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Abstract

Watermarking for Large Language Models
(LLMs), which embeds imperceptible yet algo-
rithmically detectable signals in model outputs
to identify LLM-generated text, has become
crucial in mitigating the potential misuse of
LLMs. However, the abundance of LLM water-
marking algorithms, their intricate mechanisms,
and the complex evaluation procedures and per-
spectives pose challenges for researchers and
the community to easily understand, implement
and evaluate the latest advancements. To ad-
dress these issues, we introduce MARKLLM,
an open-source toolkit for LLM watermark-
ing. MARKLLM offers a unified and extensible
framework for implementing LLM watermark-
ing algorithms, while providing user-friendly
interfaces to ensure ease of access. Further-
more, it enhances understanding by support-
ing automatic visualization of the underlying
mechanisms of these algorithms. For eval-
uation, MARKLLM offers a comprehensive
suite of 12 tools spanning three perspectives,
along with two types of automated evaluation
pipelines. Through MARKLLM, we aim to
support researchers while improving the com-
prehension and involvement of the general pub-
lic in LLM watermarking technology, fostering
consensus and driving further advancements in
research and application. Our code is available
at https://github.com/THU-BPM/MarkLLM.

1 Introduction

The emergence of Large Language Models (LLMs)
like ChatGPT (OpenAI, 2022), GPT-4 (OpenAI,
2023), and LLaMA (Touvron et al., 2023) has sig-
nificantly enhanced various tasks, including infor-
mation retrieval (Zhu et al., 2023), content com-
prehension (Xiao et al., 2023), and creative writ-
ing (Gómez-Rodríguez and Williams, 2023). How-
ever, in the digital era, the remarkable proficiency

*Project Leader
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of LLMs in generating high-quality text has also
brought several issues to the forefront, including
individuals impersonation (Salewski et al., 2023),
academic paper ghostwriting (Vasilatos et al.,
2023), and the proliferation of LLM-generated fake
news (Megías et al., 2021). These issues highlight
the urgent need for reliable methods to distinguish
between human and LLM-generated content, par-
ticularly to prevent the spread of misinformation
and ensure the authenticity of digital communica-
tion. In the light of this, LLM watermarking tech-
nology (Kirchenbauer et al., 2023; Aaronson and
Kirchner, 2022; Liu et al., 2024e; Pan et al., 2024;
Liu et al., 2024a) has been developed as a promis-
ing solution. By incorporating distinct features
during the text generation process, LLM outputs
can be uniquely identified using specially designed
detectors.

As a developing technology, LLM watermark-
ing urgently requires consensus and support from
both within and outside the field. However, due to
the proliferation of watermarking algorithms, their
relatively complex mechanisms, the diversity of
evaluation perspectives and metrics, as well as the
intricate procedure of evaluation process, signifi-
cant efforts are required by both researchers and
the general public to easily experiment with, com-
prehend, and evaluate watermarking algorithms.

To bridge this gap, we introduce MARKLLM, an
open-source toolkit for LLM watermarking. Figure
1 overviews the architecture of MARKLLM. Our
main contributions are summarized as follows:

1) From a Functional Perspective:

r Implementation framework: MARKLLM of-
fers a unified and extensible framework for
implementing LLM watermarking algorithms,
currently supporting nine specific algorithms
from two key families: KGW (Kirchenbauer
et al., 2023) and Christ (Christ et al., 2024)
family.
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Figure 1: Architecture overview of MARKLLM.

 Unified top-calling interfaces: MARKLLM
provides consistent, user-friendly interfaces
for loading algorithms, producing water-
marked text generated by LLMs, conducting
detection processes, and gathering data neces-
sary for visualization.

` Visualization solutions: Custom visualization
solutions are provided for both major water-
marking algorithm families, enabling users
to visualize the mechanisms of different al-
gorithms under various configurations with
real-world examples.

| Evaluation module: The toolkit includes 12
evaluation tools that address three critical per-
spectives: detectability, robustness, and im-
pact on text quality. It also features two types
of automated evaluation pipelines that support
user customization of datasets, models, evalu-
ation metrics and attacks, facilitating flexible
and comprehensive assessments.

2) From a Design Perspective: MARKLLM is
designed with a modular, loosely coupled architec-
ture, ensuring its scalability and flexibility. This
design choice facilitates the integration of new algo-
rithms, the addition of innovative visualization tech-
niques, and the extension of the evaluation toolkit
by future developers.

3) From an Experimental Perspective: Utiliz-
ing MARKLLM as a research tool, we perform
in-depth evaluations of the performances of the
nine included algorithms, offering substantial in-
sights and benchmarks that will be invaluable for
ongoing and future research in LLM watermarking.

4) From an Ecosystem Perspective: MARKLLM
provides a comprehensive set of resources, includ-
ing an installable Python package (a GitHub repos-
itory and a pip package) with detailed installation
and usage instructions, and an online Jupyter note-
book demo hosted on Google Colab. Since its
initial release, MARKLLM has garnered signif-
icant attention from researchers and developers,
who have actively engaged with the project through
stars, forks, issues, and pull requests, fostering con-
tinuous development and improvement. Figure 2
depicts the evolution of the MARKLLM ecosystem
since its initial release. Due to the scope of this pa-
per, we focus on presenting the core functionalities
of MARKLLM, while acknowledging the broader
ecosystem and community contributions that have
emerged around the project.

2 Background

2.1 LLM Watermarking Algorithms

LLM watermarking methods can be classified into
the KGW Family and the Christ Family. The KGW
Family modifies logits to generate watermarked
output, while the Christ Family alters the sampling
process.

The KGW method (Kirchenbauer et al., 2023)
partitions the vocabulary into green and red lists,
adding bias to green list tokens during generation.
A statistical metric based on the green word pro-
portion is used for detection. Various modifica-
tions have been proposed to improve text qual-
ity (Hu et al., 2024; Wu et al., 2023; Takezawa
et al., 2023), information capacity (Wang et al.,
2024; Yoo et al., 2024; Fernandez et al., 2023), ro-
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Figure 2: Timeline of the MarkLLM ecosystem since its initial release.

bustness (Zhao et al., 2024; Liu et al., 2024c; Ren
et al., 2024; He et al., 2024; Zhang et al., 2024),
adapt to low-entropy scenarios (Lee et al., 2024;
Lu et al., 2024), and enable public detection (Liu
et al., 2024b; Fairoze et al., 2023).

Christ et al. (2024) used pseudo-random num-
bers to guide sampling in a binary LLM. Aaronson
and Kirchner (2022) developed an algorithm for
real-world LLMs using EXP-sampling, where a
pseudo-random sequence is generated based on
previous tokens to select the next token. Water-
mark detection measures the correlation between
the text and the sequence. Kuditipudi et al. (2024)
suggested using edit distance for robust detection.

2.2 Evaluation Perspectives
Evaluating watermarking algorithms involves mul-
tiple dimensions (Liu et al., 2024d):

1) Watermark Detectability: The ability to dis-
cern watermarked text from natural content.

2) Robustness Against Tampering Attacks: The
watermark should withstand minor modifications
and remain detectable.

3) Impact on Text Quality: Watermarking may
affect the quality of generated text. This impact
can be measured by perplexity, diversity, and per-
formance in downstream tasks.

3 MARKLLM

3.1 Unified Implementation Framework
Many watermarking algorithms have been pro-
posed, but their implementations lack standardiza-
tion, leading to several issues:

1) Lack of Standardization in Class Design: In-
sufficiently standardized class designs make opti-
mizing or extending existing methods difficult.

2) Lack of Uniformity in Top-Level Calling In-
terfaces: Inconsistent interfaces make batch pro-

cessing and replicating different algorithms cum-
bersome and labor-intensive.

3) Code Standard Issues: Modifying settings
across multiple code segments, lack of consistent
documentation, hard-coded values, and inconsis-
tent error handling complicate customization, ef-
fective use, adaptability, and debugging efforts.

Our toolkit offers a unified implementation
framework that enables convenient invocation of
various state-of-the-art algorithms under flexible
configurations. Figure 3 demonstrates the design
of this framework.
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myWatermark = AutoWatermark.load(algorithm_name, config_path, 
transformer_config)

allocate

utils

logits_processor
(optional)

generate_watermarked_text(prompt: str)

generate_unwatermarked_text(prompt: str)

detect_watermark(text: str)

get_data_for_visualization(text: str)

Figure 3: Unified implementation framework of LLM
watermarking algorithms.

AutoWatermark. This class is responsible for
algorithm allocation. Its .load() method locates
the corresponding algorithm class using algo-
rithm_name and accesses its configuration1 for ini-
tialization via config_path.
Watermark. Each watermarking algorithm has its
own class, collectively referred to as the Watermark
class. This class includes three data members: con-
fig, utils, and logits_processor (only for algorithms
in the KGW Family). config holds algorithm pa-
rameters, while utils comprises helper functions
and variables. For algorithms within the KGW

1For each watermarking algorithm, all user-modifiable
parameters are consolidated into a dedicated configuration file,
facilitating easy modifications.
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family, logits_processor is designed to manipulate
logits and is integrated into model.generate() for
processing during execution.
Top-level Interfaces. Each algorithm has four top-
level interfaces for generating watermarked text,
generating unwatermarked text, detecting water-
marks, and obtaining data for visualization (de-
tailed in Section 3.2). The framework’s distributive
design using an AutoWatermark class allows de-
velopers to easily add interfaces to any algorithm
class without impacting others.

3.2 Mechanism Visualization

To improve understanding of the mechanisms used
by different watermark algorithms, we have devel-
oped a visualization module that provides tailored
visualization solutions for the two algorithm fami-
lies.

3.2.1 Visualization Solutions
KGW Family. As detailed in Section 2.1, KGW
family algorithms manipulate LLM output logits
to prefer green tokens over red ones and employ
statistical methods for detection. Our visualization
technique clearly highlights red and green tokens
in the text, offering insights into the token-level
detection results.

Christ Family. Algorithms within Christ family in-
volves guiding each token selection using a pseudo-
random sequence and detect watermarks by calcu-
lating the correlation between the sequence and the
text. To visualize this mechanism, we use a color
gradient to represent the alignment value of each to-
ken and the pseudo-random sequence, where darker
shades indicate stronger alignment.

3.2.2 Architecture Design
This section offers a detailed description of the ar-
chitectural frameworks essential for the effective
implementation of the aforementioned visualiza-
tion strategies. Figure 4 demonstrates the imple-
mentation framework of mechanism visualization.

get_data_for_visualization: This interface, de-
fined for each algorithm, returns a Visualization-
Data object containing decoded_tokens and high-
light_value. For the KGW family, highlight_value
is one-hot, differentiating red and green tokens;
for the Christ family, it represents a continuous
correlation value.

Visualizer: It initializes with a VisualizationData
object and performs visualization via the .visual-

ize() method, with subclasses overriding approach
to implement specific visualizations.

DiscreetVisualizer: Tailored for KGW family al-
gorithms, it uses red/green highlight values to color-
code text based on values.

ContinuousVisualizer: Tailored for Christ family
algorithms, it highlights tokens using a [0,1] color
scale based on their alignment with pseudo-random
numbers.

Flexible Visualization Settings: Our Visualizer
supports multiple configurable options for tailored
visualizations, including ColorScheme, FontSet-
tings, PageLayoutSettings, and LegendSetting, al-
lowing for extensive customization.

3.2.3 Visualization Result
KGW Family. The leftmost part of Figure 4 shows
that in the text with watermarks, there is a relatively
high proportion of green tokens. The z-score, a
statistical measure, is defined as:

z =
|s|G − γT√
Tγ(1− γ)

where |s|G is the number of green tokens, T is the
total number of tokens, and γ is the proportion of
the green token list in partitioning (0.5 in this case).
The z-score for ‘text with watermark’ is notably
higher than that for ‘text without watermark’. Set-
ting a reasonable z-score threshold can effectively
distinguish between the two.

Christ Family. As depicted in the rightmost part of
Figure 4, it is noticeable that tokens within text con-
taining watermarks generally exhibit darker hues
compared to those without, indicating a higher in-
fluence of the sequence during the generation pro-
cess on the former.

3.3 Automated Comprehensive Evaluation
Evaluating an LLM watermarking algorithm is
complex, as it involves considering multiple per-
spectives, such as watermark detectability, robust-
ness against tampering, and impact on text quality
(see Section 2.2). Each perspective may require dif-
ferent metrics, attack scenarios, and tasks. The eval-
uation process typically includes steps like model
and dataset selection, watermarked text generation,
post-processing, watermark detection, text tamper-
ing, and metric computation.

To simplify the evaluation process, MARKLLM
offers twelve user-friendly tools, including met-
ric calculators and attackers, covering the three
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Figure 4: Implementation framework of mechanism visualization.

Table 1: Evaluation Tools in MarkLLM.

Perspective Tools

Detectability
FundamentalSuccessRateCalculator

DynamicThresholdSuccessRateCalculator

Robustness

WordDeletion

SynonymSubstitution

ContextAwareSynonymSubstitution

GPTParaphraser

DipperParaphraser

Text Quality

PPLCaluclator

LogDiversityAnalyzer

BLEUCalculator

PassOrNotJudger

GPTDiscriminator

main evaluation perspectives. Additionally, MARK-
LLM provides two types of customizable auto-
mated demo pipelines, allowing for easy configura-
tion and use.

MARKLLM provides a comprehensive set of
tools for evaluating LLM watermarking algorithms,
as summarized in Table 1. These tools cover de-
tectability, including success rate calculators with
fixed and dynamic thresholds; robustness, featur-
ing word-level and document-level text tamper-
ing attacks using WordNet (Miller, 1995), BERT
(Devlin et al., 2018), OpenAI API, and the Dip-
per model (Krishna et al., 2023); and text qual-
ity, assessing fluency, variability, and performance
on downstream tasks using perplexity, diversity,
BLEU, pass-or-not judger, and GPT discriminator
with GPT-4 (OpenAI, 2023).

Evaluation Pipelines. MARKLLM provides
two evaluation pipelines: one for assessing water-

LLM

Dataset

Watermarking 

Algorithms

Text 

Tampering

Text 

Generation

Watermark 

Detection

Prepare Input 

for Analysis

Text 

Generation

Quality 

Analysis

Figure 5: The standardized process of evaluation
pipelines, the upper for watermark detection pipeline,
and the lower for text quality analysis pipeline.

mark detectability with and without attacks, and an-
other for analyzing the impact of these algorithms
on text quality.

The upper part of Figure 5 shows the standard-
ized process of watermark detection. We have im-
plemented two pipelines: WMDetect for water-
marked text detection and UWMDetect for unwa-
termarked text detection. The lower part of Figure
5 illustrates the unified process of text quality anal-
ysis. Pairs of watermarked and unwatermarked
texts are generated and fed into a designated text
quality analyzer to produce detailed analysis and
comparison results. We have implemented three
pipelines for different evaluation scenarios:

DirectQual. This pipeline directly compares the
characteristics of watermarked and unwatermarked
texts using metrics such as perplexity (PPL) and
log diversity.

RefQual. This pipeline evaluates text quality by
comparing both watermarked and unwatermarked
texts with a common reference text. It is ideal for
scenarios that require specific downstream tasks,
such as machine translation and code generation.

ExDisQual. This pipeline employs an exter-
nal judger, such as GPT-4 (OpenAI, 2023), to as-
sess the quality of both watermarked and unwa-
termarked texts based on user-provided task de-
scriptions. This method is valuable for advanced,
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AI-based analysis of the subtle effects of water-
marking.

4 User Examples

The following code snippets demonstrate examples
of how to use MarkLLM in one’s project. For more
real cases, please see the demo video.

4.1 Watermarking Algorithm Invocation

1 # Load algorithm
2 myWatermark = AutoWatermark.load(’KGW’

, ’config/KGW.json’,
transformers_config)

3 # Generate watermarked text
4 watermarked_text = myWatermark.

generate_watermarked_text(prompt)
5 # Detect watermark
6 detect_result = myWatermark.

detect_watermark(watermarked_text)

4.2 Mechanism Visualization

1 # Get data for visualization
2 watermarked_data = myWatermark.

get_data_for_visualization(
watermarked_text)

3 # Init visualizer
4 visualizer = DiscreetVisualizer(

ColorSchemeForDiscreetVisualization
(), FontSettings (),
PageLayoutSettings (),
DiscreetLegendSettings ())

5 # Visualize
6 watermarked_img = visualizer.visualize

(watermarked_data)

4.3 Evaluation Pipelines Invocation

1 # Dataset
2 my_dataset = C4Dataset(’dataset/c4/

processed_c4.json’)
3 # WMDetect
4 pipeline1 =

WatermarkedTextDetectionPipeline(
my_dataset)

5 # UWMDetect
6 pipeline2 =

UnWatermarkedTextDetectionPipeline(
dataset=my_dataset)

7 # Init calculator
8 calculator =

DynamicThresholdSuccessRateCalculator
(labels =[’TPR’, ’F1’], rule=’best’)

9 # Calculate success rate
10 print(calculator.calculate(pipeline1.

evaluate(my_watermark), pipeline2.
evaluate(my_watermark)))

5 Experiment

Using MARKLLM as a research tool, we conduct
evaluations on nine watermarking algorithms, as-
sessing their detectability, robustness, and impact
on text quality. Our experiments demonstrate that
MARKLLM can reproduce the results of previous
experiments with low cost through simple scripts.
For details on the experimental setup and the ob-
tained results, please refer to Appendix A.

6 Conclusion

MARKLLM is a comprehensive open-source
toolkit for LLM watermarking. It allows users to
easily try various state-of-the-art algorithms with
flexible configurations to watermark their own text
and conduct detection, and provides clear visual-
izations to gain insights into the underlying mecha-
nisms. The inclusion of convenient evaluation tools
and customizable evaluation pipelines enables auto-
matic and thorough assessments from various per-
spectives. As LLM watermarking evolves, MARK-
LLM aims to be a collaborative platform that grows
with the research community. By providing a solid
foundation and inviting contributions, we aim to
foster a vibrant ecosystem where researchers and
developers can work together to advance the state-
of-the-art in LLM watermarking technology.

Limitations

MarkLLM is a comprehensive toolkit for imple-
menting, visualizing, and evaluating LLM water-
marking algorithms. However, it currently only in-
tegrates a subset of existing methods and does not
yet support some recent approaches that directly
embed watermarks into model parameters during
training (Xu et al., 2024; Gu et al., 2024). We an-
ticipate future contributions to expand MarkLLM’s
coverage and enhance its versatility.

In terms of visualization, we have provided one
tailored solution for each of the two main water-
marking algorithm families. While these solutions
offer valuable insights, there is room for more cre-
ative and diverse visualization designs.

Regarding evaluation, we have covered aspects
such as detectability, robustness, and text quality
impact. However, our current toolkit may not en-
compass all possible scenarios, such as spoofing
attack and CWRA (He et al., 2024).

We acknowledge that MARKLLM has room for
improvement. We warmly welcome developers and
researchers to contribute their code and insights to
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help build a more comprehensive ecosystem for
LLM watermarking. Through collaborative efforts,
we can further advance this technology and unlock
its full potential.
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A Experiment Details

A.1 Experiment Settings
Dateset and Prompt. For general-purpose text
generation scenarios, we utilize the C4 dataset (Raf-
fel et al., 2020). Specifically, the first 30 tokens
of texts serve as prompts for generating the subse-
quent 200 tokens, with the original C4 texts acting
as non-watermarked examples. For specific down-
stream tasks, we employ the WMT16 (Bojar et al.,
2016) German-English dataset for machine transla-
tion, and HumanEval (Chen et al., 2021) for code
generation.

Language Model. For general-purpose text gen-
eration scenarios, we utilize Llama-7b (Touvron
et al., 2023) as language model. For specific down-
stream tasks, we utilize NLLB-200-distilled-600M
(Costa-jussà et al., 2022) for machine translation
and Starcoder (Li et al., 2023) for code generation.

Metrics and Attacks. Dynamic threshold adjust-
ment is employed to evaluate watermark detectabil-
ity, with three settings provided: under a target
FPR of 10%, under a target FPR of 1%, and under
conditions for optimal F1 score performance. To
assess robustness, we utilize all text tampering at-
tacks listed in Table 1. For evaluating the impact on
text quality, our metrics include PPL, log diversity,
BLEU (for machine translation), pass@1 (for code
generation), and assessments using GPT-4 Judge
(Tu et al., 2024).

A.2 Results and Analysis
The results2 in Table 2, Table 3, and Table 4 demon-
strate that by using the implementations of different
algorithms and the evaluation pipelines provided in
MARKLLM, researchers can effectively reproduce
the experimental results from previous watermark-
ing papers. These experiments can be conducted by
running simple scripts which are accessible within
the Github repository under the directory evalu-
ation/examples/. The execution command can be
found in Listing 1, Listing 2 and Listing 3, show-
casing MARKLLM’s capability for easy evaluation
of watermark algorithms in various scenarios.

2(1) The evaluation results for UPV are only shown in
the “best" column because its watermark detection uses di-
rect binary classification without thresholds. (2) Current im-
plementations of Christ family algorithms are designed for
decoder-only LLMs. As machine translation mainly uses
encoder-decoder models, we did not report the text quality
produced by EXP and EXP-edit in machine translation.

1 python evaluation/examples/assess_detectability.py
--algorithm KGW --labels TPR F1 --rules
target_fpr --target_fpr 0.01

2
3 python evaluation/examples/assess_detectability.py

--algorithm KGW --labels TPR TNR FPR FNR P R
F1 ACC --rules best

Listing 1: Execution command for assessing
detectability.

1 python evaluation/examples/assess_robustness.py
--algorithm KGW --attack 'Word -D'

2
3 python evaluation/examples/assess_robustness.py

--algorithm Unigram --attack 'Doc -P(GPT -3.5)'

Listing 2: Execution command for assessing robustness.

1 python evaluation/examples/assess_quality.py
--algorithm KGW --metric PPL

2
3 python evaluation/examples/assess_quality.py

--algorithm SIR --metric 'Log Diversity'

Listing 3: Execution command for assessing text
quality.

B Comparison with Competitors

As LLM watermarking technology advances,
frameworks dedicated to this field have emerged.
WaterBench (Tu et al., 2024) and Mark My Words
(Piet et al., 2023) are two prominent examples. Wa-
terBench focuses on assessing the impact of KGW
(Kirchenbauer et al., 2023), Unigram (Zhao et al.,
2024), and KGW-v2 (Kirchenbauer et al., 2024) on
text quality, while Mark My Words evaluates the
performance of KGW, EXP (Aaronson and Kirch-
ner, 2022), Christ (Christ et al., 2024), and EXP-
Edit (Kuditipudi et al., 2024) across text quality,
robustness against tampering, and number of to-
kens needed for detection.

While these frameworks primarily focus on
benchmark construction, similar to the evaluation
module in MARKLLM, MARKLLM distinguishes
itself as the first comprehensive multi-functional
toolkit. It offers easy-to-use evaluation tools and
automated pipelines that cover the aforementioned
assessment perspectives, and also provides a uni-
fied implementation framework for watermarking
algorithms and visualization tools for their under-
lying mechanisms. This enhances its utility and
versatility. The integration of these functionalities
makes MARKLLM a more accessible resource, en-
abling convenient usage, understanding, evaluation,
and selection of diverse watermarking algorithms
by researchers and the broader community. This
plays a crucial role in fostering consensus both
within and beyond the field.
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Table 2: The evaluation results of assessing the detectability of nine algorithms supported in MarkLLM. 200
watermarked texts are generated, while 200 non-watermarked texts serve as negative examples. We furnish TPR and
F1-score under dynamic threshold adjustments for 10% and 1% FPR, alongside TPR, TNR, FPR, FNR, P, R, F1,
ACC at optimal performance.

Method
10%FPR 1%FPR Best

TPR F1 TPR F1 TPR TNR FPR FNR P R F1 ACC

KGW 1.000 0.952 1.000 0.995 1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000
Unigram 1.000 0.957 1.000 0.995 1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000
SWEET 1.000 0.952 1.000 0.995 1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000
UPV × × × × 1.000 0.990 0.010 0.000 0.990 1.000 0.995 0.995
EWD 1.000 0.952 1.000 0.995 0.995 1.000 0.000 0.005 1.000 0.995 0.997 0.998
SIR 0.995 0.950 0.990 0.990 0.990 0.995 0.005 0.010 0.995 0.990 0.992 0.993
X-SIR 0.995 0.950 0.940 0.964 0.970 0.970 0.030 0.030 0.970 0.970 0.970 0.970
EXP 1.000 0.952 1.000 0.995 1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000
EXP-Edit 1.000 0.952 0.995 0.990 0.995 0.985 0.015 0.005 0.985 0.995 0.990 0.990

Table 3: The evaluation results of assessing the robustness of nine algorithms supported in MarkLLM. For each
attack, 200 watermarked texts are generated and subsequently tampered, with an additional 200 non-watermarked
texts serving as negative examples. We report the TPR and F1-score at optimal performance under each circumstance.

Method
No Attack Word-D Word-S Word-S (Context) Doc-P (GPT-3.5) Doc-P (Dipper)

TPR F1 TPR F1 TPR F1 TPR F1 TPR F1 TPR F1

KGW 1.000 1.000 0.980 0.985 0.920 0.915 0.965 0.958 0.835 0.803 0.860 0.785
Unigram 1.000 1.000 1.000 1.000 0.990 0.990 0.990 0.990 0.901 0.932 0.875 0.908
SWEET 1.000 1.000 0.970 0.975 0.935 0.903 0.985 0.980 0.845 0.813 0.830 0.779
UPV 1.000 0.995 0.970 0.980 0.885 0.896 0.985 0.961 0.830 0.827 0.862 0.864
EWD 0.995 0.997 0.980 0.982 0.930 0.921 0.950 0.955 0.852 0.825 0.845 0.784
SIR 0.990 0.992 0.950 0.970 0.945 0.940 0.960 0.948 0.891 0.923 0.894 0.902
X-SIR 0.970 0.970 0.940 0.957 0.910 0.908 0.895 0.925 0.875 0.891 0.835 0.869
EXP 1.000 1.000 0.975 0.980 0.945 0.950 0.980 0.985 0.763 0.772 0.740 0.793
EXP-Edit 0.995 0.990 0.995 0.993 0.983 0.972 0.990 0.985 0.872 0.886 0.845 0.861

Table 4: The evaluation results of assessing the text quality impact of the nine algorithms supported in MarkLLM.
We compared 200 watermarked texts with 200 non-watermarked texts. However, due to dataset constraints, only
100 watermarked texts were compared with 100 non-watermarked texts for code generation.

Method
Direct Analysis Referenced Analysis External Discriminator

PPL(Ori.= 8.243) Log Diversity(Ori.=8.517)
Machine Translation Code Generation Machine Translation
BLEU(Ori.=31.807) pass@1(Ori.= 43.0) GPT-4 Judge (Wat. Win Rate)

KGW 13.551 ↑ 7.989 ↓ 28.242 ↓ 34.0 ↓ 0.31
Unigram 13.723 ↑ 7.242 ↓ 26.075 ↓ 32.0 ↓ 0.33
SWEET 13.747 ↑ 8.086 ↓ 28.242 ↓ 37.0 ↓ 0.31
UPV 10.574 ↑ 7.698 ↓ 28.270 ↓ 37.0 ↓ 0.31
EWD 13.402 ↑ 8.220 ↓ 28.242 ↓ 34.0 ↓ 0.30
SIR 13.918 ↑ 7.990 ↓ 28.830 ↓ 37.0 ↓ 0.31
X-SIR 12.885 ↑ 7.930 ↓ 28.161 ↓ 36.0 ↓ 0.33
EXP 19.597 ↑ 8.187 ↓ × 20.0 ↓ ×
EXP-Edit 21.591 ↑ 9.046 ↑ × 14.0 ↓ ×
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