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Abstract

This paper tackles the challenges presented by
Automatic Speech Recognition (ASR) errors in
voice-based dialog systems, specifically, their
adverse impact on Entity Resolution (ER) as a
downstream task. Navigating the equilibrium
between accuracy and online retrieval’s speed
requirement proves challenging, particularly
when limited data links the failed mentions to
resolved entities. In this paper, we propose a
entity reference expansion system, injecting
pairs of failed mentions and resolved entity
names into the knowledge graph, enhancing
its awareness of unresolved mentions. To ad-
dress data scarcity, we introduce a synthetic
data generation approach aligned with noise
patterns. This, combined with an ASR-Error-
Aware Loss function, facilitates the training of
a RoBERTa model, which filters failed men-
tions and extracts entity pairs for knowledge
graph expansion. These designs confront obsta-
cles related to ASR noise, data limitations, and
online entity retrieval.

1 Introduction

In the domain of voice-based dialog systems, the
inherent inaccuracies within Automatic Speech
Recognition (ASR) pose significant impediments to
downstream tasks. Specifically, as the transcribed
input undergoes processing by a Natural Language
Understanding (NLU) component to extract struc-
tured data such as entity mentions, errors in ASR
frequently propagate to the subsequent component
in a dialog system - Entity Resolution (ER). ER is
the process of linking labeled mentions to a knowl-
edge base, and the reliance on ASR accuracy exac-
erbates the intricacy of this task.

Further complicating matters is the imperative
for stringent resource optimization, mandated by
the latency requirements associated with deploying
ER systems on devices. Within this context, the
most pragmatic workaround, namely token-based

matching, may encounter limitations when con-
fronted with noisy or ambiguous entity mentions.
For example, a token-based system might profi-
ciently recognize "Flying Gorilla" but could fal-
ter when dealing with semantically or phonetically
akin phrases such as "Frying Gorilla" or "Flying
Gloria." These challenges often emanate from ASR
errors, underscoring the necessity for nuanced so-
lutions in the development of formal voice-based
dialog systems.

To address these challenges, this paper intro-
duces an enhanced entity reference enrichment sys-
tem for the knowledge graph. Our offline model,
depicted in Figure 1, utilizes a synthetic data gen-
eration pipeline that augments all entity names to
replicate error patterns observed in live traffic. This
approach addresses data scarcity issues and enables
fine-tuning of a RoBERTa-based encoder using a
cross entropy loss that is sensitive to ASR-induced
inaccuracies, capturing both semantic and phonetic
subtleties. The model specifically encodes and gen-
erates pairs between previously failed mentions
and successfully resolved entity names, which are
injected back into the knowledge graph to improve
its handling of historically unresolved mentions
while maintaining low latency in our industrial re-
trieval pipeline. Although this approach focuses on
errors previously encountered, it captures a signifi-
cant proportion of common error patterns. While a
more dynamic system capable of addressing new
ASR errors could involve runtime vector searches,
the required infrastructure changes and potential
latency impacts make our current method a practi-
cal short-term solution, setting the stage for future
enhancements.

The contributions of this paper are three-fold:
firstly, it introduces a synthetic data generation ap-
proach to train the model against upstream patterns
of noises and reduce manual labeling. Secondly,
our ASR-Error-Aware Loss function enhances the
RoBERTa model’s performance in handling ASR-
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Figure 1: Overview of the offline entity reference ex-
pansion system, depicting its two core components: the
synthetic data generation and the entity pair extraction
pipelines. The data generation pipeline receives the
entity names from the knowledge graph and augments
them to produce synthetic data, fine-tuning a RoBERTa-
based model. The model then encodes and filters the
runtime data in the entity pairing pipeline.

induced inaccuracies. Finally, the paper proposes
a knowledge graph (KG) injection strategy that
can be integrated into the runtime pipeline with-
out modifying the existing online retrieval strategy.
These contributions collectively address challenges
related to training data, ASR noise, and online pro-
cessing.

2 Related Work

Early initiatives for entity resolution tasks, such
as Neural Entity Linking (NEL) and Entity Dis-
ambiguation (ED), utilized fully-connected neural
networks or Long Short-Term Memory (LSTM)
networks to encode mentions and entity names
(Kolitsas et al., 2018; Gillick et al., 2019). The
emergence of deep pre-trained models like BERT
(Devlin et al., 2018) and their fine-tuned deriva-
tives, marked a paradigm shift in methodologies
for Entity Linking and Entity Resolution (Wu et al.,
2019; Li et al., 2021). These models typically em-
bed entity mentions and names into a dense vector
space, employing architectures such as two-tower
designs (Gillick et al., 2019), and calculating the
semantic similarity between mentions and entities
in the Knowledge base (Ganea and Hofmann, 2017;
Raiman and Raiman, 2018).

Vector Search or Nearest Neighbor Search tech-
niques are commonly used for retrieving the best
candidate entities. However, they cannot scale in
high-latency settings (Li et al., 2021; Zhou et al.,
2022). Innovations like the siamese structure with
improved alignment networks proposed by Li et al.
(Li et al., 2021) aim to reduce exhaustive computa-

tions. In contrast, we introduce an offline process
for entity pair extraction to minimize online latency
demands.

While Wang et al. (Wang et al., 2020, 2021)
focused on improving entity retrieval by correcting
ASR-induced query errors, we utilize a fine-tuned
encoder model, notably RoBERTa, to enhance en-
tity retrieval accuracy by expanding the candidate
pool, addressing a different facet of the ER chal-
lenge.

The dilemma of scarce labeled data in indus-
trial NLP applications is well-acknowledged, with
the lack of manual annotation posing significant
constraints. While model transfer and data augmen-
tation are common remedies, our approach leans
towards data augmentation. This strategy aligns
with our objectives, providing cost-effective con-
trol over training data distribution and enabling us
to fine-tune our model in a manner that is more
reflective of real-world voice-based interactions.

3 Methodology

3.1 Problem Overview

The overview of our system is as follows. Given an
entity mention Q by a user, we resolve the corre-
sponding entity name among the entity candidates
{Ci}mi=1 from a knowledge graph; the number of
candidates could vary depending on the application
setting.

We train a deep encoder model to embed Q and
{Ci}mi=1 in a vector space, and use their similarity
scores to rank and select the candidates. To meet
the latency constraint, our embedding and scoring
are conducted offline. Using the similarity scores,
we extract entity pairs with a two-stage filtering
process (detailed in Section 3.4.1). The extracted
entity pairs are then injected into the knowledge
graph for entity reference expansion.

3.2 Encoder Model

In our approach, we employ the RoBERTa model
(Liu et al., 2019) to encode mentions and entities.
Due to its ability to encapsulate a holistic sentence
context, we specifically use the embedding from
the CLS token, a special symbol at the start of each
input, to represent each entity mention and name
in the R768 vector space. This decision is based
on our empirical findings where the CLS vector
exhibited better performance in entity resolution
tasks compared to the average of word embeddings.

The RoBERTa model, powerful in capturing
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semantic meanings in generic English text, was
pre-trained on massive corpora. Our experiments
confirmed that pre-trained RoBERTa without fine-
tuning does improve ER quality. However, the pre-
trained model is unable to recognize nuanced pat-
terns in some specific domain ER, especially ASR
(Automated Speech Recognition) noise. Thus, we
need to fine-tune the model over specific domain
ER datasets.

As real traffic analysis shows that ASR Score
is a strong indicator for potential improvement,
we add a penalty term LASR to the loss function
to penalize the loss when the entity mention has
ASR errors: LASR = e(1−ASR_Score(C1)). The ASR
Score is predicted by the upstream ASR model,
ranging between 0 and 1.

Let R be an entity mention. Let C1, C2, . . . , Cn

be its entity candidates, where C1 is the true target
(positive candidate) and C2, . . . , Cn are negative
candidates. Let ER, ECi denote the embedded
vectors for R and Ci, respectively. Let ⟨ER, ECi⟩
be the dot-product similarity of the embeddings of
query R and candidate Ci. Then the standard Cross
Entropy Loss can be defined as:

LCE = − log
e⟨ER,EC1

⟩

e⟨ER,EC1
⟩ + . . .+ e⟨ER,ECn ⟩

Now we introduce the ASR-Error-Aware Loss
combined with Cross Entropy Loss, defined as:

LAEA := LASR · LCE

One obstacle we face during the encoder model’s
training is the scarcity of labeled training data. To
tackle this issue, we employ data generation tech-
niques to create synthetic entity mentions that re-
semble the patterns in real user queries, the details
of which we will discuss in the next section.

3.3 Data Augmentation with ASR Score
Simulation

The training data for fine-tuning the RoBERTa
model is generated by data augmentation. Syn-
thetic entity mentions are generated solely from the
entity names in the knowledge graph. In this way,
the pipeline is not constrained by the lack of human
annotations and is protected from data imbalance
issues.

The strategy for data augmentation is inspired by
the following observation of the live traffic. When
comparing a user entity mention with its true entity

Figure 2: The six types of synthetic mentions derived
from entity names based on the error patterns. In this
example, we show how to generate synthetic data by the
entity name "Rec room."

name, the noises and errors in entity mentions of-
ten follow common patterns. Therefore, for each
entity name in the knowledge graph, we generate
synthetic mentions of the following six types (Fig-
ure 2). To obtain ASR scores of synthetic data, we
first compute the mean and variance of the ASR
scores for each of these types, and then calculate
the scores using a normal distribution based on
computed mean and variance for each of these
types:

(1) User replaced a word with another word sim-
ilar in sound (e.g., “rec room” to “record room”)
- this type of data amounts to 14.52% of the total
amount of 25k generated data;

(2) Upstream NER error. Inserted common
words from the query vocabulary (e.g., “rec room”
to “enter rec room”) - 15.19%;

(3) User repeated words (e.g., “rec room” to “rec
rec room”) - 26.35%;

(4) Words dropped randomly, which may come
from noise (e.g., “rec room” to “rec”) - 25.90%;

(5) ASR error: replaced words with common
ASR-confusing words (e.g., “rec room” to “wreck
room”) - 11.87%. This helps to train the model to
learn phonetic similarities.

(6) Synonym replacement error, the most fre-
quent errors made by annotators (e.g., “rec room”
to “virtual game room”) - 6.16%.

Each synthetic mention and its original entity
name are then used as the mention R and the true
target C1. The synthetic dataset we are using has
been divided into two separate sets: the training set
and the validation set. While the synthetic dataset
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provides a good foundation for testing our model,
we also make use of a smaller, manually anno-
tated test set comprised of historical real traffic
data. This manually annotated dataset is particu-
larly useful because it better represents real-world
use cases and allows us to ensure the performance
of our synthetic dataset more accurately. By com-
bining both synthetic and real data, we prepare our
model to be deployed in real-world scenarios.

3.4 Entity Pair Extraction

In this section, we describe how we extract a list of
entity pairs in the form of (entity mention, resolved
entity name). But first we need to remark that a
different way to use the fine-tuned encoder would
be to encode each entity mention during runtime,
and perform a vector search to select the best candi-
date. This is however impractical for two reasons:
first, vector search could cause significant latency
when the number of candidates is large; second, the
forward inference of a deep encoder model can be
slow and increase latency. In contrast, our frame-
work offloads most of the heavy computation to the
offline stage and provides a solution to minimize
latency.

3.4.1 Entity Pair Extraction with
Model-Based Pairing

The process of entity pair extraction is as follows.
We gather the previously failed entity mentions,
i.e., the entity mentions that the pre-existing ER
system could not resolve. We use the model to
compute the embeddings of these failed mentions,
and compare with the embeddings of the known
entities and successfully resolved mentions. We
use a filtering method (discussed in Section 3.4.2)
to pair them, and retain only those pairs with high
confidence. See Algorithm 1 for detailed pseudo-
code for the extraction process.

3.4.2 Filtering method
We now expand on the crucial filtering stage dur-
ing the pairing process. We experimented with
several different filtering methods and selected a
strategy that prioritizes a low regression rate, en-
suring minimal disruption to existing data integrity.
As described in Algorithm 2, our approach utilizes
a two-stage filtering method. Initially, we filter
by absolute thresholds on cosine similarity to cap-
ture phonetic similarities indicative of ASR errors.
Subsequently, we apply a lexical string similar-
ity filter. This second stage is designed to temper

Algorithm 1: Entity pair extraction
Data:
S ← task entity pairs from real traffic data
S1 ← failed task entity pairs in S
S2 ← successful task entity pairs in S
FM← failed entity mentions set in S1

N← resolved entity names in S2

SM← resolved entity mentions in S2

1 Load model and embed:
2 Load the embedding model
3 Use the model to embed the sets FM, N, SM
4 Pairing:
5 for mention ∈ FM do
6 Selectively pair with entities in N by

Algorithm 2 to obtain a pairing
dictionary D

7 Remove duplicates in D
8 Generate entity pairs from D
9 end

10 Additional Filtering (Optional):
11 for mention ∈ entity pairs do
12 Compute its ratio of historical

failed/successful cases
13 if ratio value < threshold then
14 Remove this mention
15 end
16 end

the inclusion rate of new reference pairs into the
knowledge graph, preventing an overly aggressive
expansion that could impact runtime performance
adversely. As depicted in Figure 3, this dual-stage
approach ensures a balanced enhancement of the
knowledge graph’s accuracy. If ongoing evalua-
tions indicate stable performance improvements,
we plan to phase out the lexical similarity filtering,
shifting towards a more dynamic and phonetically-
focused expansion strategy in future iterations.

4 Experiments and Results

4.1 Training Setup
We implemented the RoBERTa model in PyTorch
(Paszke et al., 2019), initializing it with the pre-
trained RoBERTa base (Liu et al., 2019). Sim-
ilarly, we also implemented the SentenceTrans-
former all-mpnet-base-v2 model (Reimers and
Gurevych, 2019), starting with its pre-trained ver-
sion. Both models were optimized using the Adam
optimizer (Kingma and Ba, 2014) with weight de-
cay (Loshchilov and Hutter, 2018). The learning
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Algorithm 2: Filtering

1 for each resolved mention SMi ∈ SM do
2 Filter the failed mentions in FM by their

cosine similarity with the entity
mention SMi:
cos_sim(FMj , SMi) >
emb_sim_threshold;

3 for each of the remaining failed
mentions do

4 Filter by their lexical string
similarity with the resolved entity
name Ni:
lexical_sim(FMj , Ni) >
str_sim_threshold;

5 end
6 end

rate was set to 10−5, with β1 = 0.9, β2 = 0.999,
and a batch size of 64. Training and testing split is
80:20.

4.2 Evaluation of Encoder Models

We assessed the performance of various pre-trained
models, including Google’s text-bison and Ope-
nAI’s text-embedding-ada, alongside fine-tuned
SentenceTransformer (ST) and RoBERTa models.
The evaluation dataset consisted of 328 widely-
used entity names and approximately 1000 related
entity mentions. Ranking of entity mention can-
didates was based on cosine similarity within the
embedding space.

Recall metrics at 1 (r1), 3 (r3), and 6 (r6) po-
sitions, along with the Mean Reciprocal Rank
(MRR), were computed for both the pre-trained
and fine-tuned versions under two different loss
functions: the standard Cross Entropy loss (LCE)
and our proposed ASR-Error-Aware Loss (LAEA).
These metrics were calculated relative to a baseline
that utilized lexical similarity-based search.

Model r6(%) r3(%) r1(%) MRR(%)

Pre-trained ST 6.79 6.21 6.02 6.15
Pre-trained RoBERTa 6.73 6.21 5.99 6.14
text-bison 6.83 6.59 6.16 6.38
text-embedding-ada 8.24 7.69 7.33 7.50
ST+LCE 52.25 46.99 46.12 47.03
RoBERTa+LCE 52.52 47.13 46.92 47.08
ST+LAEA 52.73 47.75 46.61 47.42
RoBERTa+LAEA 53.23 47.89 46.77 47.69

Table 1: Relative improvement of encoder models under
different configurations and loss functions.

Figure 3: A demonstration of how the failed mentions
in FM are filtered by one resolved pair (entity mention,
entity name) in S2, in a two-stage process. After fil-
tering, we pair the filtered mentions with the resolved
entity name ("rec room" in this case) and put them into
our preliminary pairing dictionary D.

The experimental findings conclusively show
that the fine-tuned RoBERTa model with the ASR-
Error-Aware Loss function (LAEA) yields the best
performance. Among pre-trained models, Google’s
text-bison and OpenAI’s text-embedding-ada ex-
hibit superior performance over their counterparts.
However, due to their significantly larger architec-
tures, fine-tuning these embeddings is not feasible
for on-device applications, where model size and
efficiency are crucial.

RoBERTa’s dominance over SentenceTrans-
former in our experiments can be attributed to sev-
eral factors. Firstly, RoBERTa’s pre-training pro-
cess, involving dynamic masking and training on
a larger, more diverse dataset, provides a more nu-
anced understanding of language. This depth is par-
ticularly beneficial in handling the complexities of
ASR errors. Furthermore, RoBERTa benefits from
extended training periods and additional optimiza-
tion steps, allowing it to develop a more sophisti-
cated language model. Another critical aspect is
the nature of the input data. SentenceTransformer,
originally trained for comparing the similarity of
longer text segments, may not be as adept at pro-
cessing the shorter phrases typically seen in our use
case. In contrast, RoBERTa’s training and architec-
ture make it more suitable for accurately capturing
and processing the semantic and phonetic varia-
tions present in these shorter utterances. These
factors collectively contribute to RoBERTa’s en-
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hanced performance in our entity resolution tasks.

4.3 Offline Testing
Next, we test the ER system, which comprises both
the trained encoder and the entity pair extraction
pipeline, using historical real traffic data. Entity
pairs are extracted according to Algorithm 1 with
the fine-tuned encoder. To evaluate system im-
provements, we compute a win/loss ratio, where
a "win" represents previously failed queries now
resolved by the system, and a "loss" represents
previously successful queries that are erroneously
resolved by the new system. A higher win/loss ra-
tio indicates better system performance, combining
the previously separate "fixed ratio" and "regres-
sion ratio" into a single, more interpretable metric.

Table 2 shows the results of offline testing with-
out the optional filtering step in Algorithm 1, while
Table 3 presents results with the filtering step ap-
plied. The filtering thresholds are set at 0.55 for co-
sine similarity and 0.3 for lexical similarity. It is ob-
served that the fine-tuned encoder model achieves
significant improvements over both the baseline
and the pre-trained model without fine-tuning. The
optional filtering step, while reducing the regres-
sion ratio, does so at the cost of a lower fixed ratio,
now combined into the win/loss ratio. The decision
to include the filtering step depends on the specific
needs and constraints of the application setting.

Method Metric Result (%)

RoBERTa Fixed ratio 33.12
Pre-trained Regression ratio 1.38

Win/Loss ratio 24

RoBERTa+LCE Fixed ratio 37.48
Regression ratio 0.65
Win/Loss ratio 57.66

RoBERTa+LAEA Fixed ratio 37.92
Regression ratio 0.65
Win/Loss ratio 58.34

Table 2: Offline testing of fine-tuned model versus pre-
trained (no filtering)

4.4 Online Testing
Finally, we evaluate the ER system with two large-
scale AB experiments on live traffic. The exper-
iment results are mainly for two top domains in
voice assistant scenarios. We measure the results in
three metrics: task success rate, failed task count,
and end-to-end latency.

The first AB test was conducted with the fol-
lowing setting: the test group uses the pre-trained

Method Metric Result (%)

RoBERTa Fixed ratio 19.06
Pre-trained Regression ratio 1.11

Win/Loss ratio 17.17

RoBERTa+LCE Fixed ratio 26.59
Regression ratio 0.52
Win/Loss ratio 51.13

RoBERTa+LAEA Fixed ratio 26.86
Regression ratio 0.48
Win/Loss ratio 55.96

Table 3: Offline testing of fine-tuned model versus pre-
trained (with filtering)

RoBERTa entity reference expansion solution in
ER; the control group shows default prod behavior
without entity reference expansion. The second
AB test was conducted with the following setting:
the test group uses the fine-tuned RoBERTa+LAEA

entity reference expansion solution in ER; the con-
trol group uses the pre-trained RoBERTa entity
reference expansion solution in ER. Both AB ex-
periments have been running for 2 weeks for obser-
vation.

Table 4 and 5 show the relative improvement of
the pre-trained model versus no entity reference
expansion ER and fine-tuned model versus pre-
trained model. The improvement can be seen from
two aspects: (1) fewer instances of failed tasks,
which means we were able to resolve entities more
frequently instead of sending the failed resolved
strings as a store search; (2) an increase in user
confirmation that task is successfully resolved. The
results indicate that the new treatment has a sig-
nificant positive impact on the task success rate
without much sacrifice in end-to-end latency.

Task Metric Result

All Device Task success rate +1.23%
Target tasks Task success rate +2.41%
All Device Failed task count −10.06%
Target tasks Failed task count −13.51%
E2E Latency +0.4ms

Table 4: First online AB testing: pre-trained model
versus no entity reference expansion ER

Table 6 gives some illustrative examples com-
paring the ER results with and without using the
proposed entity reference expansion. It can be ob-
served that our approach can effectively resolve
noisy entity mentions by capturing semantic or pho-
netic similarities that the default matching-based
ER system cannot handle.
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Task Metric Result

All Device Task success rate +1.19%
Target tasks Task success rate +2.33%
All Device Failed task count −10.3%
Target tasks Failed task count −13.9%
E2E Latency +0.07ms

Table 5: Second online AB testing: fine-tuned model
versus pre-trained model

Entity Mentions Groundtruth Former ER New ER

"super fly game" superfly [] [superfly]
"fly girl" flying gorilla [] [flying gorilla]
"best star" beatstar [] [beatstar]
"president evil four" resident evil 4 [] [resident evil 4]

Table 6: Examples of entity mentions that the new ER
system (with the proposed entity reference expansion)
can resolve while the former token-matching based ER
fail to resolve.

5 Conclusion

In conclusion, our entity reference expansion
pipeline, utilizing a fine-tuned RoBERTa model,
seeks to enhance Entity Resolution (ER) in voice-
based conversational systems. The synthetic data
generation approach, which emulates noise pat-
terns, facilitates model training without requiring
manual labeling, while the implementation of an
ASR-Error-Aware Loss function addresses chal-
lenges arising from ASR-induced noise. Further-
more, our knowledge-graph-injection approach,
executed offline, ensures the system’s robustness
while seamlessly aligning with the industry’s on-
line retrieval design for swift performance. Our
developments offer new perspectives in enhancing
ER solutions, contributing to the ongoing improve-
ment of voice-based dialog systems.
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