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Abstract

Multimodal conversational agents are highly
desirable because they offer natural and human-
like interaction. However, there is a lack of
comprehensive end-to-end solutions to sup-
port collaborative development and benchmark-
ing. While proprietary systems like GPT-4o
and Gemini have demonstrated impressive in-
tegration of audio, video, and text with re-
sponse times of 200-250ms, challenges remain
in balancing latency, accuracy, cost, and data
privacy. To better understand and quantify
these issues, we developed OpenOmni, an
open-source, end-to-end pipeline benchmark-
ing tool that integrates advanced technologies
such as Speech-to-Text, Emotion Detection,
Retrieval Augmented Generation, Large Lan-
guage Models, along with the ability to in-
tegrate customized models. OpenOmni sup-
ports local and cloud deployment, ensuring data
privacy and supporting latency and accuracy
benchmarking. This flexible framework allows
researchers to customize the pipeline, focus-
ing on real bottlenecks and facilitating rapid
proof-of-concept development. OpenOmni can
significantly enhance applications like indoor
assistance for visually impaired individuals,
advancing human-computer interaction. Our
demonstration video is available https://www.
youtube.com/watch?v=zaSiT3clWqY, demo
is available via https://openomni.ai4wa.
com, code is available via https://github.
com/AI4WA/OpenOmniFramework.

1 Introduction

Large Language Models (LLMs) (Zhao et al.,
2023; Minaee et al., 2024) demonstrated remark-
able capabilities in understanding user intentions
and following instructions. However, text-only
human-computer interaction (HCI) is often insuf-
ficient (Zhang et al., 2023). OpenAI recently re-
leased their new flagship model, GPT-4o, which
can reason across audio, video, and text in real

time. The impressive performance is achieved with
response times between 200-250ms, which is ac-
ceptable for large-scale applications1. Google soon
followed with their latest multimodal competitors,
indicating a clear trend towards multimodal gener-
ative models and applications2. LLaVA (Liu et al.,
2023) is one of the early publicly available solu-
tions for multimodal large models integrating text
and images. However, there is currently no open
source end-to-end conversational agents implemen-
tation and demonstration publicly available online.

The ideal form of multimodal HCI should mir-
ror human interactions, incorporating video and
audio inputs with audio outputs. Despite the avail-
ability of various modular components, there is
no comprehensive integrated open-source imple-
mentation to foster research and innovation in this
field. Integrating existing models, such as au-
dio speech recognition (Speech2Text), multimodal
large models (MLMs), and text-to-speech synthe-
sis (TTS)—into a multimodal conversation system
reveals significant challenges in balancing latency
and accuracy. Historically, accuracy has been a
major hurdle; however, advancements in large lan-
guage models (LLMs) have substantially improved
contextual relevance. The main challenge is reduc-
ing end-to-end latency while maintaining accuracy.
While OpenAI and Google have shown it’s possi-
ble, the open-source community lacks alternatives
that replicate this performance.

Another issue is data privacy. The GPT-4 fam-
ily of solutions also raise concerns about cost and
data privacy. Since GPT-4 is closed-source, users
must upload their data to the server via a paid API,
raising privacy issues. The privacy policy of GPT3

informs users that various forms of personal in-
formation, including account details, user content,
communication information, and social media data,

1https://openai.com/index/hello-gpt-4o/
2https://blog.google/products/gemini/
3https://www.gpt.com.au/privacy-policy
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Figure 1: Architecture Design for OpenOmni Framework

are collected when users create accounts to access
ChatGPT services (Wu et al., 2024).

To support the rapid and responsible develop-
ment of this new HCI format, establishing robust
evaluation and benchmarking protocols is essential.
For instance, if a user initiates a conversation in
a sad and urgent tone, the system should respond
appropriately with patience. Evaluating this inter-
action is crucial and challenging for widespread
adoption. Our project aims to bridge these gaps by:

• Developing an open-source framework for
end-to-end customizable conversational
agents.

• Providing options for a fully local or control-
lable end-to-end multimodal conversation so-
lution, addressing privacy concerns.

• Setting up tools to annotate and benchmark
latency and accuracy performance, allowing
rapid proof of concept development and re-
search.

To achieve this goal, we propose the OpenOmni
framework, an open-source, end-to-end multi-
modal pipeline that integrates advanced tech-
nologies such as Speech-to-Text (Speech2Text),
Emotion Detection, Retrieval Augmented Gener-
ation (RAG), Large Language Models (LLMs),
and Text-to-Speech (TTS). The framework gath-
ers video and audio data from cameras and micro-
phones, processes it through a customizable agents
pipeline, and responds via a speaker, as illustrated
in Figure 1. OpenOmni can be deployed on a lo-
cal server, ensuring secure data management and
addressing privacy concerns.

For research purposes, it includes tools for easy
annotation and benchmarking, offering real-time
monitoring and performance evaluation of latency.
Users can annotate individual components and

entire conversations, generating comprehensive
benchmark reports to identify bottlenecks. The
open-source nature of OpenOmni allows for adap-
tation across different application domains, such
as aged care, personal assistant, etc. Each pipeline
component can be enabled or disabled based on
specific use cases, facilitating flexible and efficient
deployment. Additionally, the framework supports
the easy addition of extra models, enabling compar-
isons and further experimentation. The OpenOmni
framework allows researchers to focus on solving
critical bottlenecks without reinventing the wheel,
fostering innovation in multimodal conversational
agents. It enables rapid proof-of-concept develop-
ment, such as indoor conversational robots assist-
ing visually impaired individuals.

2 Related works

Solution options Traditional end-to-end multi-
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Figure 2: Traditional divide-and-conquer end-to-end
multimodal conversation system

modal conversation systems, as shown in Figure 2,
typically use a divide-and-conquer strategy, split-
ting the process into sub-tasks: speech-to-text (au-
tomatic speech recognition), image-to-text, text
generation, and text-to-speech (Kusal et al., 2022).
Speech-to-text converts spoken language into text,
while image-to-text generates textual descriptions
of images. Text generation, often powered by large
language models, produces contextually appropri-
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ate responses, and text-to-speech converts these
responses back into spoken language. These core
components form the backbone of the conversa-
tional pipeline. Image-to-text adds essential con-
text, enhancing natural human-computer interac-
tion, and additional tasks like emotion detection
tailor responses to the user’s emotional state. A
safe guard module can optionally be integrated to
ensure responses are appropriate, non-harmful, and
controllable, maintaining interaction integrity, es-
pecially in sensitive scenarios. While this modu-
lar approach allows for optimization of individual
components, the accumulated latency and accuracy
errors can render the end-to-end system impractical
for real-world use.
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Figure 3: Our assumptions about how the fully end-to-
end model: GPT-4o works

While GPT-4o is marketed as a fully end-to-
end model, where inputs are video, audio or texts
and outputs are audio, images or text, its techni-
cal details are unreleased. We assume, as shown
in Figure 3, that audio and video frames are fed
into modules generating text, audio, and image out-
puts. The demonstration video suggests GPT-4o
has memory capabilities, but specifics and limita-
tions are unclear. It is also unknown if the system
can directly integrate external private data.

Unlike the divide-and-conquer approach, a fully
end-to-end neural network can incorporate more
contextual information, such as tone, multiple
speakers, and background noises, resulting in more
flexible outputs. This approach can theoretically
reduce latency by eliminating orchestration bottle-
necks. However, both solutions face significant
challenges due to immense data I/O, especially
from video. Video files are large, straining servers
and models, increasing computational costs, and
causing latency from data transfer and model infer-
ence. Real-time conversation requires streaming
processing, posing further latency challenges. In
OpenAI’s demonstration4, a USB-C connection to

4https://www.youtube.com/watch?v=RI-BxtCx32s

an iPhone was used to ensure a stable internet con-
nection, highlighting these issues.
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Figure 4: Hybrid solution via the combination of im-
age2text and end-to-end voice model

Recently, Kyutai, a technology company from
France, released a planned open-source, fully
end-to-end multimodal conversational AI called
Moshi 5. This model supports text and audio modal-
ities, excluding images, and claims to achieve an
end-to-end latency of 200ms. We can integrate the
video modality via an Image2Text (Lin et al., 2021)
module into Moshi, creating a Hybrid solution, as
shown in Figure 4, that combines the divide-and-
conquer and fully end-to-end approaches. Another
feasible Hybrid solution is to use speech-to-text to
convert audio into text, then feed this text along
with video (processed into image sequences) to a
vision language model, which generates text re-
sponses. These responses can then be processed
through text-to-speech, as illustrated in Figure 2
via the Vision LLM line. Multimodal end-to-end

CostLatency
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Real- world
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Figure 5: Constraint triangle for real-world applicability
in multimodal conversational agent development

conversational agents, like OpenAI’s GPT-4, show
promise, but large-scale application is challeng-
ing due to the need to balance latency, accuracy,
and cost. Generating real-time responses between
200-400 ms is difficult. As shown in Figure 5, the
primary goal is to reduce latency and cost while
improving accuracy, enhancing the real-world ap-
plicability of conversational agents.
Evaluation metrics

To ensure efficient and effective collabora-
tion, consistent and comparable evaluation met-

5https://kyutai.org/
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rics are essential. For speech-to-text, the Word
Error Rate (WER) (Roy, 2021) measures tran-
scription accuracy, with a lower WER indicating
better performance. Text-to-speech evaluation in-
cludes objective metrics like the Mean Opinion
Score (MOS) (Streijl et al., 2016) for naturalness
and intelligibility, and the Signal-to-Noise Ratio
(SNR) (Plapous et al., 2006) for clarity, as well as
subjective human ratings. Text generation is the
most challenging to evaluate, using metrics like
BLEU, ROUGE, and METEOR (Evtikhiev et al.,
2023), which compare generated text to references
but may not fully capture response quality and rel-
evance. Evaluating text generation often requires
large-scale datasets, which are not always avail-
able. These metrics are widely adopted by the
research community, including OpenAI. However,
real-world applications require evaluation in pro-
duction environments, considering diverse factors
beyond these metrics. For instance, an aged care
conversational agent should avoid sensitive topics
that may be specific to each individual. Subjec-
tive opinions vary by region, highlighting the need
for customizable and innovative automatic or semi-
automatic evaluation approaches for conversational
agents.

3 System design

3.1 Requirement analysis

The system receives audio and video input, pro-
duces audio as the output. Initially, we need two
modules: one to collect audio and video data from
the microphone and camera, and another to play
audio through a speaker. These Client modules
should support diverse devices, such as a smart-
phone, a laptop, or a Raspberry Pi. The collected
data will then be fed to a server.

The server, referred to as API, should manage
audio, video data, and metadata. It should have
access to a storage layer that includes a relational
database, file management, and a graph database
for potential GraphRAG integration. While the
API can reside on the same instance as the Client
module, we prefer them to be separate for better
adaptability. This separation introduces the chal-
lenge of sharing large volumes of data between
modules. If the API is cloud-based, the audio and
video data need to be uploaded to the cloud, for
example using AWS S3, Azure Blob Storage, or
Google Cloud Storage. However, the upload pro-
cess can become a bottleneck, making the data

transfer time-consuming. If the server is local,
within the same network as the Client, transfer
latency will be reduced. However, this setup re-
quires running the large language model locally,
addressing data ownership and privacy concerns
but potentially increasing model inference latency
and compromising accuracy due to limited comput-
ing resources. Another solution is edge computing,
where video data is pre-processed on edge devices
and summarized for the API. While this can be a
research direction, data compression may cause in-
formation loss and reduce end-to-end performance.

The pipeline components will need modification
if developers want to adopt the framework and in-
tegrate with their work. To ensure flexibility, this
part should be an independent module that can run
locally or in the cloud. Researchers and developers
should be able to easily integrate new components
into this Agent module, further challenging the
sharing of large datasets between modules.

Lastly, we want to generate benchmarks to under-
stand the latency and accuracy performance of the
entire pipeline. For tasks that are hard to evaluate
automatically, such as determining the appropriate-
ness of the LLM response, we propose and develop
an annotation module to allow human annotators
to easily evaluate results and generate benchmark
reports.

3.2 System architecture
Based on the requirements, we designed our system
as shown in Figure 1. The system is divided into
five modules: Client, API, Storage, User Inter-
face, and Agent, all primarily developed in Python.
The Client module includes two submodules: the
Listener for collecting video and audio data, and
the Responder for playing audio. The Storage
module consists of file storage for media, a rela-
tional database (PostgreSQL) for metadata, and a
graph database (Neo4j) for potential GraphRAG in-
tegration. The API module, built with the Django
framework, extends Django’s admin interface and
permission control system to develop the bench-
mark and annotation interface. Django’s maturity
and large support community make it ideal for pro-
duction development. The Agent module, also
in Python, includes all agent related submodules,
allowing deployment on suitable compute nodes
without altering the architecture. Communication
between the Client, API, and Agent modules will
be via RESTful endpoints. For sharing large data
between modules, local deployments (e.g., Client
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on Raspberry Pi, API and Agent on local servers)
will use FTP for file synchronization. In cloud so-
lutions (e.g., AWS), files will be uploaded to AWS
S36, triggering a Lambda function to download
files to an AWS Elastic File Storage (EFS) 7 shared
by the API and Agent modules. We use Docker
and Docker Compose to manage all modules, al-
lowing easy setup with a single docker compose
up command.

4 Demonstration

4.1 Datasets

Most multimodal question answering datasets fo-
cus on multiple-choice questions rather than open-
ended conversations (Sundar and Heck, 2022).
Some, like Image-Chat (Shuster et al., 2018), in-
volve multimodal conversations with images as
extra input, but the output is often multiple-choice
or text-based (Liu et al., 2022). A major hurdle in
developing multimodal conversational agents is the
lack of appropriate datasets.

While there is no shortage of data from human-
human interactions or extracted from movies and
YouTube videos, we lack efficient methods to orga-
nize this data into structured datasets. For specific
domain applications, collecting data from human
interactions and extracting datasets to train systems
would be beneficial, allowing the agents to mimic
human behavior. Our OpenOmni Framework pro-
vides both capabilities: extracting conversational
datasets from videos and testing them through the
pipeline to evaluate agents’ responses, or collecting
data from real-world scenarios to generate datasets
for further research.

4.2 Can “AI” be your president?

One intensive conversational scenario is a debate.
We extracted segments from the US Presidential
Debate 2024 between Biden and Trump8, focusing
on Biden addressing the public and handling ques-
tions. After downloading the videos, you can use a
prepared script in our codebase to split them into
segments. This script allows you to specify the start
and end times of each conversation, enabling you
to create a conversational dataset from the videos.
These segments were fed into our pipeline to evalu-
ate its performance under different configurations:
OpenAI Whisper for speech-to-text, GPT-4o vision

6https://aws.amazon.com/s3/
7https://aws.amazon.com/efs/
8https://www.youtube.com/watch?v=-v-8wJkmwBY

model, and text-to-speech (GPT4O_ETE); a locally
deployed quantization LLM with Whisper, text-to-
speech, and our emotion detection model for video
input (QuantizationLLM_ETE); a version using
HuggingFace LLM for inference (HF_ETE); and a
version using only Whisper, GPT-3.5, and text-to-
speech, ignoring the video modality (GPT35_ETE).
We ran the Agent modules on an NVIDIA-3080
GPU with 12GB memory.

Figure 6: Screenshot of the end-to-end latency bench-
mark statistics for the setup: Local Whisper, Emo-
tion Detection, Quantization LLM, and OpenAI Text-
to-Speech. This visualization is one example of the
generated benchmark report; you can customize it or
explore more details within our demo.

The latency benchmark statistics are automati-
cally generated. For example, the GPT4O_ETE
configuration has an average latency of 45 seconds,
with the GPT-4o vision model accounting for 31
seconds. The fastest configuration is GPT35_ETE,
averaging around 15 seconds, with most of the
time consumed by the text-to-speech part, because
the generated content is quite long and compre-
hensive. The slowest configuration is HF_ETE,
taking around 189 seconds, with the LLM model
inference step taking the longest time. Quantiza-
tionLLM_ETE takes an average of 60 seconds, as
shown in Figure 6, with the LLM model inference
averaging 28 seconds and our emotion detection
model averaging around 10 seconds.

Figure 7: Screenshot of annotated overall conversation
accuracy statistics and comments for each conversation
within GPT4O_ETE. Scores range from 0 to 5.
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After annotation with our interface, accuracy
statistics are automatically generated. The accu-
racy metrics here include evaluation metrics like
WER, CER (Roy, 2021) for speech2text task, over-
all scores given by the annotators, etc. As shown
in Figure 7, the average score for each conversa-
tion is 2.4. Text-to-speech can be improved with
more natural emotion or personality. The generated
content is often too general and sometimes inappro-
priate. Biden’s responses are more in-context and
evidence-supported. The pipeline excelled only
in answering a subjective question about Biden’s
age, where the GPT-4o pipeline performed well.
The GPT35_ETE pipeline had the best overall ac-
curacy, but its responses were often in-context yet
pompous. Thus, Biden still outperforms AI. In con-
clusion, “AI cannot be the President of the US just
yet, considering both latency and accuracy.”,

4.3 Assist the visually impaired
While latency and the need for external information
currently preventing AI from mission critical tasks,
conversational agents can be production-ready and
useful for non-latency-critical areas that do not
require extensive external knowledge. Assisting
indoor activities for the visually impaired is one
such application, in which you can either utilize
high-speed internet or limit data transfer to local
exchanges. These type applications can benefit
from maintaining high input/output rates, helping
to mitigate latency issues. We prepared questions
for the visually impaired, including locating ob-
jects, navigating indoors, and inquiries about the
surroundings. Six questions were sampled and fed
to the GPT4O_ETE pipeline. One scenario demon-
stration is included in our provided YouTube video.
In this scenario, video and audio data stream from
the client side and are saved to storage along with
exportable metadata accessible via the admin portal.
This setup allows you to export annotated datasets,
including raw video and audio data, for developing
new models. The latency statistics in Figure 8 show
responses within approximately 30 seconds.

Annotated results show a 4.7/5 accuracy, but the
agent lacks specific skills for assisting the visually
impaired. For example, ideally, it should provide
step-by-step instructions on grabbing a coffee cup
rather than just a general description. This indicates
that while conversational agents are nearly ready
for assisting the visually impaired with indoor activ-
ities, improvements in latency and response quality
are still needed.

Figure 8: Screenshot visualizing detailed latency bench-
mark information for each conversation round

5 Conclusion

Multimodal conversational agents offers a more
natural human-computer interaction, exemplified
by models like GPT-4o. However, real-world con-
straints necessitate balancing cost, latency, and ac-
curacy, which may explain why GPT-4o’s full ca-
pabilities are not yet accessible.

There are several technical options to achieve
this, including traditional divide-and-conquer
methods, fully end-to-end models like GPT-4o,
and Hybrid approaches. The fully end-to-end ap-
proach inherently allows for lower latency, while
the divide-and-conquer method faces latency is-
sues when coordinating multiple components. Both
approaches must address the challenge of handling
large data I/O. If models are deployed locally, local
network I/O issues can be more manageable. How-
ever, OpenAI’s models are closed-source, making
local deployment impractical. While deploying
other vision models locally is feasible, achieving
high accuracy may be limited by local computa-
tional resources. Hybrid solutions provides alter-
native approaches: pre-processing or compressing
large data locally and then utilizing cloud-based
models, or converting video to text and integrating
it into the end-to-end voice model.

We developed the OpenOmni framework to en-
able researchers to integrate their work into an end-
to-end pipeline. The framework supports various
solutions, allows for pipeline customization, gen-
erates latency performance reports, and provides
an annotation interface for accuracy review. These
features facilitate the creation of benchmark reports
to identify and address key issues.

Testing with the US Presidential debate scenario
highlighted latency as a critical issue, particularly
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with large video data. Integrating external knowl-
edge remains a challenge, emphasizing the need for
efficient Retrieval-Augmented Generation (RAG).
For applications like indoor assistance for the vi-
sually impaired, latency improvements and model
adaptation are both essential.

The OpenOmni framework can significantly ben-
efit the research community by facilitating the col-
lection and management of new datasets, integrat-
ing various conversational agents approaches, and
generating automatic latency benchmarks. Its an-
notation interface aids in accuracy performance
review, making OpenOmni production-ready for
suitable application scenarios and fostering further
development in multimodal conversational agents.
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