 57.88 / 71.06 60.53 / 75.42 53.81 / 74.62
Qwen1.5-14B 55.53 / 74.36 60.18 / 81.05 57.57 / 77.58
Sailor-14B 49.43/ 69.99 58.94 / 77.85 57.83 / 77.37

Table 6: Experimental results of different models on the question answering task.

3-shot (EM) XCOPA (Thai) XCOPA (Indonesian) XCOPA (Vietnamese)

Llama-2-7B 52.80 64.00 62.00
Mistral-7B-v0.1 57.20 62.40 61.60
Typhoon-7B 55.40 – –
VinaLLaMA-7B – – 68.20
Sea-Lion-7B 60.80 60.60 67.80
SeaLLM-7B-Hybrid 58.20 71.60 67.60
SeaLLM-7B-v2 56.80 64.00 64.60

Qwen1.5-0.5B 51.00 52.20 53.80
Sailor-0.5B 51.00 58.20 58.00
Qwen1.5-1.8B 52.60 51.60 53.40
Sailor-1.8B 53.80 64.20 63.20
Qwen1.5-4B 53.40 55.00 57.80
Sailor-4B 53.40 69.20 68.20
Qwen1.5-7B 54.20 62.20 66.20
Sailor-7B 59.00 72.20 72.20
Qwen1.5-14B 60.00 72.20 74.00
Sailor-14B 64.40 79.60 80.40

Table 7: Experimental results of different models on the commonsense reasoning task.
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