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Abstract

Generative models have demonstrated consid-
erable potential in software engineering, par-
ticularly in tasks such as code generation and
debugging. However, their utilization in the
domain of code documentation generation re-
mains underexplored. To this end, we introduce
REPOAGENT, a large language model pow-
ered open-source framework aimed at proac-
tively generating, maintaining, and updating
code documentation. Through both qualita-
tive and quantitative evaluations, we have vali-
dated the effectiveness of our approach, show-
ing that REPOAGENT excels in generating high-
quality repository-level documentation. The
code and results are publicly accessible at
https://github.com/OpenBMB/RepoAgent.

1 Introduction

Developers typically spend approximately 58% of their
time on program comprehension, and high-quality code
documentation plays a significant role in reducing this
time (Xia et al., 2018; de Souza et al., 2005). High-
quality documentation significantly lowers the learning
curve for new project members, thereby accelerating
their contributions and fostering a vibrant open-source
community through enhanced participation and collabo-
ration. However, maintaining code documentation also
consumes a considerable amount of time, money, and
human labor (Zhi et al., 2015), and not all projects have
the resources or enthusiasm to prioritize documentation
as their top concern.

To alleviate the burden of maintaining code docu-
mentation, early attempts at automatic documentation
generation aimed to provide descriptive summaries for
source code (Sridhara et al., 2010; Rai et al., 2022; Khan
and Uddin, 2022; Zhang et al., 2022), as illustrated in
Figure 1. However, they still have significant limitations,
particularly in the following aspects: (1) Poor summa-
rization. Previous methods primarily focused on sum-
marizing isolated code snippets, overlooking the depen-
dencies of code within the broader repository-level con-
text. The generated code summaries are overly abstract
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Demo Video: https://youtu.be/YPPJBVOP71M

RepoAgent Documentation Generation:

Functionality:
This is the Main Loop in XAgent. It splits a complex task into specific sub-
task trees and handles them one by one.

Parameters:
• input_task_list (list): A list of tasks to be processed.

Code Description:
• It will first get the next subtask in the list by using find_next_task.
• Then it will find a similar task that has

preformed before by retrieve_similar_task.
• Then it will handle that task based on retrieved results.
• …

Notes:
• retrieve_similar_task will return the input if no similar task is found.
• …

Examples:
…
task_list = [task1, task2, task3] 
outer_loop(task_list)
…

Descriptive Summarization for Source Code:
Handle a list of tasks by some order.  Return when all tasks are done.

Modification Detection
& Auto Doc. Update

def outer_loop(self, input_task_list):
while input_task_list:

next_task = self.find_next_task(input_task_list)
next_task = self.retrieve_similar_task(next_task)
self.inner_loop(next_task)
self.make_reflection()
input_task_list = self.task_refine(input_task_list)

New 
Code

Figure 1: The comparison of code documentation generated
by the plain summarization method and the newly proposed
REPOAGENT .

and fragmented, making it difficult to accurately convey
the semantics of the code and compile the code sum-
maries into documentation. (2) Inadequate guidance.
Good documentation not only accurately describes the
code’s functionality, but also meticulously guides devel-
opers on the correct usage of the described code (Khan
and Uddin, 2022; Wang et al., 2023). This includes,
but is not limited to, clarifying functional boundaries,
highlighting potential misuses, and presenting exam-
ples of inputs and outputs. Previous methods still fall
short of offering such comprehensive guidance. (3) Pas-
sive update. Lehman’s first law of software evolution
states that a program in use will continuously evolve to
meet new user needs (Lehman, 1980). Consequently,
it is crucial for the documentation to be updated in a
timely manner to align with code changes, which is the
capability that previous methods overlook. Recently,
Large Language Models (LLMs) have made significant
progress (OpenAI, 2022, 2023), especially in the code
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Figure 2: The RepoAgent method consists of Global Structure Analysis, Documentation Generation, and Documentation
Update. Each component can be executed independently or packaged as a hook for tooling purposes. When operating as a
whole, RepoAgent ensures the capability to construct and maintain documentation for a repository from scratch, elevating
documentation to the same level of importance as code, facilitating synchronization and collaboration among teams.

understanding and generation realm (Nijkamp et al.,
2023; Li et al., 2023; Chen et al., 2021; Rozière et al.,
2023; Xu et al., 2024; Sun et al., 2023; Wang et al., 2023;
Khan and Uddin, 2022). Given these advancements, it is
natural to ask: Can LLMs be used to generate and main-
tain repository-level code documentation, addressing
the aforementioned limitations?

In this study, we introduce REPOAGENT, the first
framework powered by LLMs, designed to proactively
generate and maintain comprehensive documentation
for the entire repository. A running example is demon-
strated in Figure 1. REPOAGENT offers the following
features: (1) Repository-level documentation: RE-
POAGENT leverages the global context to deduce the
functional semantics of target code objects within the
entire repository, enabling the generation of accurate
and semantically coherent structured documentation. (2)
Practical guidance: REPOAGENT not only describes
the functionality of the code but also provides practical
guidance, including notes for code usage and exam-
ples of input and output, thereby facilitating developers’
swift comprehension of the code repository. (3) Main-
tenance automation: REPOAGENT can seamlessly in-
tegrate into team software development workflows man-
aged with Git and proactively take over documentation
maintenance, ensuring that the code and documentation
remain synchronized. The process is fully automated,
leveraging advanced algorithms to ensure it accommo-
dates all conceivable Git operations and change scenar-
ios, thereby eradicating the necessity for manual updates
and significantly diminishing the risk of human error.

We qualitatively showcased the code documentation
generated by REPOAGENT for real Python repositories.
The results reveal that REPOAGENT is adept at produc-
ing documentation of a quality comparable to that cre-
ated by humans. Quantitatively, in two blind preference

tests, the documentation generated by REPOAGENT was
favored over human-authored documentation, achieving
preference rates of 70% and 91.33% on the Transform-
ers and LlamaIndex repositories, respectively. These
evaluation results indicate the practicality of the pro-
posed REPOAGENT in automatic code documentation
generation.

2 RepoAgent
REPOAGENT consists of three key stages: global struc-
ture analysis, documentation generation, and docu-
mentation update. Figure 2 shows the overall design
of REPOAGENT. The global structure analysis stage
involves parsing necessary meta information and global
contextual relationships from the source code, laying
the foundation for REPOAGENT to infer the functional
semantics of the target code. In the documentation gen-
eration stage, we have designed a sophisticated strategy
that leverages the parsed meta information and global
contextual relationships to prompt the LLM to generate
fine-grained documentation that is of practical guidance.
In the documentation update stage, REPOAGENT uti-
lizes Git tools to track code changes and update the
documentation accordingly, ensuring that the code and
documentation remain synchronized throughout the en-
tire project lifecycle.

2.1 Global Structure Analysis
An essential prerequisite for generating accurate and
fine-grained code documentation is a comprehensive
understanding of the code structure. To achieve this
goal, we proposed a project tree, a data structure that
maintains all code objects in the repository while pre-
serving their semantic hierarchical relationships. Firstly,
we filter out all non-Python files within the repository.
For each Python file, we apply Abstract Syntax Tree
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(AST) analysis (Zhang et al., 2019) to recursively parse
the meta information of all Classes and Functions within
the file, including their type, name, code snippets, etc.
These Classes and Functions associated with their meta
information are used as the atomic objects for docu-
mentation generation. It is worth noting that the file
structures of most well-engineered repositories have re-
flected the functional semantics of code. Therefore, we
first utilize it to initialize the project tree, whose root
node represents the entire repository, middle nodes and
leaf nodes represent directories and Python files, respec-
tively. Then, we add the parsed Classes and Functions
as new leaf nodes (or sub-trees) to the corresponding
Python file nodes to form the final project tree.

Beyond the code structure, the reference relationships
within the code, as a form of important global contex-
tual information, can also assist the LLM in identifying
the functional semantics of the code. Also, references
to a target function can be considered natural in-context
learning examples (Wei et al., 2022) to teach the LLM to
use the target function, thereby helping generate docu-
mentation that is of practical guidance. We consider two
types of reference relationships: Caller and Callee.
We use the Jedi library1 to extract all bi-directional ref-
erence relationships in the repository, and then ground
them to the corresponding leaf nodes in the project tree.
The project tree augmented with the reference relation-
ships forms a Directed Acyclic Graph2 (DAG).

2.2 Documentation Generation

REPOAGENT aims to generate fine-grained documen-
tation that is of practical guidance, which includes de-
tailed Functionality, Parameters, Code Description,
Notes, and Examples. A backend LLM leverages the
parsed meta information and reference relationships
from the previous stage to generate documentation with
the required structure using a carefully designed prompt
template. An illustrative prompt template is shown in
Figure 3, and a complete real-world prompt example is
given in Appendix C.1.

The prompt template mainly requires the following
parameters: The Project Tree helps REPOAGENT per-
ceive the repository-level context. The Code Snippet
serves as the main source of information for REPOA-
GENT to generate the documentation. The Reference
Relationships provide semantic invocation relation-
ships between code objects and assist REPOAGENT
in generating guiding notes and examples. The Meta
Information indicates the necessary information such
as type, name, relative file path of the target object,
and is used for post-processing of the documentation.
Additionally, we can include the previously generated
Documentation of a direct child node of an object as

1https://github.com/davidhalter/jedi Extensible
to programming languages other than Python by replacing
code parsing tools.

2We simply ignored circular dependencies to avoid loops,
as most of these situations may have bugs.

Figure 3: Prompt template used for documentation generation,
some details are omitted. Variables within the braces are
assigned according to different objects. The blue parts are
dynamically filled based on the Meta Info of different objects,
enriching the documentation content according to the object
characteristics. The Documentation within the dashed boxes
can be dynamically utilized according to the program settings.
If the documentation information is not used, the program
may not execute in topological order.

auxiliary information to help code understanding. This
is optional, as omitting it can save costs significantly.

REPOAGENT follows a bottom-to-top topological or-
der to generate documentation for all code objects in
the DAG, ensuring that the child nodes of each node, as
well as the nodes it references, have their documentation
generated before it. After the documentation is gener-
ated, REPOAGENT compiles it into a human-friendly
Markdown format. For example, objects of different
levels are associated with different Markdown headings
(e.g., ##, ###). Finally, REPOAGENT utilizes GitBook3

to render the Markdown formatted documentation into a
convenient web graphical interface, which enables easy
navigation and readability for documentation readers.

2.3 Documentation Update

REPOAGENT supports automatic tracking and updating
of documentation through seamless collaboration with
Git. The pre-commit hook of Git is utilized to enable
REPOAGENT to detect any code changes and perform
documentation updates. After the update, the hook sub-

3https://www.gitbook.com/
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Figure 4: Demonstration of code documentation generated by REPOAGENT for the ChatDev repository.

mits both the code and documentation changes, ensuring
that the code and documentation remain synchronized.
This process is fully automated and does not require
human intervention.

Local code changes generally do not affect other code
due to the low coupling principle, it is not necessary to
regenerate the entire documentation with each minor
code update. REPOAGENT only updates the documenta-
tion of affected objects. The updates are triggered when
(1) an object’s source code is modified; (2) an object’s
referrers no longer reference it; or (3) an object gets
new references. It is worth noting that the update is
not triggered when an object’s reference objects change,
because we adhere to the dependency inversion princi-
ple (Martin, 1996), which states that high-level modules
should not depend on the implementations of low-level
modules.

3 Experiments

3.1 Experimental Settings

For the purpose of generating documentation, we se-
lected 9 Python repositories, spanning a wide range
of scales from less than 1,000 to over 10,000 lines of
code. This selection encompasses both well-established
projects with significant followings and newly emerged
ones that have quickly gained recognition on GitHub
for their quality. Distinguished by their high-quality
code and considerable complexity, these repositories
are meticulously characterized by various metrics, in-
cluding the number of lines of code, classes, and
functions. The detailed statistics of the reposito-
ries are provided in Appendix A.1. We adopted the

API-based LLMs gpt-3.5-turbo (OpenAI, 2022) and
gpt-4-0125 (OpenAI, 2023), along with the open-
source LLMs Llama-2-7b and Llama-2-70b (Touvron
et al., 2023) as backend models for REPOAGENT .

3.2 Case Study

We use the ChatDev repository (Qian et al., 2023) and
the gpt-4-0125 backend for a case study. The gener-
ated documentation is illustrated in Figure 4. Docu-
mentation generated by REPOAGENT is structured into
several parts, starting with a clear, concise sentence that
articulates the object’s functionality. Following this, the
parameters section enumerates all relevant parameters
along with their descriptions, aiding developers in under-
standing how to leverage the provided code. Moreover,
the code description section comprehensively elaborates
on all aspects of the code, implicitly or explicitly demon-
strating the object’s role and its associations with other
code within the global context. In addition, the notes
section further enriches these descriptions by covering
usage considerations for the object at hand. Notably, it
highlights any logical errors or potential optimization
within the code, thereby prompting advanced develop-
ers to make modifications. Lastly, if the current object
yields a return value, the model will generate an ex-
amples section, filled with simulated content to clearly
demonstrate the expected output. This is highly advan-
tageous for developers, facilitating efficient code reuse
and unit test construction.

Once the code is changed, the documentation update
will be triggered, as illustrated in Figure 5. Upon code
changes in the staging area, REPOAGENT identifies
affected objects and their bidirectional references, up-
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import time

def now():
return time.strftime("%Y%m%d%H
%M%S", time.localtime())

…

utils.py
Original Code

import platform

("%Y%m%d%H"

def get_current_os():
return platform.system().lower()

utils.py
Updated Code

Function now
now: The function returns the current date and 
time in the format of “%Y%m%d%H%M%S” …
Parameters:
This function does not take any parameters.
Code Description:
The `now` function uses the `time` module to 
access…
Note:
- The returned time is in the format of 
“%Y%m%d%H%M%S” (e.g., "20220101120000" 
for January 1, 2022, 12:00:00) …
Output Example:
If the current time is January 1, 2022, 12:00:00, 
the function will return "20220101120000".

Original Doc

Function now
…
Code Description: 
… format the time as a string “%Y%m%d%H”, …
Note:
- The time format is “%Y%m%d%H”, which represents 
the year, month, day, and hour.…
Output Example:
If the current time is "20220101120000", the function  
will return "202201011200".

Function get_current_os
get_current_os: get the current operating system …

Parameters: - None

Code Description: uses the `platform.system()` …

Note: the returned OS name will be in lowercase…

Output Example:
- If OS is Windows, the function will return "windows".

utils.md utils.md

Updated Doc

Figure 5: Documentation update for functions of ChatDev.

dates documentation for the minimally impacted scope,
and integrates these updates into a new Markdown file,
which includes additions or global removals of objects’
documentation. This automation extends to integrat-
ing the pre-commit hook of Git to detect code changes
and update documentation, thus seamlessly maintaining
documentation alongside project development. Specif-
ically, when code updates are staged and committed,
REPOAGENT is triggered, automatically refreshing the
documentation and staging it for the commit. It confirms
the process with a "Passed" indicator, without requir-
ing extra commands or manual intervention, preserving
developers’ usual workflows.

3.3 Human Evaluation

Given the lack of reliable automatic evaluation meth-
ods for capturing the nuances of code documentation,
we chose human evaluation to assess our method’s doc-
umentation quality. A preference test was designed
to compare human-authored documentation directly
against that produced by REPOAGENT . For this pur-
pose, 150 pieces of documentation content were ran-
domly sampled, including 100 class objects and 50
function-level objects from both the Transformers and
LlamaIndex repositories. Three independent evalua-
tors were then enlisted to impartially assess the docu-
mentation quality, following a protocol detailed in Ap-
pendix A.2.2. The findings from this rigorous compari-
son are summarized in Table 1, underscore RepoAgent’s
notable effectiveness in producing documentation that
surpasses human-authored content, achieving win rates
of 0.70 and 0.91, respectively.

3.4 Quantitative Analysis

Reference Recall. We evaluated the models’ percep-
tion of global context by calculating the recall for iden-
tifying reference relationships of code objects. We sam-
pled 20 objects from each of 9 repositories and com-

Total Human Model Win Rate

Transformers 150 45 105 0.70
LlamaIndex 150 13 137 0.91

Table 1: Results of human preference test on human-
authored and model-generated code documentation.

pared 3 documentation generation methods for their
recall in global caller and callee identification. The
comparison methods included a machine learning based
method that uses LSTM for comment generation (Iyer
et al., 2016), long context concatenation leveraging
LLMs with up to 128k context lengths to process en-
tire project codes for identifying calling relationships,
single-object generation method that only provides code
snippets to LLMs.

Figure 6 demonstrates the recall for identifying refer-
ence relationships. The machine learning based method
is unable to identify reference relationships, whereas
the Single-object method partially identifies callees but
not callers. The Long Context method, despite offering
extensive code content, achieves only partial and non-
comprehensive recognition of references, with recall
declining as context increases. In contrast, our approach
utilizes deterministic tools Jedi and bi-directional pars-
ing to accurately convey global reference relationships,
effectively overcoming the scope limitations that other
methods encounter in generating repository-level code
documentation.

Figure 6: Recall for identifying reference relationships.

Format Alignment. Adherence to the specified for-
mat is critical in documentation generation. The gen-
erated documentation should consist of 5 basic parts,
where the Examples is dynamic, depending on whether
the code object has a return value or not. We evalu-
ated the ability of LLMs to adhere to the format using
all 9 repositories, the results are shown in Figure 7.
Large models like GPT series and Llama-2-70b per-
form very well in format alignment, while the smaller
model Llama-2-7b performs poorly, especially in terms
of the examples.
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Repository Llama-2-7b Llama-2-70b gpt-3.5-turbo gpt-4-0125

unoconv 0.0000 0.5000 1.0000 1.0000
simdjson 0.4298 0.6336 1.0000 0.9644
greenlet 0.5000 0.7482 0.9252 0.9615
code2flow 0.5145 0.6171 0.9735 0.9803
AutoGen 0.3049 0.5157 0.8633 0.9545
AutoGPT 0.4243 0.5611 0.8918 0.9527
ChatDev 0.5387 0.6980 0.9164 0.9695
MemGPT 0.4582 0.5729 0.9285 0.9911
MetaGPT 0.3920 0.5819 0.9066 0.9708

Table 2: Accuracy of identifying function parameters with different LLMs as backends.

Figure 7: Format alignment accuracy of different LLMs.

Parameter Identification. We further evaluated the
models’ capability to identify parameters on all 9 reposi-
tories, the results are shown in Table 2. It is worth noting
that we report the accuracy instead of recall, because
models may hallucinate non-existent parameters, which
should be taken into account. As seen in the table, the
GPT series significantly outperforms the LLaMA series
in parameter identification, and gpt-4-0125 performs
the best.

4 Related Work

Code Summarization. The field focuses on generat-
ing succinct, human-readable code summaries. Early
methods were rule-based or template-driven (Haiduc
et al., 2010; Sridhara et al., 2010; Moreno et al., 2013;
Rodeghero et al., 2014). With advancements in ma-
chine learning, learning-based approaches like CODE-
NN, which utilize LSTM units, emerged for summary
creation (Iyer et al., 2016). The field further evolved
with attention mechanisms and transformer models, sig-
nificantly enhancing the ability to model long-range
dependencies (Allamanis et al., 2016; Vaswani et al.,
2017), indicating a shift towards more context-aware
and flexible summarization techniques.

LLM Development. The development and applica-
tion of LLMs have revolutionized both NLP and soft-
ware engineering fields. Initially, the field was trans-
formed by masked language models like BERT (Devlin

et al., 2019), followed by advancements in encoder-
decoder models, such as the T5 series (Raffel et al.,
2020), and auto-regressive models like the GPT se-
ries (Radford et al., 2018). Auto-regressive models,
notable for their sequence generation capabilities, have
been effectively applied in code generation (Nijkamp
et al., 2023; Li et al., 2023; Chen et al., 2021; Rozière
et al., 2023; Xu et al., 2024), code summarization (Sun
et al., 2023), and documentation generation (Wang et al.,
2023; Khan and Uddin, 2022), highlighting their versa-
tility in programming and documentation tasks. Concur-
rently, LLM-based agents have become ubiquitous (XA-
gent, 2023; Qin et al., 2024; Lyu et al., 2023; Ye et al.,
2023; Qin et al., 2023), especially in software engineer-
ing (Chen et al., 2024; Qian et al., 2023; Hong et al.,
2024), facilitating development through role-play and
the automatic generation of agents (Wu et al., 2023),
thereby enhancing repository-level code understanding,
generation and even debugging (Tian et al., 2024). With
the development of LLM-based agents, repository-level
documentation generation become solvable as an agent
task.

5 Conclusion and Discussion
In this paper, we introduce REPOAGENT, an open
source framework designed to generate fine-grained
repository-level code documentation, facilitating im-
proved team collaboration. The experimental results
suggest that REPOAGENT is capable of generating and
proactively maintaining high-quality documentation for
the entire project. REPOAGENT is expected to free de-
velopers from this tedious task, thereby improving their
productivity and innovation potential.

In future work, we consider how to effectively uti-
lize this tool and explore ways to apply REPOAGENT
to a broader range of downstream applications in the
future. To this end, we believe that chatting can serve as
a natural tool for establishing a communication bridge
between code and humans. Currently, by employing our
approach with retrieval-augmented generation, which
combines code, documentation, and reference relation-
ships, we have achieved preliminary results in what we
called “Chat With Repo”, which marks the advent of a
novel coding paradigm.
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Limitations

Programming Language Limitations. REPOAGENT
currently relies on the Jedi reference recognition tool,
limiting its applicability exclusively to Python projects.
A more versatile, open-source tool that can adapt to
multiple programming languages would enable broader
adoption across various codebases, which will be ad-
dressed in future iterations.

Requirement for Human Oversight. AI-generated
documentation may still require human review and
modification to ensure its accuracy and completeness.
Technical intricacies, project-specific conventions, and
domain-specific terminology may necessitate manual
intervention to enhance the quality of generated docu-
mentation.

Dependency on Language Model Capabilities. The
performance of REPOAGENT significantly depends on
the backend LLMs and associated technologies. Al-
though current results have shown promising progress
with API-based LLMs like GPT series, the long-term
stability and sustainability of using open-source models
still require further validation and research.

Lack of Standards for Evaluation. It is difficult to
establish a unified quantitative evaluation method for the
professionalism, accuracy, and standardization of gener-
ated documentation. Furthermore, it is worth noting that
the academic community currently lacks benchmarks
and datasets of exemplary human documentation. Addi-
tionally, the subjective nature of documentation further
limits current methods in terms of quality assessment.

Broader Impact

Enhancing Productivity and Innovation. REPOA-
GENT automates the generation, update and mainte-
nance of code documentation, which is traditionally
a time-consuming task for developers. By freeing de-
velopers from this burden, our tool not only enhances
productivity but also allows more time for creative and
innovative work in software development.

Improving Software Quality and Collaboration.
High-quality documentation is crucial for understand-
ing, using, and contributing to software projects, fa-
cilitating developers’ swift comprehension of projects.
REPOAGENT ’s ability ensures long-term high consis-
tency in code documentation. We posit that integrating
REPOAGENT closely with the project development pro-
cess can introduce a new paradigm for standardizing
and making repositories more readable. This, in turn, is
expected to stimulate active community contributions
and rapid development with higher overall quality of
software projects.

Educational Benefits. REPOAGENT can serve as an
educational tool by providing clear and consistent docu-
mentation for codebases, making it easier for students

and novice programmers to learn software development
practices and understand complex codebases.

Bias and Inaccuracy. While REPOAGENT aims to
generate high-quality documentation, there’s a potential
risk of generating biased or inaccurate content due to
model hallucination.

Security and Privacy Concerns. Currently, REPOA-
GENT mainly relies on remote API-based LLMs, which
will have the opportunity to access users’ code data.
This may raise security and privacy concerns, especially
for proprietary software. Ensuring data protection and
secure handling of the code is crucial.
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A Appendix: Experimental Details
A.1 Implementation Details
Table 3 presents the detailed statistics of the selected repositories and the token costs associated with the production
of initial documentation. The inclusion of global information, such as the project’s directory structure and
bidirectional references, leads to significantly longer prompts, as detailed in Appendix C). Despite this, the resulting
documentation is thorough yet concise, typically ranging between 0.4k and 1k tokens in length.

During the actual generation process, we addressed the issue of varying text lengths across different models.
When using models with shorter context lengths (e.g., gpt-3.5-turbo and the LLaMA series), REPOAGENT
adaptively switches to models with larger context lengths (e.g., gpt-3.5-16k or gpt-4-32k) based on the current
prompt’s length, to cope with the token overhead of incorporating global perspectives. In cases where even these
models’ limits are exceeded, REPOAGENT truncates the content by simplifying the project’s directory structure
and removing bidirectional reference code before reinitiating the documentation generation task. Such measures
are infrequent when employing models with the longest contexts (128k), such as gpt-4-1106 or gpt-4-0125.
This dynamic scheduling strategy, combined with variable network conditions, may influence token consumption.
Nevertheless, REPOAGENT ensures the integrity of the documentation while striving for cost-effectiveness to the
greatest extent.

A.2 Settings
A.2.1 Technical Environment
All experiments were conducted within a Python 3.11.4 environment. The system had CUDA 11.7 installed and was
equipped with 8 NVIDIA A100 40GB GPUs.

A.2.2 Human Evaluation Protocol
We recruited three human evaluators to assess the code documentation generated by REPOAGENT, and instructed
all human evaluators to give an overall evaluation considering a set of evaluation criteria shown in Table 4. We
randomly sampled 150 pieces of documentation from the repository. Subsequently, each human evaluator was
assigned 50 pairs of documentation, each containing one human-authored and one model-generated documentation.
The human evaluators were required to select the better documentation for each pair.

A.2.3 Reference Recall
The experiment aims to evaluate the model’s ability to perceive global context, which is reflected by the recall for
identifying reference relationships. The comparison methods are:

1. ML-based method. Iyer et al. (2016) utilized traditional machine learning and deep learning methods for
generating comments describing the functionality of code objects.

2. Long context concatenation. The method directly concatenates the code snippets until the context length
reaches 128k to let the model discover reference relationships.

3. Single-object generation. Sun et al. (2023) used the GPT-3.5 series to generate documentation by directly
feeding code snippets of the target object. We modified the prompt on this basis, adding requirements for
outputting the callers and callees.

Notably, among these methods, only the ML-based approach failed to explicitly or implicitly manifest call
relationships in the final document. While it is inherently challenging for a code snippet to discern its invocation
throughout the entire repository, the code typically elucidates the current object’s calls explicitly. To measure the
recall of callers and callees, we enhanced the original documentation by adding information about the calling
functions (callers) and the called functions (callees). Then we compared the enriched documentation with our
bidirectional reference data from MetaInfo.

For long context concatenation, we randomly selected 20 objects from each of the 9 repositories, culminating
in a total of 180 objects. Given the intricate nature of defining context construction criteria for repository-level
documentation generation tasks, we circumvented direct concatenation of adjacent and file-adjacent context content.
Instead, we formulated negative samples by extracting all objects with reference relationships to fulfill the context
length. Leveraging the content of objects and negative sample content, we devised context lengths for the 180 objects,
spanning from 29 to 6.0k Code Lines. This approach aimed to optimize the distribution of context lengths while
maximizing the utilization of the model’s context length. In the case of single-object generation method, we utilized
the same pool of 180 objects, providing the model with object source code snippets to generate documentation and
elucidate reference relationships.

During the evaluation of both the Long Context Concatenation and Single-object Generation methods, we provided
the model with tree-structured hierarchical position information for target objects and their related counterparts.
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This additional information was intended to help the model in better identifying callers and delineating them in a
path form. Despite this assistance, the model’s misinterpretations exacerbated as the context length increased, and
the Single-object Generation method yielded a substantial amount of speculative information, resulting in unstable
and inaccurate caller relationship recognition.

A.2.4 Format Alignment
The experiment evaluates whether the model-generated documentation follows the defined format. LLMs generally
excel in instruction following, but the complexity of our task requires models to grasp core intents within lengthy
prompts, posing a challenge. We use a one-shot approach with strict output examples, enabling evaluation of
model answers through format matching algorithms. Specifically, we mandate that section titles be enclosed in
bold symbols, ensure clear divisions between sections, and require contents within sections to be extractable and
meaningful.

We observed the shortcomings of open-source models (LLaMA series) in their ability to adhere to formatting.
In contrast, the GPT-4 series models excellently achieve format integrity and stability. We also observed behav-
ioral differences between gpt-4-0125 and gpt-4-1106 models, the former appeared to produce more redundant
information.

Format alignment can also be achieved with perfect accuracy using hierarchical or modular generation methods.
However, this approach introduces a significant token overhead since each independent module must encom-
pass complete global information and invocation relationships. Current method has demonstrated satisfactory
performance on format alignment, meeting human readability standards effectively.

A.2.5 Parameter Identification
Accurately identifying and describing parameters or attributes (depending on whether the current object is a function
or a class) in code is crucial as it helps readers quickly understand the design logic and usage. We extracted
recognized parameters from the Parameters section using a matching pattern: parameters follow a uniform and fixed
format, with the parameter name enclosed in code identifiers followed by the parameter’s descriptive text.

We organized the extracted parameters into arrays and calculated accuracy by comparing them with the values
in the params field (also an array) of the Repository’s MetaInfo. It is important to note that we were calculating
accuracy here, not recall. This is because some models may hallucinate many nonexistent parameters based on the
code snippets. These errors must be taken into consideration, otherwise they will result in biased evaluations.
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Repository Model Prompt Tokens Completion
Tokens

Class
Numbers

Function
Numbers Code Lines

unoconv

gpt-4-0125 4020 2550

0 1 ≤1kgpt-3.5-turbo 2743
Llama-2-7b 1180 2916
Llama-2-70b 437

simdjson

gpt-4-0125 45344 35068

6 55 ≤ 1kgpt-3.5-turbo 29736
Llama-2-7b 49615 27562
Llama-2-70b 32961

greenlet

gpt-4-0125 86587 79113

59 319 1k ≤ 10kgpt-3.5-turbo 260464
Llama-2-7b 33177 31561
Llama-2-70b 225595

code2flow

gpt-4-0125 185511 134462

51 257 1k ≤ 10kgpt-3.5-turbo 234101
Llama-2-7b 354574 431761
Llama-2-70b 187835

AutoGen

gpt-4-0125 4939388 516975

64 590 1k ≤ 10kgpt-3.5-turbo 288609
Llama-2-7b 889050 630139
Llama-2-70b 410256

AutoGPT

gpt-4-0125 4116296 888223

318 1170 ≥ 10kgpt-3.5-turbo 799380
Llama-2-7b 1838425 1893041
Llama-2-70b 927946

ChatDev

gpt-4-0125 2021168 602474

183 729 ≥ 10kgpt-3.5-turbo 519226
Llama-2-7b 1122400 946131
Llama-2-70b 531838

MemGPT

gpt-4-0125 628482 345109

74 478 ≥ 10kgpt-3.5-turbo 234101
Llama-2-7b 742591 740783
Llama-2-70b 352940

MetaGPT

gpt-4-0125 154364 111159

291 885 ≥ 10kgpt-3.5-turbo 134101
Llama-2-7b 1904244 2265991
Llama-2-70b 1009996

Table 3: Statistics for the selected repositories and the token consumption for documentation generation. Note that
token count calculation varies with each model’s tokenizer, rendering direct comparisons between different models
impractical.
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Criteria Details

Accuracy

Correctness: Verify if the documentation accurately describes the code’s functionality,
algorithms, and expected behavior under various conditions.

Precision: Assess whether the documentation provides precise and unambiguous
information regarding the code’s operations, parameters, and expected outcomes.

Alignment with Codebase: Ensure that the documentation aligns closely with the
actual implementation of the code, including any updates or changes made to the
codebase.

Completeness

Coverage: Evaluate if the documentation comprehensively covers all significant
aspects of the code, including inputs, outputs, error handling, edge cases, and any
potential exceptions.

In-depth Explanation: Determine if the documentation delves into detailed explana-
tions of complex functionalities or algorithms, providing insights into the underlying
logic.

Documentation of External Dependencies: Check if the documentation adequately
addresses any external libraries, modules, or APIs used within the codebase.

Understandability

Clarity: Assess the clarity and readability of the documentation, ensuring that it is
easily understandable by developers of varying expertise levels.

Conciseness: Determine if the documentation conveys information concisely without
unnecessary verbosity or technical jargon that might hinder comprehension.

Structured Organization: Evaluate if the documentation is logically organized, with
clear headings, sections, and navigation aids for easy reference and comprehension.

Consistency

Formatting Consistency: Ensure consistency in the formatting, styling, and layout of
the documentation across all sections and pages.

Terminology Consistency: Verify that consistent terminology and naming conventions
are used throughout the documentation to maintain coherence and clarity.

Style Guide Adherence: Assess if the documentation adheres to any predefined style
guides or conventions established by the project or organization.

Relevance

Content Relevance: Determine if the information provided in the documentation is
directly relevant to the code’s functionality, purpose, and usage scenarios.

Avoidance of Redundancy: Check for redundancy or repetition within the docu-
mentation, eliminating any extraneous or irrelevant details that do not contribute to
understanding the code.

Examples and Usage

Code Samples: Evaluate if the documentation includes sufficient code samples, snip-
pets, or examples to illustrate the usage and implementation of key functionalities.

Use Cases: Assess if the documentation provides real-world use cases or scenarios
where the code can be applied, demonstrating its practical utility and versatility.

Step-by-Step Instructions: Determine if the documentation offers clear, step-by-step
instructions or tutorials for integrating, configuring, and utilizing the code in different
environments or applications.

Table 4: Detailed criteria for human evaluation.
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B Appendix: More Cases of Generated Documentation

B.1 Documentation Showcases

In this section, we showcase additional generated documentation to validate the practical application of REPOAGENT
. The included images are direct screenshots from the documentation of two open-source projects, ChatDev and
AutoGen. Our intent is to provide readers with a detailed and panoramic view of how our method is utilized in
real-world scenarios, thereby offering a deeper understanding of its effectiveness and versatility.

(a)

(b)
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(c)

(d)
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(e)

(f)452



(g)

(h)

Figure 8: Samples of code documentation generated by REPOAGENT for the ChatDev repository.
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C Appendix: Full Prompts

C.1 A full prompt of ask_user method in AutoGPT

You are an AI documentation assistant, and your task is to generate documentation based on the given
code of an object. The purpose of the documentation is to help developers and beginners understand
the function and specific usage of the code.

Currently, you are in a project, and the related hierarchical structure of this project is as follows
(The current object is marked with an *):
autogpts

autogpt
autogpt

commands
user_interaction.py

ask_user
*ask_user

The path of the document you need to generate in this project is:
autogpts/autogpt/autogpt/commands/user_interaction.py/ask_user.

Now you need to generate a document for a Function, whose name is "ask_user".

The content of the code is as follows:

async def ask_user(question: str, agent: Agent) -> str:
print(f"\nQ: {question}")
resp = await clean_input(agent.legacy_config, "A:")
return f"The user's answer: '{resp}'"

As you can see, the code calls the following objects, their code and docs are as following:

OBJ_NAME: clean_input
OBJ_PATH: autogpts/autogpt/autogpt/app/utils.py/clean_input

Document:
**Function Name**: clean_input

**Parameters**:
- `config`: An instance of the `Config` class, which holds the configuration settings for the
application.
- `prompt`: A string that represents the prompt to be displayed to the user. It defaults to an empty
string if not provided.

**Code Description**:
The `clean_input` function is an asynchronous function designed to process user input in a
chat-enabled application environment. It performs several key operations based on the application's
configuration and the plugins that are enabled.

1. **Plugin Handling**: If chat messages are enabled in the application configuration
(`config.chat_messages_enabled`), the function iterates through each plugin configured in the
application. For each plugin, it checks if the plugin can handle user input
(`can_handle_user_input`). If so, it invokes the plugin's `user_input` method with the user's
prompt. Depending on the plugin's response, the function may return specific keys
(`config.authorise_key` or `config.exit_key`) or the plugin's response directly.

2. **User Input Collection**: If the application is not handling the input through plugins or if
chat messages are not enabled, the function logs a debug message indicating that it is waiting for
user input via the keyboard. It then asynchronously waits for the user's input, ensuring that the
application's signal handler for interrupt signals (`SIGINT`) is not overridden. This is crucial for
allowing the application to handle interrupt signals as configured elsewhere in the application,
particularly in `autogpt/main.py`.

3. **Interrupt Handling**: The function is equipped to handle a `KeyboardInterrupt` exception, which
occurs when the user attempts to interrupt the application (typically by pressing Ctrl+C). In such
cases, it logs a message indicating that the user has interrupted AutoGPT and that the application
is quitting, and then exits the application with a status code of 0.
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**Note**:
- The function's ability to handle plugins dynamically allows for a flexible and extensible
architecture where different plugins can be developed and integrated to process user input in
various ways.
- The use of asynchronous I/O (`await session.prompt_async`) for collecting user input makes the
function suitable for asynchronous applications, ensuring that the application remains responsive.
- Proper handling of `KeyboardInterrupt` ensures a graceful shutdown of the application when the
user decides to interrupt the execution.

**Output Example**:
- If a plugin processes the input and responds with "yes", the function might return the value of
`config.authorise_key`.
- If the user inputs "Hello" and no plugins are handling the input, the function returns "Hello".
- If the user interrupts the application, no output is returned as the application exits.

[Code begin of clean_input]
```
async def clean_input(config: Config, prompt: str = ""):

try:
if config.chat_messages_enabled:

for plugin in config.plugins:
if not hasattr(plugin, "can_handle_user_input"):

continue
if not plugin.can_handle_user_input(user_input=prompt):

continue
plugin_response = plugin.user_input(user_input=prompt)
if not plugin_response:

continue
if plugin_response.lower() in [

"yes",
"yeah",
"y",
"ok",
"okay",
"sure",
"alright",

]:
return config.authorise_key

elif plugin_response.lower() in [
"no",
"nope",
"n",
"negative",

]:
return config.exit_key

return plugin_response

# ask for input, default when just pressing Enter is y
logger.debug("Asking user via keyboard...")

# handle_sigint must be set to False, so the signal handler in the
# autogpt/main.py could be employed properly. This referes to
# https://github.com/Significant-Gravitas/AutoGPT/pull/4799/files/
3966cdfd694c2a80c0333823c3bc3da090f85ed3#r1264278776
answer = await session.prompt_async(ANSI(prompt + " "), handle_sigint=False)
return answer

except KeyboardInterrupt:
logger.info("You interrupted AutoGPT")
logger.info("Quitting...")
exit(0)

```==========
[Code end of clean_input]

Also, the code has been called by the following objects, their code and docs are as following:

OBJ_NAME: execute_step
OBJ_PATH: autogpts/autogpt/autogpt/app/agent_protocol_server.py/ AgentProtocolServer/execute_step
Document:
None
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[Code begin of execute_step]
```

async def execute_step(self, task_id: str, step_request: StepRequestBody) -> Step:
"""Create a step for the task."""
logger.debug(f"Creating a step for task with ID: {task_id}...")

# Restore Agent instance
task = await self.get_task(task_id)
agent = configure_agent_with_state(

state=self.agent_manager.retrieve_state(task_agent_id(task_id)),
app_config=self.app_config,
llm_provider=self._get_task_llm_provider(task),

)

# According to the Agent Protocol spec, the first execute_step request contains
# the same task input as the parent create_task request.
# To prevent this from interfering with the agent's process, we ignore the input
# of this first step request, and just generate the first step proposal.
is_init_step = not bool(agent.event_history)
execute_command, execute_command_args, execute_result = None, None, None
execute_approved = False

# HACK: only for compatibility with AGBenchmark
if step_request.input == "y":

step_request.input = ""

user_input = step_request.input if not is_init_step else ""

if (
not is_init_step
and agent.event_history.current_episode
and not agent.event_history.current_episode.result

):
execute_command = agent.event_history.current_episode.action.name
execute_command_args = agent.event_history.current_episode.action.args
execute_approved = not user_input

logger.debug(
f"Agent proposed command"
f" {execute_command}({fmt_kwargs(execute_command_args)})."
f" User input/feedback: {repr(user_input)}"

)

# Save step request
step = await self.db.create_step(

task_id=task_id,
input=step_request,
is_last=execute_command == finish.__name__ and execute_approved,

)
agent.llm_provider = self._get_task_llm_provider(task, step.step_id)

# Execute previously proposed action
if execute_command:

assert execute_command_args is not None
agent.workspace.on_write_file = lambda path: self._on_agent_write_file(

task=task, step=step, relative_path=path
)

if step.is_last and execute_command == finish.__name__:
assert execute_command_args
step = await self.db.update_step(

task_id=task_id,
step_id=step.step_id,
output=execute_command_args["reason"],

)
logger.info(

f"Total LLM cost for task {task_id}: "
f"${round(agent.llm_provider.get_incurred_cost(), 2)}"

)
return step
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if execute_command == ask_user.__name__: # HACK
execute_result = ActionSuccessResult(outputs=user_input)
agent.event_history.register_result(execute_result)

elif not execute_command:
execute_result = None

elif execute_approved:
step = await self.db.update_step(

task_id=task_id,
step_id=step.step_id,
status="running",

)
# Execute previously proposed action
execute_result = await agent.execute(

command_name=execute_command,
command_args=execute_command_args,

)
else:

assert user_input
execute_result = await agent.execute(

command_name="human_feedback", # HACK
command_args={},
user_input=user_input,

)

# Propose next action
try:

next_command, next_command_args, raw_output = await agent.propose_action()
logger.debug(f"AI output: {raw_output}")

except Exception as e:
step = await self.db.update_step(

task_id=task_id,
step_id=step.step_id,
status="completed",
output=f"An error occurred while proposing the next action: {e}",

)
return step

# Format step output
output = (

(
f"`{execute_command}({fmt_kwargs(execute_command_args)})` returned:"
+ ("\n\n" if "\n" in str(execute_result) else " ")
+ f"{execute_result}\n\n"

)
if execute_command_args and execute_command != ask_user.__name__
else ""

)
output += f"{raw_output['thoughts']['speak']}\n\n"
output += (

f"Next Command: {next_command}({fmt_kwargs(next_command_args)})"
if next_command != ask_user.__name__
else next_command_args["question"]

)

additional_output = {
**(

{
"last_action": {

"name": execute_command,
"args": execute_command_args,
"result": (

orjson.loads(execute_result.json())
if not isinstance(execute_result, ActionErrorResult)
else {

"error": str(execute_result.error),
"reason": execute_result.reason,

}
),

},
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}
if not is_init_step
else {}

),
**raw_output,

}

step = await self.db.update_step(
task_id=task_id,
step_id=step.step_id,
status="completed",
output=output,
additional_output=additional_output,

)

logger.debug(
f"Running total LLM cost for task {task_id}: "
f"${round(agent.llm_provider.get_incurred_cost(), 3)}"

)
agent.state.save_to_json_file(agent.file_manager.state_file_path)
return step

```==========
[Code end of execute_step]

Please generate a detailed explanation document for this object based on the code of the target
object itself and combine it with its calling situation in the project.

Please write out the function of this Function in bold plain text, followed by a detailed analysis
in plain text (including all details), in language English to serve as the documentation for this
part of the code.

The standard format is as follows:

**ask_user**: The function of ask_user is XXX
**parameters**: The parameters of this Function.
- parameter1: XXX
- parameter2: XXX
- ...
**Code Description**: The description of this Function.
(Detailed and CERTAIN code analysis and description...None)
**Note**: Points to note about the use of the code
**Output Example**: Mock up a possible appearance of the code's return value.

Please note:
- Any part of the content you generate SHOULD NOT CONTAIN Markdown hierarchical heading and divider
syntax.
- Write mainly in the desired language. If necessary, you can write with some English words in the
analysis and description to enhance the document's readability because you do not need to translate
the function name or variable name into the target language.

Keep in mind that your audience is document readers, so use a deterministic tone to generate precise
content and don't let them know you're provided with code snippet and documents. AVOID ANY
SPECULATION and inaccurate descriptions! Now, provide the documentation for the target object in
English in a professional way.

D Appendix: Chat With Repo

Moving beyond documentation generation, we are actively exploring how best to use REPOAGENT and examining
its potential for a broader range of downstream applications in the future. We categorize these applications as:

• README.md Generation

• Automatic Q&A for Issues and Source Codes

• Unit Test Generation

• Automated Development of New Features
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• Repo Level Debugging

• Generation of Public Tutorial Documentation

We conceptualize “Chat With Repo” as a unified gateway for these downstream applications, acting as a
connector that links REPOAGENT to human users and other AI agents. Our future research will focus on adapting
the interface to various downstream applications and customizing it to meet their unique characteristics and
implementation requirements.

Here we demonstrate a preliminary prototype of Automatic Q&A for Issues and Code Explanation. A running
example is shown in Figure 10. The program begins by pre-vectorizing code documentation and storing it in a
vector database. When a query request is received, it is transformed into an embedding vector for fetching relevant
documentation information from the database. This is followed by using the documentation’s MetaInfo to locate
the pertinent source code, effectively retrieving relevant sections of both documentation text and source code.
Moreover, beyond embedding search, a multi-way recall mechanism has been developed, incorporating entity
recognition with keyword search. This involves extracting code entities from the user’s question using a LLM, and
conducting searches across documentation and code repositories to match the top K returned documentation and
code blocks. A weighting module has been developed for recalling the most relevant information. Additionally,
we input directory tree information to help the model better understand the entire repository. The final step is to
concatenate documentation and code blocks retrieved through both mechanisms, along with the target object’s
parent code, referencing code, and directory tree information, into a prompt for the LLM to generate answers. This
sophisticated RAG-based retrieval system bridges human natural language with code language, enabling precise
recall at the repository level and paving the way for downstream applications.

Figure 10: Demonstration of Automatic Q&A for Issues and Code Explanation by the “Chat With Repo” interface.
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A real world “Chat With Repo” example with input and output is shown as follows.

Query

How would you modify the update\_chat\_env function to track changes in the chat environment?

Answer

To modify the `update_chat_env` function to track changes in the chat environment, you would need to
add a mechanism to store the state of the chat environment before and after the update. This could
be achieved by creating a copy of the chat environment before the update and comparing it with the
state of the chat environment after the update. Here's a simple example of how you could modify the
function:

```python
def update_chat_env(self, chat_env):

# Create a copy of the chat environment before the update
pre_update_env = copy.deepcopy(chat_env)

# Update the chat environment as per your requirements
# This is where you would add your update logic

# Compare the pre-update and post-update chat environments
if pre_update_env != chat_env:

print("Chat environment has been updated.")
else:

print("Chat environment has not been changed.")

return chat_env
```

In this example, the `copy.deepcopy` function is used to create a deep copy of the `chat_env`
object. This ensures that changes to the `chat_env` object after the copy do not affect the
`pre_update_env` object. After the update, the `pre_update_env` and `chat_env` objects are
compared. If they are not equal, this means that the chat environment has been updated.

Please note that this is a simple example and the actual implementation may vary depending on the
specific requirements of your project. For instance, you might want to log the changes in a file
instead of printing them, or you might want to use a more sophisticated method for comparing the
chat environments.

Embedding Recall

1.
**Function Name**: `update_phase_env`

**Function of update_phase_env**: The function `update_phase_env` is designed to update the
environment settings of a particular phase in a chat development context by incorporating various
elements from a given chat environment object.

**Parameters**: The parameters of this function include:
- `self`: Represents the instance of the class where the `update_phase_env` function resides. It
allows the function to access the attributes and methods of the class instance.
- `chat_env`: An object that contains the environment settings for the chat. It is expected to have
an attribute `env_dict` which is a dictionary containing keys such as 'task_prompt', 'modality',
'ideas', and 'language'. Additionally, `chat_env` should have methods `get_codes` and
`get_requirements` that return specific information related to codes and requirements.

**Code Description**: The `update_phase_env` function performs the following actions:
1. Accesses the `phase_env` attribute of the class instance (indicated by `self`) which is
presumably a dictionary meant to store environment settings for a particular phase of the chat
development process.
2. Calls the `update` method on `self.phase_env` to modify its contents.
3. Constructs a new dictionary with the following keys and values:

- `"task"`: Set to the value associated with the `'task_prompt'` key in the `chat_env.env_dict`
dictionary.
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- `"modality"`: Set to the value associated with the `'modality'` key in the `chat_env.env_dict`
dictionary.
- `"ideas"`: Set to the value associated with the `'ideas'` key in the `chat_env.env_dict`
dictionary.
- `"language"`: Set to the value associated with the `'language'` key in the `chat_env.env_dict`
dictionary.
- `"codes"`: Obtained by calling the `get_codes` method on the `chat_env` object.
- `"requirements"`: Obtained by calling the `get_requirements` method on the `chat_env` object.

4. The dictionary created in step 3 is then used to update the `self.phase_env` dictionary,
effectively merging the new settings with any existing ones.

**Note**: When using the `update_phase_env` function, it is important to ensure that the `chat_env`
object passed as a parameter is properly initialized and contains all the necessary attributes and
methods. The `env_dict` attribute must include the keys 'task_prompt', 'modality', 'ideas', and
'language', and the object must have the `get_codes` and `get_requirements` methods implemented.
Failure to meet these conditions may result in a `KeyError` or `AttributeError`. Additionally, this
function mutates the state of the `self.phase_env` dictionary, so any changes made will persist in
the instance of the class where this function is called.
2.
**CodeReviewModification**: The function of the `CodeReviewModification` class is to manage the
phase of code review modifications within a chat development environment. It inherits from a base
`Phase` class and is designed to update the environment with information relevant to the code review
and modification process.

**Attributes**: The attributes of this Class are inherited from the `Phase` class and any that are
added or modified within this class.
- `phase_env`: A dictionary attribute inherited from `Phase` that stores environment variables
relevant to the current phase.
- `seminar_conclusion`: Although not explicitly defined in the provided code, it is implied that
this attribute is used to store the conclusion of a seminar or review session.

**Code Description**: The `CodeReviewModification` class contains two main methods:

1. `update_phase_env(self, chat_env)`: This method updates the `phase_env` dictionary with
information from the `chat_env` object. It extracts the task prompt, modality, ideas, language,
codes, and review comments from `chat_env` and adds them to the `phase_env`. This method is crucial
for ensuring that the phase environment reflects the current state of the chat environment, which is
necessary for the code review and modification process.

2. `update_chat_env(self, chat_env) -> ChatEnv`: This method updates the `chat_env` object based on
the content of the `seminar_conclusion` attribute. If the `seminar_conclusion` contains code blocks
(indicated by triple backticks), it updates the codes in `chat_env` and rewrites them with a message
indicating the completion of a review cycle. It also logs software information by calling
`log_visualize` with details from the `chat_env` and `log_filepath`. Finally, it updates the
`phase_env` with the `seminar_conclusion` and returns the updated `chat_env`.

**Note**: Points to note about the use of the code:
- The `chat_env` parameter is expected to be an object that contains an `env_dict` with keys such
as 'task_prompt', 'modality', 'ideas', 'language', and 'review_comments', as well as methods like
`get_codes()` and `update_codes()`.
- The `seminar_conclusion` attribute must be set before calling `update_chat_env` as it uses this
attribute to update the `chat_env`.
- The `log_visualize` function and `get_info` function are not defined within the provided code
snippet, so they should be implemented elsewhere in the project or imported from a module.
- The `ChatEnv` return type suggests that there is a `ChatEnv` class defined elsewhere in the
project, which should be used in conjunction with this class.

3.
**chatting**: The function of `chatting` is to conduct a simulated chat session between two roles
within a software development environment, with the goal of reaching a conclusion on a specific
phase of the project.

**Parameters**:
- `chat_env`: The global chat environment which contains configurations and context for the chat
session.
- `task_prompt`: A string representing the user's query or task that needs to be addressed during
the chat.
- `assistant_role_name`: The name of the role assumed by the assistant in the chat.
- `user_role_name`: The name of the role assumed by the user initiating the chat.
- `phase_prompt`: A string containing the prompt for the current phase of the chat.
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- `phase_name`: The name of the current phase of the chat.
- `assistant_role_prompt`: The prompt associated with the assistant's role.
- `user_role_prompt`: The prompt associated with the user's role.
- `task_type`: An enumeration value representing the type of task being simulated in the chat.
- `need_reflect`: A boolean indicating whether the chat session requires reflection to generate a
conclusion.
- `with_task_specify`: A boolean indicating whether the task needs to be specified within the chat.
- `model_type`: An enumeration value indicating the type of language model to be used for generating
responses.
- `placeholders`: A dictionary containing placeholders that can be used to fill in the phase
environment for generating the phase prompt.
- `chat_turn_limit`: An integer representing the maximum number of turns the chat session can have.

**Code Description**:
The `chatting` function starts by ensuring that the `placeholders` argument is not `None` and that
the `chat_turn_limit` is within an acceptable range (1 to 100). It then checks if the roles
specified by `assistant_role_name` and `user_role_name` exist within the `chat_env`.

A `RolePlaying` session is initialized with the provided role names, prompts, task type, and model
type. The function then begins the chat session by initializing the first user message using the
`init_chat` method of the `RolePlaying` session.

The chat session proceeds in turns, where each turn consists of the user sending a message to the
assistant and the assistant responding. The messages and responses are generated by interacting with
a language model (LLM). The conversation is logged using a `log_visualize` function, which is not
defined within the provided code snippet.

During the chat, the function looks for a special `<INFO>` marker in the conversation, which
indicates a significant conclusion has been reached. If such a conclusion is found, or if the chat
is terminated, the loop ends.

If the `need_reflect` flag is set, the function may call `self_reflection` to generate a conclusion
if one has not been reached during the chat session. The reflection is based on the entire
conversation history and the context of the phase.

Finally, the function logs the seminar conclusion, extracts the relevant part after the `<INFO>`
marker, and returns it as the result of the chat session.

**Note**:
- The function assumes that the `chat_env` has methods `exist_employee` to check for the existence
of roles.
- The `RolePlaying` class is used to simulate the chat session and is expected to have methods like
`init_chat` and `step`.
- The `log_visualize` function is used for logging purposes but is not defined within the provided
code snippet.
- The function raises a `ValueError` if the specified roles are not found within the `chat_env`.
- The `self_reflection` method is used for generating reflections and is assumed to be a member of
the same class.

**Output Example**:
If the chat session concludes with a marked conclusion, the function might return something like:
```
"PowerPoint is the best choice for our presentation needs."
```
If the chat session does not reach a marked conclusion but requires reflection, the
`self_reflection` method might return:
```
"Yes"
```
In cases where the chat is terminated without a marked conclusion and no reflection is needed, the
last message from the assistant might be returned as is.
4.
**Function Name**: execute

**Purpose**: The function `execute` is designed to handle a phase of a chat development environment
by updating the environment, checking for module not found errors, resolving them if present, and
conducting a chat session if no such errors are found.

**Parameters**:
- `chat_env`: An instance of `ChatEnv`, which represents the current chat environment.
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- `chat_turn_limit`: An integer indicating the maximum number of turns allowed in the chat session.
- `need_reflect`: A boolean indicating whether reflection is needed in the chat session.

**Code Description**:
The `execute` function begins by updating the phase environment with the current `chat_env`. It
then checks if there is a "ModuleNotFoundError" in the `test_reports` of the `phase_env`. If such
an error is present, it attempts to fix the error by calling `chat_env.fix_module_not_found_error`
and logs the error for visualization.

The function then uses a regular expression to find all instances of the error message indicating a
missing module and constructs a string `pip_install_content` that contains the commands to install
the missing modules using `pip`. This string is also logged for visualization.

If no "ModuleNotFoundError" is found, the function proceeds to conduct a chat session by calling the
`chatting` method with various parameters such as `chat_env`, `task_prompt`, `need_reflect`, role
names, prompts, `chat_turn_limit`, and placeholders. The result of this chat session is stored in
`self.seminar_conclusion`.

After handling the error or conducting the chat session, the function updates the chat environment
with the potentially modified `chat_env` and returns it.

**Note**:
- The function assumes that the `chat_env` object has the methods `fix_module_not_found_error` and
`update_chat_env` implemented.
- The `chatting` method is also assumed to be implemented and is responsible for conducting the chat
session.
- The function uses regular expressions to parse error messages, so it is important that the error
messages follow the expected format for the regular expressions to work correctly.
- The function logs actions for visualization, which implies that a logging mechanism should be in
place for the output to be meaningful.

**Output Example**:
A possible appearance of the code's return value could be an updated `ChatEnv` object with
modifications based on the error handling and chat session conducted within the `execute` function.
The object would reflect the new state of the chat environment after the execution of this function.

Key Words Recall

Key words:
modify, update_chat_env, track

Code:
['\n```python\n def update_chat_env(self, chat_env):\n return chat_env\n\n```']

Code Recall

def update_chat_env(self, chat_env) -> ChatEnv:
chat_env._update_requirements(self.seminar_conclusion)
chat_env.rewrite_requirements()
log_visualize(

"**[Software Info]**:\n\n {}".format(get_info(chat_env.env_dict['directory'],
self.log_filepath)))

return chat_env

def update_chat_env(self, chat_env) -> ChatEnv:
chat_env.update_codes(self.seminar_conclusion)
if len(chat_env.codes.codebooks.keys()) == 0:

raise ValueError("No Valid Codes.")
chat_env.rewrite_codes("Code Complete #" + str(self.phase_env["cycle_index"]) + " Finished")
log_visualize(

"**[Software Info]**:\n\n {}".format(get_info(chat_env.env_dict['directory'],
self.log_filepath)))

return chat_env
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