
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 1361–1380
November 12-16, 2024 ©2024 Association for Computational Linguistics

Patentformer: A Novel Method to Automate the Generation of Patent
Applications

Juanyan Wang1

juanyan.wang@partner.samsung.com
Sai Krishna Reddy Mudhiganti1

s.mudhiganti@samsung.com

Manali Sharma1

manali.s@samsung.com
1Samsung Semiconductor, Inc.

San Jose, CA

Abstract
In recent years, Large Language Models
(LLMs) have demonstrated impressive perfor-
mances across various NLP tasks. However,
their potential for automating the task of writ-
ing patent documents remains relatively unex-
plored. To address this gap, in this work, we
propose a novel method, Patentformer, for gen-
erating patent specification by fine-tuning the
generative models with diverse sources of infor-
mation, e.g., patent claims, drawing text, and
brief descriptions of the drawings. To enhance
the generative models’ comprehension of the
complex task of writing patent specification,
we introduce a new task, claim+drawing-to-
specification, and release a new dataset. We
evaluate our proposed method on thousands of
patents from the USPTO1 and show that our
method can generate human-like patent spec-
ification in legal writing style. Human eval-
uations by four patent experts further affirm
that our proposed method has the potential to
generate correct specification, and the quality
of generated specification may sometimes be
better than the actual specification.

1 Introduction

Patents are legal documents that require a very spe-
cific writing style where certain words and phrases
carry specific meanings, e.g., an “embodiment” of
the invention refers to the physical manifestation
of the invention or idea. A patent document usu-
ally consists of the title, abstract, field of the in-
vention, background, summary of the invention,
independent claims, dependent claims, drawings,
brief descriptions of the drawings, and a detailed
description of the invention which is also referred
to as the specification. Traditionally, patents are
drafted by the patent attorneys who have extensive
knowledge of both the law and the patent system,
and it costs over $10K on average to draft a moder-
ately complex patent (Quinn, 2015). Usually, the

1https://www.uspto.gov/

patent attorneys read the invention disclosure docu-
ments and interview the inventor(s) to understand
the technical details of the invention, and then they
draft the claims, drawings, and specification. Patent
claims protect the boundaries of the invention, and
hence, drafting claims requires the expertise of the
patent attorneys. The drawings must follow the
requirements of the patent office, and label every
element of the drawing mentioned in the specifica-
tion with a unique number. However, the bulk of
patent text consists of specification, and the patent
attorneys need to spend a significant amount of
time and effort in drafting the specification to de-
scribe the invention in detail based on the claims
and drawings. Figure 1 shows an example of a
patent claim, relevant drawing, and the specifica-
tion supporting the claim. In this work, we assume
that the patent attorneys can provide their drafted
claims and additional drawings as input to our sys-
tem to automatically generate patent specification.

Transformer-based Large Language Models
(LLMs) such as BERT (Devlin et al., 2019), T5
(Raffel et al., 2020), Gemini (Team et al., 2023),
and GPT-3 (Brown et al., 2020) and its succes-
sor GPT-4 (Achiam et al., 2023) have shown im-
pressive performances in the field of natural lan-
guage generation. However, automating the gen-
eration of human-quality patent specification re-
mains challenging for these LLMs, especially be-
cause patents are intricate legal documents that re-
quire each claim to be adequately supported in the
specification, and the specification must describe
the invention in sufficient details using the associ-
ated drawings. Hence, patents contain much more
technical information than, e.g. general web text,
making it difficult for the LLMs to capture all the
relevant pieces of information pertaining to an in-
vention to generate a coherent specification. Patent
specification usually spans several pages, thus pre-
senting another challenge for most of the LLMs
which are limited by their token lengths, e.g., 512,

1361

https://www.uspto.gov/

Claim 7. The artificial intelligence-based apparatus of claim 2, wherein the processor is further configured to control
an operation of the peripheral device according to the predicted average wake-up time or bed time.
Relevant specification: FIG. 4 is a configuration diagram of an artificial intelligence (AI)-based apparatus for providing
wake-up and bed time information according to an embodiment of the present invention. Referring to FIG. 4, the AI-
based apparatus for providing wake-up and bed time information may include a communication unit 210a, a
processor 260a, and a memory 230a. The processor 260a may control the operation of the peripheral device in
correspondence to the predicted wake-up or bed time.
A brief description of the drawing: FIG. 4 is a configuration diagram of an artificial intelligence-based apparatus for
providing wake-up and bed time information according to an embodiment of the present invention.

Figure 1: An example of a patent drawing (left), claim, specification, and a brief description of the drawing (right).

1024, 2048, or 8192 tokens. Moreover, most pre-
trained LLMs are not trained on patent data, and
thus cannot generate text in legal writing style.

In this paper, we present a novel method for gen-
erating patent specification to overcome the afore-
mentioned limitations. We introduce two new tasks,
claim-to-specification that simply generates spec-
ification for the given claim, and claim+drawing-
to-specification that takes a claim and any asso-
ciated drawing text as input to generate specifica-
tion. To the best of our knowledge, our paper is
the first work that generates patent specification
by using claim and drawing text as inputs. We
present new model-agnostic strategies to effectively
construct training datasets with enriched context
to help the model generate correct specification.
We fine-tune two popular LLMs using our training
datasets and show that our method can significantly
outperform the pretrained and fine-tuned LLMs on
several years of patent data. We also conduct an
extensive user study to evaluate the correctness and
quality of the generated specification and show that
our proposed method can generate correct specifica-
tion in 66% of the cases related to neural processor
domain, and the quality of generated specification
may sometimes be better than the actual, human-
written, specification. We publicly release the first
dataset for claim+drawing-to-specification task at
https://github.com/juriand/patentformer.

2 Related Work

Most prior work related to patent text generation
focused on generating specific sections of a patent,
for example, Lee and Hsiang (2020a) generated
patent claims by fine-tuning GPT-2, Lee (2020c)
incorporated an additional BERT-based module on
the basis of Lee and Hsiang (2020a) for personaliz-
ing the claims, Lee and Hsiang (2020b) presented
a span-based approach and a generic framework
to measure patent claim generation quantitatively,
and Jiang et al. (2024) presented an approach to
generate patent claims from detailed descriptions.

Lee (2020a) presented a text-to-text mapping
approach for controlling patent text generation by
using the structural metadata in patent documents,
where the keywords in input indicate different gen-
eration tasks. Lee (2020b) presented approaches
to control patent text generation by using seman-
tic search. Lee (2023) pre-trained GPT-J model
from scratch with patent corpus for autocomple-
tion task and proposed a new metric called the Au-
tocomplete Effectiveness (AE) ratio. Jieh-Sheng
(2022) further improved upon the work of Lee
(2023) by pre-training GPT-J-6B with patent text
in both directions. Christofidellis et al. (2022) pre-
sented Patent Generative Transformer (PGT), a
GPT-2 based model trained to facilitate part-of-
patent generation-related tasks. Another line of
related work focused only on summarizing patent
text to generate short text, e.g., the title Souza et al.
(2021), abstract Guoliang et al. (2023); Zhu et al.
(2023), prior art Lee and Hsiang (2020c), or cap-
tions for patent figures Aubakirova et al. (2023).

Prior research on patent drafting either focused
on generating a small section of text, for example,
claims, or simply summarizing patent text to gener-
ate title or abstract. The closest related work is the
study by Jiang et al. (2024) that generated claims
from specification. To the best of our knowledge,
our paper is the first work that generates patent
specification from the claim and drawing text.

3 Methodology

Formally, let P represent a patent document con-
taining a sequence of l claims, C = {c1, c2, ..., cl},
a sequence of m specification paragraphs, S = {s1,
s2, ..., sm}, a set of t drawing images, I = {i1, i2,
..., it}, and a set of t brief descriptions of the draw-
ings, B = {b1, b2, ..., bt}, corresponding to each
image in I. For ∀iz ∈ I , let nz represent a set of
k pairs of component names and their respective
component numbers that appear in the drawing;
nz = {<iname

z1 , inumz1 >,<iname
z2 , inumz2 >, ..., <iname

zk
,

inumzk
>}, where iname

zj is the name of jth compo-

1362

https://github.com/juriand/patentformer

P C B S N
Mean 14.12K 1.49K 478.2 12.15K 274.0
Min 317 3 6 25 0
Max 4.56M 715.30K 276.29K 4.55M 24.91K
Std. 17.83K 1.2K 782.3 17.22K 335.0

Table 1: Number of tokens in various sections of patents
that were granted by the USPTO from 2015 to 2023.

nent and inumzj is the number of jth component in
image iz; N = {n1, n2, ..., nt} corresponding to
all images in I . Table 1 shows the average number
of tokens in various sections, P , C, B, S, and N ,
of the 2M patents that were granted by the USPTO
between 2015 and 2023.

3.1 Claim-to-Specification
First, we introduce the claim-to-specification task,
C→S. Capturing the claims and specification of
an entire patent document into a single training
example may not be possible for most LLMs due
to their token length limits, since patents contain
14.12K tokens on average, as shown in Table 1.
Moreover, learning from all the claims of an entire
patent at once to produce the entire specification
would be quite a challenging task for any model.
So, we introduce an auxiliary task of mapping each
claim feature to a paragraph in the specification, in
order to fit most training samples within the 512
token length limit used by most LLMs.

Each claim, cx ∈ C, is either an independent
claim or a dependent claim, and may describe mul-
tiple features of an invention, as described in detail
in Appendix A.2. To make the task of matching
claims to specification easier for the model, we first
split each claim into one or more claim features and
only keep the pairs <cx, sy> that have a cosine sim-
ilarity of greater than or equal to 0.6 to ensure that
only pairs with strong similarity are included in the
training data. We provide more details in Appendix
A.5. However, using cosine similarity can some-
times result in incorrect matching between claims
and specification, so there is room for improvement
in correctly matching cx to sy in the training data.

3.2 Claim+Drawing-to-Specification
Based on the task in Section 3.1, we then intro-
duce an extended task called claim+drawing-to-
specification, T →S. Its goal is to generate output
specification, S, by using C, B, and N as inputs,
where the output specification must support the in-
put claim features, C, and correctly describe the
drawings by using drawing descriptions, B, and

pairs of component names and numbers, N , asso-
ciated with each drawing.

We construct training samples containing the in-
put and output pairs, <T ,S>, where T =<C,B,N>.
Similar to the claim-to-specification task, rather
than learning from all the input text at once to
produce the entire specification, we introduce an
auxiliary task of mapping each claim feature to
a paragraph in the specification and use only one
drawing2 associated with a paragraph.

First, we match bz to sy by checking for com-
mon figure numbers. Then, we match sy to cx by
using the methodology described in Section 3.1.
Each sy ∈ S may describe a figure or not. We only
keep paragraphs that describe at least one figure in
the patent by checking the presence of the words
‘FIG.’, ‘Fig.’, and ‘Figure’, as well as occurrences
of any component names and numbers in each para-
graph. Extracting nz from the TIFF or PDF images,
iz , is not straightforward, so we instead extract the
figure number, component names, and component
numbers for each drawing from the specification, as
described in Appendix A.4. Finally, we construct
the quadruplets of samples, <cx, bz , nz , sy>, where
<cx, bz , nz> is the input to produce the correspond-
ing output specification, sy. We insert special tags
into the input and output tokens to help the model
with understanding different contexts.

3.3 Patentformer

Now we introduce our method, Patentformer, that
embeds rich context into the training data for gener-
ating specification. We design an enriched version
of T , represented as T ′=<C′,B′,N ′>, to generate
S ′. Figure 2 shows a comparison between the train-
ing samples constructed for the claim+drawing-
to-specification task, T →S, and for Patentformer,
T ′→S ′, for the same example showed in Figure 1.

First, for each claim feature extracted from an
independent claim, we provide as context the re-
maining claims features of that claim, and for each
claim feature extracted from a dependent claim, we
provide as context any remaining features of that
claim as well as its parent claim as context. Sec-
ond, for each figure number, component name, and
component number, we embed special tags in the
input as well as in the output specification to mark
their presence in the training data. Third, we addi-

2Note that some paragraphs may describe more than one
drawing. In this work, we assume that each paragraph de-
scribes only one drawing, and remove the lines from paragraph
that refer to other figures, as described in Appendix A.3.

1363

<claim_feature> 7. The artificial intelligence-based apparatus of claim 2, wherein the processor is further configured to control
an operation of the peripheral device according to the predicted average wake-up time or bed time. <claim_feature_context>
2. The artificial intelligence-based apparatus of claim 1, wherein the processor is further configured to feedback-control a
peripheral device of the user according to the wake-up or bed time. <brief_draw_desc> FIG. 4 is a configuration diagram of an
artificial intelligence-based apparatus for providing wake-up and bed time information according to an embodiment of the
present invention. <prev_para_num> -1 <prev_para> <comp_name> communication unit <comp_num> 210a <comp_name>
memory <comp_num> 230a <comp_name> processor <comp_num> 260a <para_num> 68 <fig_num> 4 <spec> FIG. <fig_num>
4 is a configuration diagram of an artificial intelligence (AI)-based apparatus for providing wake-up and bed time information
according to an embodiment of the present invention. Referring to FIG. <fig_num> 4, the AI-based apparatus for providing
wake-up and bed time information may include a <comp_name> communication unit <comp_num> 210a, a <comp_name>
processor <comp_num> 260a, and a <comp_name> memory <comp_num> 230a. The <comp_name> processor <comp_num>
260a may control the operation of the peripheral device in correspondence to the predicted wake-up or bed time.

<claim_feature> 7. The artificial intelligence-based apparatus of claim 2, wherein the processor is further configured to control
an operation of the peripheral device according to the predicted average wake-up time or bed time. <brief_draw_desc> FIG. 4
is a configuration diagram of an artificial intelligence-based apparatus for providing wake-up and bed time information
according to an embodiment of the present invention. <comp_name> communication unit <comp_num> 210a <comp_name>
memory <comp_num> 230a <comp_name> processor <comp_num> 260a <spec> FIG. 4 is a configuration diagram of an
artificial intelligence (AI)-based apparatus for providing wake-up and bed time information according to an embodiment of the
present invention. Referring to FIG. 4, the AI-based apparatus for providing wake-up and bed time information may include a
communication unit 210a, a processor 260a, and a memory 230a. The processor 260a may control the operation of the
peripheral device in correspondence to the predicted wake-up or bed time.

E.g., <comp_name> processor

<comp_num> 260a

𝑇 → 𝑆

𝑇′ → 𝑆′

Figure 2: An example of a patent drawing (left), training data for claims+drawing-to-specification, T →S, (top
right), and enhanced training data, T ′→S ′, for Patentformer (bottom right). Context tags are colored for readability.

tionally provide as context the previous paragraph,
previous paragraph number, and current paragraph
number to help the model with understanding var-
ious contexts to generate a coherent specification.
We represent the enriched versions of C, N , and S
as C′, N ′, and S ′, respectively, and B′=B. Figure 2
shows the special tags associated with each context.
As we will later show in Section 5.3, embedding
rich context into the training data provides signifi-
cant improvements to the model’s performance.

4 Experimental Setup

In this section, we describe the dataset, models, and
experimental settings to evaluate Patentformer.
Dataset. We construct the first dataset for gener-
ating specification from the claims and associated
drawings. We worked with four patent experts and
focused on patents in a specific CPC code, G06N3,
which includes patents from a diverse range of top-
ics including artificial intelligence, neural networks,
biological neurons, and artificial life, among many
others. Figure 3 shows the t-SNE graph4 for six
main subcategories of G06N: (i) G06N 3/00: com-
puting arrangements based on biological models,
(ii) G06N 5/00: computing arrangements using
knowledge-based models, (iii) G06N 7/00: com-
puting arrangements based on specific mathemat-
ical models, (iv) G06N 10/00: quantum comput-
ing, i.e. information processing based on quantum-
mechanical phenomena, (v) G06N 20/00: machine
learning, and (vi) G06N 99/00: subject matter not
provided for in other groups of this subclass.

3https://www.uspto.gov/web/patents/
classification/cpc/html/defG06N.html#G06N

4The t-SNE graph was computed by using a pre-trained
Sentence Transformer, ‘all-mpnet-base-v2’, from the Hug-
ging Face to encode the titles and abstracts of 14,280 patents

100 50 0 50 100

100

50

0

50

100

150 G06N 3/00
G06N 5/00
G06N 20/00
G06N 7/00
G06N 99/00
G06N 10/00

Figure 3: A t-SNE graph to visualize the relationships
among patents in six subcategories of G06N CPC code.

Statistics (per patent) Mean Min Max Std.
independent claims 8.33 0 110 6.49
dependent claims 9.67 0 137 8.28
claim features (with drawings) 18.00 1 153 12.03
drawings 4.32 1 36 2.67

Table 2: Statistics of patent claims and drawings in the
Patent-2015-2023-G06N dataset.

We used 13,725 patents in this category, repre-
senting about 0.69% of the total 2M patents that
were granted by the USPTO between 2015 and
2023, to construct the Patent-2015-2023-G06N
dataset consisting of 284,531 quadruplets5 of <cx,
bz , nz , sy>. Table 2 presents the average number of
independent claims, dependent claims, claim fea-
tures that are accompanied by a drawing, and draw-
ings within patents in Patent-2015-2023-G06N
dataset. In our experiments, two-thirds of the data

that were granted by the USPTO between 2015 and 2023.
5There were 3% paragraphs that describe a flow chart. Gen-

erating descriptions of flow charts is different from diagrams,
because flow charts contain a series of steps and conditional
statements. Thus, in this work, we do not focus on flow charts.

1364

https://www.uspto.gov/web/patents/classification/cpc/html/defG06N.html#G06N
https://www.uspto.gov/web/patents/classification/cpc/html/defG06N.html#G06N

was used for training and one-third was reserved for
evaluation. We truncated the text to fit within 512
and 2048 token limits for T5 and GPT-J models,
respectively. On average, T5 (and GPT-J) models
used 426 (and 479) input tokens and 199 (and 194)
target tokens for training.
Models. For training Patentformer, we uti-
lize two pre-trained models, a decoder-only based
GPT-J model (Wang and Komatsuzaki, 2021) and
an encoder-decoder based T5 (T5-11B) model
(Raffel et al., 2020), and fine-tuned them on
Patent-2015-2023-G06N dataset.
Baselines. Since this study presents the first
work on generating specification from the claim
and drawing text, there is no baseline from the liter-
ature for direct comparison, and hence, we follow
prior art on using large pre-trained LLMs (T5 and
GPT-J) in zero-shot setting without any further fine-
tuning as baselines. We also designed a series of
experiments to investigate the importance of each
input text component, C, B, and N , as well as their
context, on Patentformer’s overall performance.
Performance Metrics. Since examining patents
requires substantial expertise, we primarily rely
on the human evaluations to judge the correctness
and quality of the generated specification. To com-
pare the models under various settings, we use the
PPL (Perplexity) metric. We additionally report the
performance of Patentformer using eleven popular
metrics for natural language generation from the lit-
erature, including BLEU score and ROUGE scores
(R-1, R-2, R-L, and R-Lsum), among others. We
provide details on these metrics in Appendix B. We
present the confidence interval (CI) for each model
by using bootstrapping to select with replacement
n samples from the test set (of size n) five times.
Training. We utilized NVIDIA A100 GPUs (80
GB per GPU) for model training. Each model was
trained for 1 epoch with a batch size of 8 per device.
Pat_T5* was trained for 2 epochs; justification for
this choice is provided in Appendix C.

5 Results

In this section, we first compare the proposed
Patentformer with chosen baselines using auto-
matic evaluation metrics. Then, we present a user
study to evaluate our method from the human’s
perspective. Finally, we perform an ablation study
to show the effects of embedding rich context into
training data on the performance of Patentformer.

5.1 Patentformer vs. Baselines

Table 3 presents the perplexity results for Patent-
former and several baselines under various settings.
Pretrained vs. Fine-tuned LLMs. We first com-
pare the pre-trained models, GPT-J (Pre) and T5
(Pre), with the same models after fine-tuning on
patent text, Pat_GPT-J and Pat_T5, according to
various tasks, C→S, T →S, and T ′→S′, as de-
scribed in Section 3. Although the pre-trained mod-
els have learned to perform several NLP tasks by
training on large text datasets, patent drafting is not
included in these tasks. The special legal language
in patents and the lack of knowledge of the down-
stream task make it difficult for the pretrained mod-
els to generate a reasonable specification. There-
fore, as Table 3 shows, fine-tuning on patent data
helps improve the performance of patent text gen-
eration.
Claim-to-specification. Specifically, fine-tuning
the models on simple claim-to-specification task,
C→S, helps improve the performance, as shown
in Table 3. However, the generated specification
contains references to made-up figures, component
names, and numbers, because this task lacks the
drawing information.
Claim+drawing-to-specification. As we move to
the extended task, T →S, that utilizes both claim
and drawing text, the quality of outputs highly
improves. However, our proposed model, Patent-
former, outperforms them by training on T ′→S ′

task, which utilizes richer context for generation.
Post-processing generation strategy. We ob-
served that the generated specification sometimes
did not support the input claim, did not include
the input component names and numbers, or in-
correctly referred to other figures that were not
presented to the model. To mitigate these issues,
we implemented a simple post-processing step that

Model PPL↓ 95% CI Training time

GPT-J (Pre) 12.353 12.363 ± 0.046 0
T5 (Pre) 4.072*106 4.025*106 ± 0.074*106 0

Pat_GPT-J (C→S) 6.661 6.665 ± 0.017 27 hrs / 3 GPUs
Pat_T5 (C→S) 6.003 6.000 ± 0.023 27 hrs / 4 GPUs

Pat_GPT-J (T →S) 5.458 5.460 ± 0.011 27 hrs / 3 GPUs
Pat_T5 (T →S) 4.649 4.645 ± 0.011 27 hrs / 4 GPUs

Pat_GPT-J (T ′→S′) 4.875 4.873 ± 0.007 27 hrs / 3 GPUs
Pat_T5 (T ′→S′) 3.790 3.789 ± 0.006 27 hrs / 4 GPUs
Pat_T5* (T ′→S′) 3.771 3.769 ± 0.005 54 hrs / 4 GPUs

Table 3: Comparison between the proposed model and
several baselines. A lower PPL value is better. All PPL
values fall within the 95% confidence interval.

1365

Method Pat_GPT-J_Greedy Pat_T5*_Greedy Pat_GPT-J_Top-kp Pat_T5*_Top-kp Pat_GPT-J_P Pat_T5*_P

Score 95% CI Score 95% CI Score 95% CI Score 95% CI Score 95% CI Score 95% CI

BERTScore 0.852 0.852 ± 0.001 0.871 0.871 ± 0.001 0.854 0.854 ± 0.001 0.874 0.874 ± 0.000 0.864 0.864 ± 0.001 0.878 0.878 ± 0.001
BLEU 0.164 0.164 ± 0.002 0.239 0.238 ± 0.003 0.146 0.146 ± 0.002 0.234 0.234 ± 0.002 0.179 0.178 ± 0.001 0.246 0.245 ± 0.003
ChrF 43.090 43.089 ± 0.357 43.330 43.333 ± 0.393 43.570 43.522 ± 0.296 45.120 45.123 ± 0.132 44.861 44.745 ± 0.290 46.533 46.410 ± 0.290
COMET -0.589 -0.582 ± 0.010 -0.344 -0.345 ± 0.014 -0.403 -0.401 ± 0.008 -0.190 -0.189 ± 0.007 -0.220 -0.219 ± 0.005 -0.130 -0.133 ± 0.009
METEOR 0.350 0.350 ± 0.003 0.370 0.369 ± 0.003 0.352 0.351 ± 0.003 0.380 0.379 ± 0.002 0.372 0.372 ± 0.003 0.393 0.392 ± 0.003
NIST 4.213 4.156 ± 0.032 5.872 5.757 ± 0.066 4.091 4.034 ± 0.022 6.097 5.977 ± 0.021 4.856 4.765 ± 0.012 6.422 6.278 ± 0.044
R-1 0.409 0.410 ± 0.002 0.486 0.486 ± 0.004 0.423 0.424 ± 0.001 0.499 0.499 ± 0.001 0.460 0.461 ± 0.002 0.517 0.516 ± 0.002
R-2 0.218 0.219 ± 0.003 0.295 0.294 ± 0.003 0.205 0.205 ± 0.002 0.284 0.284 ± 0.001 0.239 0.239 ± 0.002 0.302 0.301 ± 0.003
R-L 0.296 0.297 ± 0.002 0.364 0.363 ± 0.003 0.272 0.272 ± 0.002 0.346 0.346 ± 0.001 0.299 0.298 ± 0.002 0.360 0.359 ± 0.002
R-Lsum 0.356 0.357 ± 0.002 0.428 0.427 ± 0.003 0.372 0.373 ± 0.001 0.439 0.439 ± 0.001 0.402 0.402 ± 0.002 0.456 0.455 ± 0.002
WER↓ 1.266 1.260 ± 0.006 1.001 0.997 ± 0.006 1.287 1.283 ± 0.008 0.966 0.966 ± 0.004 1.170 1.168 ± 0.005 0.952 0.951 ± 0.007

Table 4: Comparison between greedy sampling, top-kp sampling, and post-processing strategy (_P) on 5000 test
samples (↓ represents that a lower value is better). All scores, except NIST, fall within the 95% confidence interval.

ranks ten generated candidate specification para-
graphs based on whether they describe the input
claims using the input component names and num-
bers, and whether they contain reference(s) to other
figures, as described in detail in Appendix D.

Since autoregressive generation with the post-
processing step is computationally expensive6, we
show the results with post-processing in Table 4
using a small subset of 5000 samples from the
Patent-2015-2023-G06N test data. We set the
min/max limits as 100/512 for T5 and 50/256 for
GPT-J; justification for this choice is provided in
Appendix D. As Table 4 shows, our post-processing
strategy outperforms both greedy and top-kp sam-
pling on all metrics, except R-L. We present five
random examples comparing the specification gen-
erated by Pat_T5* and Pat_GPT-J in Appendix F.

5.2 User Study
We worked with four patent experts who had exten-
sive experience with drafting and reviewing patents
in G06N category and asked them to judge a pair
of two specification samples based on correctness
and quality. We set a strict criteria for measuring
the correctness: given a context claim, the claim
feature must be supported in the specification and
the specification must correctly refer to the compo-
nent names and numbers of the associated drawing.
Quality is the subjective opinion of the patent ex-
pert; we compared the quality only in cases where
both the samples in a pair were marked as correct.
In reality, the experts may have differing opinions
about the correctness and quality of the generated
specification, however, in our user study, each sam-
ple was evaluated by only one patent expert. Since
reviewing specification requires extensive experi-
ence and knowledge of a particular technology,

6It took 33 hours for Pat_T5* and 19 hours for Pat_GPT-J
to generate 5000 samples using 1 Nvidia A100 GPU.

we selected a very small subset of patents from
the Patent-2015-2023-G06N test dataset related
to each patent expert’s area of specialization. We
used the post-processed versions of outputs from
both Pat_T5* and Pat_GPT-J for the user study.
Study with random samples. We presented 100
pairs of random samples related to neural proces-
sor to one expert, and 40 pairs of random samples
related to system-on-chip to another expert. While
reviewing, the patent experts did not know which
specification was model-generated and which one
was true. We compared the correctness and qual-
ity of specification generated by Pat_T5* versus
actual specification and Pat_GPT-J versus actual
specification, and report the number of times each
method wins/ties/loses (W/T/L) compared to the
actual specification based on quality. Tables 5 and 6
present results of the experts’ evaluation of random
samples related to neural processor and system-
on-chip technologies, respectively. As these re-
sults show, Pat_T5* was correct more often (33 out
of 50 cases, 66%) than Pat_GPT-J (28 out of 50
cases, 56%) for neural processor related patents.
For system-on-chip related patents, both Pat_T5*
and Pat_GPT-J struggled to generate correct speci-
fication, however, Pat_T5* was correct more often
(4 out of 20 cases, 20%) than Pat_GPT-J (2 out of
20 cases, 10%). This result also correlates with
the better performance of Pat_T5* compared to
Pat_GPT-J, as showed in Tables 3 and 4.

The patent experts marked many of the ‘Actual’
specification as incorrect due to incorrect matching
among the elements of <cx, bz , nz , sy> quadruplet
in the test data, and the low accuracy of 67% and
35% for the ‘Actual’ cases in Tables 5 and 6, re-
spectively, indicates a huge room for improvement
in aligning the claims, drawings, and specification
paragraphs in the training set.

1366

Correctness Quality
correct # incorrect W/T/L (vs. Actual)

Pat_T5* 33 17 15/6/9
Pat_GPT-J 28 22 14/5/7
Actual 67 33 N/A

Table 5: Correctness of Pat_T5*, GPT-J, and actual
specification on 100 randomly selected patents related to
neural processor. Quality of Pat_T5* and GPT-J in terms
of Win/Tie/Loss (W/T/L) versus actual specification.

Correctness Quality
correct # incorrect W/T/L (vs. Actual)

Pat_T5* 4 16 0/1/2
Pat_GPT-J 2 18 0/0/1
Actual 14 26 N/A

Table 6: Correctness of Pat_T5*, GPT-J, and actual
specification on 40 randomly selected patents related to
system-on-chip. Quality of Pat_T5* and GPT-J in terms
of Win/Tie/Loss (W/T/L) versus actual specification.

Study with two full patents. We next simulate the
generation of specification for an entire patent with
Pat_T5*. We asked two patent experts to review
the actual versus model-generated specification for
two randomly selected patents related to their areas
of expertise. This time, we revealed to the experts
which specification was generated by AI and which
one was from the actual patent. Note that even
though Patentformer was trained on both claim and
drawing as input, in this realistic study, there were
samples in which either the claim feature or the
drawing was missing from the inputs. Even then,
Pat_T5* generated correct specification in 53 out
of 58 (91.38%) cases for one patent related to meta
vision technology, but only 13 out of 81 (16.05%)
cases for another patent related to memory tech-
nology. This result shows that Pat_T5* may not
be directly applicable to all domains, and further
fine-tuning may be required to achieve a desirable
performance. We provide detailed results for the
user study with two full patents in Appendix E.

5.3 Ablation Study

Next, we perform an ablation study to isolate the
effects of adding various context to the training
data on Patentformer’s performance. Since Pat_T5
performed better than Pat_GPT-J (see Table 3), we
conduct the ablation study with only Pat_T5.
Patent claims, drawings, and descriptions. We
first remove the claims C′, brief description of the
drawings B′, and components N ′ from the input,
T ′, and evaluate the three models. As the top
section of Table 7 shows, removing any one of

Model PPL↓ 95% CI

Pat_T5 (T ′→S′) 3.790 3.789 ± 0.006
Pat_T5 (T ′−C′→S′) 4.818 4.815 ± 0.006
Pat_T5 (T ′−B′→S′) 3.881 3.882 ± 0.009
Pat_T5 (T ′−N ′→S′) 5.488 5.478 ± 0.008

Pat_T5 (T ′−Prev_Para→S′) 3.975 3.971 ± 0.006
Pat_T5 (T ′−Prev_Para_Num→S′) 3.980 3.976 ± 0.007
Pat_T5 (T ′→S′−Comp_Tags) 3.967 3.965 ± 0.007
Pat_T5 (T ′−Para_Num→S′) 4.431 4.430 ± 0.005
Pat_T5 (T ′−Fig_Num)→S′ 3.849 3.851 ± 0.011
Pat_T5 (T ′−Context_Claims)→S′ 4.354 4.354 ± 0.005

Table 7: Results of the ablation study (↓ represents that
a lower value is better). All PPL values, except for
the setting Pat_T5 (T ′−N ′→S ′), fall within the 95%
confidence interval.

the inputs degrades model performance: removing
components has the greatest impact, as the model
generates incorrect component names and numbers
that are inconsistent with the input drawings, and
correcting such mistakes is infeasible for the users;
removing claims also significantly degrades the
model performance, as claims provide fundamental
information for drafting the specification.
Rich context. We next study the effects of adding
different contexts. As described in Section 3.3, we
provided rich context to the model during training.
As the bottom section of Table 7 shows, removing
any context negatively affects the model’s perfor-
mance: removing paragraph numbers or context
claims has the most effect; removing figure num-
bers results in a slight decrease in model perfor-
mance, however, the model incorrectly refers to
made-up figures. Similarly, removing the context
of previous paragraph produces incoherent speci-
fication, and removing the component names and
numbers injects incorrect components.

6 Conclusions

We proposed a novel method, Patentformer, to uti-
lize diverse patent-related information, e.g., patent
claims, drawing text, and brief descriptions of the
drawings, for generating patent specification. We
presented a model-agnostic approach to enrich the
training dataset with richer context for the new
claim+drawing-to-specification task. We evalu-
ated our approach using both encoder-decoder and
decoder-only LLMs and showed that our proposed
method has the potential to generate correct speci-
fication in legal writing style. Human evaluation of
the generated samples by four patent experts further
affirmed the effectiveness and practical usefulness
of our proposed method.

1367

Limitations

Despite the shown capabilities of Patentformer,
drafting a patent specification cannot be entirely
automated, and the patent attorneys still need to
thoroughly examine the generated specification to
ensure both quality and correctness. For exam-
ple, in the user study, the patent experts identified
potential issues such as incorrect or inadequate de-
scriptions of the claim features and inaccuracies
in the drawing descriptions. The proposed method
did not address generating specifications for special
types of diagrams such as block diagrams or flow
charts. Additionally, it was assumed that each spec-
ification paragraph would be associated with only
one claim feature and one drawing, but in reality,
a paragraph may be related to zero or more claim
features and zero or more drawings. The model’s
performance can be improved by enhancing the
alignment of claims, drawings, and specification
paragraphs in the training set, adding special tags to
handle different types of diagrams, and redesigning
the training dataset to create quadruplets of training
samples with zero or more drawings and zero or
more claim features. In the future, we plan to lever-
age more advanced models that can handle larger
number of tokens and larger contexts. Another line
of future work is the exploration of multimodal
models for patent text generation that can handle
both drawing images and text inputs to generate
specification.

Towards Deployment. In practice, the patent
attorneys need to provide their drafted claims, draw-
ings, descriptions of the drawings, and a correlation
between the claim features and drawings. The sys-
tem then needs to extract all the component names
and numbers from each drawing file and ask the
user to choose a set of component names and num-
bers from the drawing that are relevant to a given
claim feature for generating specification.

Ethics Statement

We used publicly available patent data pro-
vided by the USPTO7 to construct the
Patent-2015-2023-G06N dataset. The user
study reviews about quality are subjective views of
the patent experts, and thus, the actual performance
of Patentformer may be different than reported in
this study. Patents are legal documents, and the

7https://bulkdata.uspto.gov/

USPTO8 recommends the practitioners to take
extra care to verify the technical accuracy of the
documents and compliance with 35 U.S.C. 112
when using AI drafting tools (Holman, 2024).

Acknowledgements

We would like to express our sincere gratitude to
the patent experts, Komal Magsi, Elliot Karlin,
Kamil Bojanczyk, and Joseph Findley, for their
guidance and expertise. Their valuable feedback
while preparing the training datasets was instru-
mental in ensuring the accuracy and quality of the
AI-generated patent specifications. Furthermore,
their expert evaluations in the user studies were cru-
cial in reviewing and comparing the AI-generated
specifications against the actual specifications.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Dana Aubakirova, Kim Gerdes, and Lufei Liu. 2023.
Patfig: Generating short and long captions for patent
figures. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 2843–
2849.

Laura Bergomi, Tommaso M. Buonocore, Paolo Anton-
azzo, Lorenzo Alberghi, Riccardo Bellazzi, Lorenzo
Preda, Chandra Bortolotto, and Enea Parimbelli.
2024. Reshaping free-text radiology notes into struc-
tured reports with generative question answering
transformers. Artificial Intelligence in Medicine,
154:102924.

Aanisha Bhattacharyya, Yaman K Singla, Balaji Krish-
namurthy, Rajiv Ratn Shah, and Changyou Chen.
2023. A video is worth 4096 tokens: Verbalize
videos to understand them in zero shot. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 9822–9839,
Singapore. Association for Computational Linguis-
tics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

8https://www.federalregister.gov/documents/2024/04/11/
2024-07629/guidance-on-use-of-artificial-intelligence-based-
tools-in-practice-before-the-united-states-patent

1368

https://bulkdata.uspto.gov/
https://doi.org/10.1016/j.artmed.2024.102924
https://doi.org/10.1016/j.artmed.2024.102924
https://doi.org/10.1016/j.artmed.2024.102924
https://doi.org/10.18653/v1/2023.emnlp-main.608
https://doi.org/10.18653/v1/2023.emnlp-main.608

Alvin Chan, Yew-Soon Ong, Bill Pung, Aston Zhang,
and Jie Fu. 2020. Cocon: A self-supervised ap-
proach for controlled text generation. arXiv preprint
arXiv:2006.03535.

Dimitrios Christofidellis, Antonio Berrios Torres,
Ashish Dave, Manuel Roveri, Kristin Schmidt,
Sarath Swaminathan, Hans Vandierendonck, Dmitry
Zubarev, and Matteo Manica. 2022. Pgt: a prompt
based generative transformer for the patent domain.
In ICML 2022 Workshop on Knowledge Retrieval
and Language Models.

Haikang Deng and Colin Raffel. 2023. Reward-
augmented decoding: Efficient controlled text gener-
ation with a unidirectional reward model. In Proceed-
ings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 11781–11791,
Singapore. Association for Computational Linguis-
tics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In North American Chapter of the Association
for Computational Linguistics.

Felix Faltings, Michel Galley, Kianté Brantley, Baolin
Peng, Weixin Cai, Yizhe Zhang, Jianfeng Gao, and
Bill Dolan. 2023. Interactive text generation. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 4450–
4468, Singapore. Association for Computational Lin-
guistics.

Yue Guo, Wei Qiu, Gondy Leroy, Sheng Wang, and
Trevor Cohen. 2024. Retrieval augmentation of large
language models for lay language generation. Jour-
nal of Biomedical Informatics, 149:104580.

Shi Guoliang, Zhou Shu, Wang Yunfeng, Shi Chunjiang,
and Liu Liang. 2023. Generating patent text abstracts
based on improved multi-head attention mechanism.
Data Analysis and Knowledge Discovery, 7(6):61–
72.

Christopher M Holman. 2024. The us patent and trade-
mark office’s response to recent developments in arti-
ficial intelligence. Biotechnology Law Report.

Lekang Jiang, Caiqi Zhang, Pascal A Scherz, and
Stephan Goetz. 2024. Can large language models
generate high-quality patent claims? arXiv preprint
arXiv:2406.19465.

LEE Jieh-Sheng. 2022. The effectiveness of bidirec-
tional generative patent language models. In Legal
Knowledge and Information Systems: JURIX 2022:
The Thirty-fifth Annual Conference, Saarbrücken,
Germany, 14-16 December 2022, volume 362, page
194. IOS Press.

Mateusz Lango and Ondrej Dusek. 2023. Critic-driven
decoding for mitigating hallucinations in data-to-text
generation. In Proceedings of the 2023 Conference

on Empirical Methods in Natural Language Process-
ing, pages 2853–2862, Singapore. Association for
Computational Linguistics.

Jieh-Sheng Lee. 2020a. Controlling patent text gener-
ation by structural metadata. In Proceedings of the
29th ACM International Conference on Information
& Knowledge Management, pages 3241–3244.

Jieh-Sheng Lee. 2020b. Measuring and controlling text
generation by semantic search. In Companion Pro-
ceedings of the Web Conference 2020, pages 269–
273.

Jieh-Sheng Lee. 2020c. Patent transformer: A frame-
work for personalized patent claim generation. In
CEUR Workshop Proceedings, volume 2598. CEUR-
WS.

Jieh-Sheng Lee. 2023. Evaluating generative patent lan-
guage models. World Patent Information, 72:102173.

Jieh-Sheng Lee and Jieh Hsiang. 2020a. Patent claim
generation by fine-tuning openai gpt-2. World Patent
Information, 62:101983.

Jieh-Sheng Lee and Jieh Hsiang. 2020b.
Patenttransformer-1.5: Measuring patent claim
generation by span relevancy. In New Frontiers in
Artificial Intelligence, pages 20–33, Cham. Springer
International Publishing.

Jieh-Sheng Lee and Jieh Hsiang. 2020c. Prior art
search and reranking for generated patent text. arXiv
preprint arXiv:2009.09132.

Zi Liang, Pinghui Wang, Ruofei Zhang, Nuo Xu, Shuo
Zhang, Lifeng Xing, Haitao Bai, and Ziyang Zhou.
2024. Merge: Fast private text generation. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, pages 19884–19892.

Weiming Liao, Bo Chen, and Xiaobing Zhao. 2024.
Zero-shot data-to-text generation via dual learning.
In Third International Conference on Electronic In-
formation Engineering and Data Processing (EIEDP
2024), volume 13184, pages 778–782. SPIE.

Yupian Lin, Tong Ruan, Jingping Liu, and Haofen Wang.
2023. A survey on neural data-to-text generation.
IEEE Transactions on Knowledge and Data Engi-
neering.

Siyang Liu, Naihao Deng, Sahand Sabour, Yilin Jia,
Minlie Huang, and Rada Mihalcea. 2023. Task-
adaptive tokenization: Enhancing long-form text gen-
eration efficacy in mental health and beyond. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 15264–
15281.

Justin Lovelace, Varsha Kishore, Chao Wan, Eliot
Shekhtman, and Kilian Q Weinberger. 2024. La-
tent diffusion for language generation. Advances in
Neural Information Processing Systems, 36.

1369

https://doi.org/10.18653/v1/2023.emnlp-main.721
https://doi.org/10.18653/v1/2023.emnlp-main.721
https://doi.org/10.18653/v1/2023.emnlp-main.721
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://doi.org/10.18653/v1/2023.emnlp-main.270
https://doi.org/10.18653/v1/2023.emnlp-main.172
https://doi.org/10.18653/v1/2023.emnlp-main.172
https://doi.org/10.18653/v1/2023.emnlp-main.172

Nicolo Micheletti, Samuel Belkadi, Lifeng Han, and
Goran Nenadic. 2024. Exploration of masked and
causal language modelling for text generation. arXiv
preprint arXiv:2405.12630.

Tsendsuren Munkhdalai, Manaal Faruqui, and Sid-
dharth Gopal. 2024. Leave no context behind:
Efficient infinite context transformers with infini-
attention. arXiv preprint arXiv:2404.07143.

Yotam Perlitz, Ariel Gera, Michal Shmueli-Scheuer,
Dafna Sheinwald, Noam Slonim, and Liat Ein-Dor.
2023. Active learning for natural language gener-
ation. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 9862–9877, Singapore. Association for Com-
putational Linguistics.

Gene Quinn. 2015. The cost of obtaining a patent in the
us. Accessed: 2024-7-18.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702, Online. Association
for Computational Linguistics.

Leonardo F. R. Ribeiro, Mohit Bansal, and Markus
Dreyer. 2023. Generating summaries with control-
lable readability levels. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 11669–11687, Singapore.
Association for Computational Linguistics.

Furkan Şahinuç, Ilia Kuznetsov, Yufang Hou, and Iryna
Gurevych. 2024. Systematic task exploration with
LLMs: A study in citation text generation. In Pro-
ceedings of the 62nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 4832–4855, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Cinthia M Souza, Magali RG Meireles, and Paulo EM
Almeida. 2021. A comparative study of abstractive
and extractive summarization techniques to label sub-
groups on patent dataset. Scientometrics, 126(1):135–
156.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Sindhu Tipirneni, Ming Zhu, and Chandan K Reddy.
2024. Structcoder: Structure-aware transformer for
code generation. ACM Transactions on Knowledge
Discovery from Data, 18(3):1–20.

Dennis Ulmer, Chrysoula Zerva, and Andre Martins.
2024. Non-exchangeable conformal language gen-
eration with nearest neighbors. In Findings of the
Association for Computational Linguistics: EACL
2024, pages 1909–1929, St. Julian’s, Malta. Associa-
tion for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Chunliu Wang, Huiyuan Lai, Malvina Nissim, and Jo-
han Bos. 2023. Pre-trained language-meaning mod-
els for multilingual parsing and generation. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2023, pages 5586–5600, Toronto, Canada.
Association for Computational Linguistics.

Manjeet Yadav, Nilesh Kumar Sahu, Mudita Chaturvedi,
Snehil Gupta, and Haroon R Lone. 2024. Fine-
tuning large language models for automated di-
agnostic screening summaries. arXiv preprint
arXiv:2403.20145.

Haibin Yu, Yuxuan Hu, Yao Qian, Ma Jin, Linquan Liu,
Shujie Liu, Yu Shi, Yanmin Qian, Edward Lin, and
Michael Zeng. 2023. Code-switching text generation
and injection in mandarin-english asr. In ICASSP
2023-2023 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
1–5. IEEE.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

Feng Zhao, Hongzhi Zou, and Cheng Yan. 2023a.
Structure-aware knowledge graph-to-text generation
with planning selection and similarity distinction.
In Proceedings of the 2023 Conference on Empir-
ical Methods in Natural Language Processing, pages
8693–8703.

Yilun Zhao, Haowei Zhang, Shengyun Si, Linyong Nan,
Xiangru Tang, and Arman Cohan. 2023b. Investi-
gating table-to-text generation capabilities of large
language models in real-world information seeking
scenarios. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing:
Industry Track, pages 160–175, Singapore. Associa-
tion for Computational Linguistics.

1370

https://doi.org/10.18653/v1/2023.emnlp-main.611
https://doi.org/10.18653/v1/2023.emnlp-main.611
https://ipwatchdog.com/2015/04/04/the-cost-of-obtaining-a-patent-in-the-us/id=56485/
https://ipwatchdog.com/2015/04/04/the-cost-of-obtaining-a-patent-in-the-us/id=56485/
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2023.emnlp-main.714
https://doi.org/10.18653/v1/2023.emnlp-main.714
https://doi.org/10.18653/v1/2024.acl-long.265
https://doi.org/10.18653/v1/2024.acl-long.265
https://aclanthology.org/2024.findings-eacl.129
https://aclanthology.org/2024.findings-eacl.129
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://doi.org/10.18653/v1/2023.findings-acl.345
https://doi.org/10.18653/v1/2023.findings-acl.345
https://doi.org/10.18653/v1/2023.emnlp-industry.17
https://doi.org/10.18653/v1/2023.emnlp-industry.17
https://doi.org/10.18653/v1/2023.emnlp-industry.17
https://doi.org/10.18653/v1/2023.emnlp-industry.17

Changsheng Zhu, Xin Zheng, and Wenfang Feng. 2023.
An automatic generation method of patent specifica-
tion abstract based on" extraction-abstraction" model.
In 2023 IEEE 3rd International Conference on Power,
Electronics and Computer Applications (ICPECA),
pages 196–200. IEEE.

1371

A Patent Documents

A patent document usually consists of the title, ab-
stract, field of the invention, background, summary
of the invention, independent claims, dependent
claims, drawings, brief descriptions of the draw-
ings, and a detailed description of the invention
which is also referred to as the specification. A
patent document may additionally contain draw-
ings to help describe the invention, and the draw-
ings must follow the standards of the patent office
and label every element of the drawing that is men-
tioned in the specification with a unique number
for identification. We next describe each section of
a patent in detail.

A.1 The Title and the Abstract

The title of a patent is a generic summary of the
invention based on the claims of the invention. The
abstract is a summary of the invention based on the
description, claims, and any drawings, and it clearly
explains the technical problem, the proposed solu-
tion of the problem through the invention, and the
use(s) of the invention.

A.2 Claims

Patent claims are the most essential part of a patent
application, because claims protect the boundaries
of the invention. A claim can be either an indepen-
dent claim or a dependent claim, as described next.
A claim that stands alone and describes all the pos-
sible limitations necessary to define an invention
is called an independent claim. A dependent claim
refers to a previous claim and must add a further
feature or limitation to the previous claim. Exam-
ples of an independent claim and a dependent claim
are provided in Figure 4.

Claim subtrees. Claims may comprise of mul-
tiple sentences in a hierarchical structure, where
each sentence is a claim, which might be dependent
on other claims. For each claim, we construct the
claim subtrees consisting of two nodes, the node
itself and its ancestor node. For example, in Figure
5, claim 1 is the ancestor of claim 2, claim 2 is the
ancestor of claim 3, and so on.

Claim feature. Each claim may describe one
or more features of the invention, and the claim
features are usually separated by a semicolon in
the claims. We observed that each paragraph in
the specification may not fully cover the entire
claim, so we further extracted the claim features

Figure 4: Claim 1 is an independent claim. Claim 2
is dependent on claim 1, and claim 3 is dependent on
claim 2.

Figure 5: An example of claim subtrees.

from each claim. For simplicity, we separated the
claims by using a semicolon to extract one or more
claim features from a claim. We then matched
each claim feature to a paragraph in specification,
which resulted in a better overall matching between
the claims and specification. For Patentformer, for
each claim feature that is extracted from an indepen-
dent claim, we provide as context any remaining
claims features of that claim, and for each claim
feature that is extracted from a dependent claim,
we provide as context any remaining claim features
of that claim as well as its parent claim as context.

A.3 Specification
Patent specification describes the invention in detail
based on the claims and any associated drawings.
Patent specification usually starts by describing the
field of the invention, the background, and a sum-
mary of the invention. Then, it focuses on describ-
ing the various aspects of the invention based on
the claims and associated drawings. In this work,
we only focused on generating parts of specifica-
tion that describe the claims as well as associated

1372

drawings, as explained in the claim+drawing-to-
specification task introduced in this study. USPTO
patent data9 consists of specification paragraphs,
where some paragraphs are too short and may not
fully describe a given claim feature. So, we con-
catenated each paragraph that was shorter than 50
tokens with its subsequent paragraph. We trun-
cated longer paragraphs to fit within the 512 and
2048 token length limits of T5 and GPT-J models,
respectively.

Drawing. In this study, we extracted the fig-
ure number of each drawing by checking for the
presence of ‘FIG.’, ‘Fig.’, and ‘Figure’, as well as
occurrences of any component names and numbers
within specification paragraphs. We noticed that
a subsequent paragraph may continue describing
the same figure without explicitly mentioning any
figure number or component numbers. Therefore,
we kept up to two paragraphs after each paragraph
that mentioned a figure, and mapped the same fig-
ure number to the following two paragraphs. We
noticed that sometimes a paragraph may describe
more than one figure. In this work, we focused
on generating specification for only one claim fea-
ture and one drawing, so we explicitly removed the
sentences from each paragraph that mentioned any
other figure numbers.

A.4 Component Names and Numbers
Rather than extracting the component names and
their respective numbers from the image files pro-
vided by the USPTO in TIFF and PDF formats, we
simulated the extraction of component names and
numbers for each drawing by using the specifica-
tion paragraphs, as described next. The USPTO
patent data contains specification paragraphs with
special tags for the component numbers, however,
we need to extract the component names from the
specification text. So, we ran the longest common
substring algorithm to find the component name
for the sequences of text that end with the same
component number.

A.5 Claim-to-Specification
In order to compute similarity between a given
claim feature and specification paragraph, we
used a pre-trained Sentence Transformer model,
‘multi-qa-mpnet-base-dot-v1’, from the Hug-
ging Face to compute the embeddings for both
claim feature and specification. We then computed

9https://bulkdata.uspto.gov/

cosine similarity between the normalized embed-
dings of both the claim feature and specification,
and discarded any claim-specification pair that had
a cosine similarity of less than 0.6, in order to con-
trol the quality of training data.

B Performance Metrics

Since examining patent specification requires the
expertise of patent attorneys, we primarily rely and
focus on human evaluations to test the performance
of Patentformer. Since this is the first work that
generates patent specification from claim and draw-
ing text, we did not know which metrics for au-
tomated evaluation would be the best to evaluate
the quality of generated patent specification against
true specification, so we surveyed 28 recently pub-
lished papers (Vaswani et al., 2017; Radford et al.,
2019; Brown et al., 2020; Lee, 2020a; Zhao et al.,
2023b; Deng and Raffel, 2023; Faltings et al., 2023;
Zhao et al., 2023a; Lango and Dusek, 2023; Ribeiro
et al., 2023; Liu et al., 2023; Perlitz et al., 2023;
Bhattacharyya et al., 2023; Lovelace et al., 2024;
Guo et al., 2024; Liang et al., 2024; Tipirneni et al.,
2024; Şahinuç et al., 2024; Munkhdalai et al., 2024;
Liao et al., 2024; Micheletti et al., 2024; Bergomi
et al., 2024; Yu et al., 2023; Lin et al., 2023; Yadav
et al., 2024; Wang et al., 2023; Ulmer et al., 2024;
Chan et al., 2020) related to natural language gen-
eration, and used the twelve most popular metrics
from these papers in our study, as described next.

We evaluated the performance of Patentformer
across the following twelve popular metrics for
natural language generation. Perplexity measures
the probability of a reference sentence to be pro-
duced by the model. BLEU (BiLingual Evalua-
tion Understudy) score measures the similarity be-
tween a reference text and the model generated text.
ROUGE (Recall-Oriented Understudy for Gisting
Evaluation) measures how much of the important
content from reference text matches with the model-
generated text. We used four variants of ROUGE
metric, namely ROUGE-1 (unigram based scor-
ing), ROUGE-2 (bigram based scoring), ROUGE-
L (longest common subsequence based scoring),
and ROUGE-LSum (average of ROUGE-L score
for each sentence). Word Error Rate (WER) counts
the minimum number of edits needed to change the
generated text to match the reference text. NIST
(National Institute of Standards and Technology) is
derived from BLEU score but it additionally con-
siders how informative a particular n-gram is. ME-

1373

https://bulkdata.uspto.gov/

Model
Num

Epochs
PPL↓ Training times

Pat_GPT-J 1 4.875 27 hours / 3 GPUs
Pat_GPT-J 2 5.662 54 hours / 3 GPUs
Pat_GPT-J 3 6.646 81 hours / 3 GPUs
Pat_GPT-J 4 8.002 108 hours / 3 GPUs

Pat_T5 1 3.790 27 hours / 4 GPUs
Pat_T5 2 3.771 54 hours / 4 GPUs
Pat_T5 3 4.041 81 hours / 4 GPUs
Pat_T5 4 3.893 108 hours / 4 GPUs

Table 8: Ablation study with various epochs. (↓ repre-
sents that a lower value is better).

TEOR (Metric for Evaluation of Translation with
Explicit ORdering) measures the quality of gen-
erated text based on the alignment between the
generated text and a reference text, by computing
the harmonic mean of unigram precision and re-
call, with recall weighted higher than precision.
ChrF (CHaRacter-level F-score) calculates the sim-
ilarity between the generated text and a reference
text by using character n-grams, not word n-grams.
BERTScore (Zhang et al., 2019) measures the se-
mantic similarity between the generated text and
a reference text by using sentence representations
from BERT model. COMET (Crosslingual Opti-
mized Metric for Evaluation of Translation) (Rei
et al., 2020) is similar to BERTScore, but is trained
to predict quality scores for translations.

C Results with More Epochs

In this section, we present the results for training
both Pat_T5 and Pat_GPT-J on up to four epochs.
As Table 8 shows, training Pat_GPT-J with more
than 1 epoch degrades the model performance. The
performance of Pat_T5 improved with 2 epochs, so
we chose Pat_T5* with 2 epochs in the main paper.

D Post-processing Strategy

Generally, GPT-J produced longer outputs (1554 to-
kens on average) and T5 produced shorter outputs
(181 tokens on average). So, for a fairer compari-
son during generation, we set the min/max limits
as 100/512 tokens for T5 and 50/256 tokens for
GPT-J. This resulted in 174 tokens on average for
T5 and 206 tokens on average for GPT-J during
generation, which are closer to the average token
lengths of specification paragraphs in the training
data (199 tokens for T5 and 194 tokens for GPT-J).

We observed that the generated specification
sometimes did not support the input claim, did not
include the input component names and numbers,

or incorrectly referred to other figures that were
not presented to the model. To mitigate these is-
sues, we implemented a simple post-processing
step that ranks ten generated candidate specifi-
cation paragraphs based on a scoring function,
F = argmaxi(f

1
i + f2

i + f3
i), where:

f1
i = cosim(cx, ŝi)

f2
i =

{
1, if no input components
|N̂∩N|
|N | , otherwise

f3
i =

{
1, if no reference to other figures
0, otherwise

(1)

where, N̂ is the set of component names and
numbers in the generated specification, ŝi. And,
cosim(cx, ŝi) calculates the cosine similarity be-
tween cx and ŝi, by using their embeddings
from the pre-trained Sentence Transformer model,
‘multi-qa-mpnet-base-dot-v1’.

E User Study

In the main paper, we presented the user study
results with 100 random samples related to neu-
ral processor domain, and 40 random samples re-
lated to system-on-chip domain. In this section,
we present the detailed results for study with two
patents related to meta vision and memory tech-
nologies in Tables 9 and 10, respectively.

In the study with two full patents, there were
cases where either a claim feature or drawing was
missing from the inputs. Specifically, the meta
vision related patent containing a total of 58 sam-
ples had 11 samples without a matching figure and
35 samples without a matching claim feature; the
memory technology related patent containing a to-
tal of 81 samples had 12 samples without a match-
ing figure and 17 samples without a matching claim
feature. Even then, Pat_T5* generated correct spec-
ification in 53 out of 58 (91.38%) cases for the
meta vision related patent, but only 13 out of 81
(16.05%) cases for the memory technology related
patent.

F Actual versus Patentformer-generated
Specification

In this section, we present five random examples
of patent specification generated by Pat_GPT-J and
Patentformer, Pat_T5*, and compare them with
the actual specification in Tables 11, 12, 13, 14
and 15. Note that even though we showed the

1374

Correctness Quality
correct # incorrect W/T/L (vs. Actual)

Pat_T5* 53 5 23/11/11
Actual 49 9 N/A

Table 9: Correctness and quality of one randomly se-
lected patent from ‘G06N’ category related to meta vi-
sion technology. Correctness of Pat_T5* versus and Ac-
tual data, and quality, in terms of W/T/L (Win/Tie/Loss)
counts, of Pat_T5* compared to the actual specification.

Correctness Quality
correct # incorrect W/T/L (vs. Actual)

Pat_T5* 13 68 0/0/6
Actual 18 63 N/A

Table 10: Correctness and quality of one randomly se-
lected patent from ‘G06N’ category related to memory
technology. Correctness of Pat_T5* versus and Actual
data, and quality, in terms of W/T/L (Win/Tie/Loss)
counts, of Pat_T5* compared to the actual specification.

associated drawing image in these tables to the
patent experts during user study, we did not utilize
the image modality. Using multi-modal models
for incorporating both patent image and text is not
orthogonal to work, and may improve upon our
work, however, in this work, we focused on using
only the text from the drawings.

G Towards Deployment

We presented a novel method to generate specifica-
tion from the input claims and drawings. The goal
of the system is to assist the users to enter their
drafted claims, drawings, and brief descriptions of
the drawings. The system then helps the user to
map the claim features to zero or more drawings,
after which they can begin drafting the specifica-
tion using Patentformer, as described next. At in-
ference time, the system utilizes the input claim
features, drawing text, and mappings between the
claim features and drawings to produce the output
specification. An application of this system is to
assist the patent attorneys with generating specific
paragraphs based on the provided inputs. For in-
stance, when the user starts typing a figure number,
e.g., ‘FIG. 2’, the system can display the relevant
claim features (C) and components related to that
figure. We assume that the system can extract the
component names and numberings (N) from the
input figure by employing OCR or parsing the text
from powerpoint/Visio/DWG/etc. files containing
the figures. Since the system is already aware of
the brief descriptions of drawings, B, as previously
provided by the user, it can leverage B as additional

input to generate specification for the correspond-
ing figure and claim feature.

1375

Input Figure

Input Text: <claim_feature> 7. The method of claim 6, wherein generating updated scene memory data comprises: clustering (i) the embeddings
of the prior observations and (ii) a compressed representation of the embeddings of the prior observations into a plurality of clusters.
<claim_feature_context> 6. The method of claim 3, wherein the compressed representation comprises a plurality of center embeddings,
wherein each center embedding is a center of a respective cluster of the embeddings in the scene memory data. and generating a new compressed
representation that includes a respective center embedding for each of the plurality of clusters. <brief_draw_desc> FIG. 1 shows an example
control system. <prev_para_num> 46 <prev_para> In particular, instead of including the encoder attention block described above, the
encoder neural network 112 instead includes two attention blocks and the scene memory data includes (i) embeddings and (ii) a compressed
representation of the embeddings. The compressed representation generally includes many fewer embeddings than the total number of prior
observations. <para_num> 47 <fig_num> 1 <spec>

Actual In particular, the compressed representation includes a plurality, i.e., a fixed number, of center embeddings. Each center embedding is the center
of a respective cluster of embeddings of the prior observations. The system can cluster the embeddings in the scene memory data and identify
the centers of those clusters using any of a variety of existing clustering techniques. For example, the system can apply iterative farther point
sampling on the embeddings to determine the centers.

Pat_T5* The scene memory data includes a plurality of clusters, where each cluster corresponds to a respective set of prior observations. The system
generates updated scene memory data by: (i) clustering (i) the embeddings of the prior observations and (ii) a compressed representation of the
embeddings of the prior observations into a plurality of clusters, and (iii) generating a new compressed representation that includes a respective
center embedding for each of the plurality of clusters.

Pat_GPT-J The system generates (208) a compressed representation of the current observation (the embeddings of the current observation). The system
generates (210) updated scene memory data based on the current observation. Updating the scene memory data can include generating a
plurality of cluster center representations of the scene memory data and identifying the clusters in the scene memory data using the plurality of
cluster center representations. Generating the scene memory data can include, for each cluster in the scene memory data, setting the value of the
cluster to a respective cluster embedding and generating an updated center embedding for the cluster by computing a weighted sum of the
cluster embeddings in the scene memory data. The system can generate an initial scene memory data, e.g., for the first prior observation, by
pre-training the encoder neural network. In some implementations, the initial scene memory data includes the cluster centers that are provided
by the encoder neural network and the cluster centers for the training observations. Generating the updated scene memory data can include, for
each cluster in the scene memory data, setting the value of the cluster to the updated center embedding for the cluster. Updating the cluster
centers can include computing a weighted sum of the cluster embeddings.

Table 11: An example of patent specification generated by Patentformer, Pat_T5*, and Pat_GPT-J compared to the
actual specification. The input text was embedded with rich context to generate the output specification.

1376

Input Figure

Input Text: <claim_feature> 34. A method as in claim 33, further comprising the training mode using the computer to store quantities associated with
a new approximate blood flow through the perturbed at least one heart valve, inflow tract or outflow tract. <claim_feature_context> 33. A
method as in claim 32, further comprising the training mode using the computer to calculate a new approximate blood flow through the at
least one heart valve, inflow tract or outflow tract with the perturbed at least one known anatomical characteristic or known physiological
characteristic. <brief_draw_desc> FIG. 1 is a block diagram of a machine learning system, according to one embodiment; <prev_para_num>
-1 <prev_para> <comp_name> system <comp_num> 30 <comp_name> training mode <comp_num> 32 <comp_name> production mode
<comp_num> 34 <para_num> 2 <fig_num> 1 <spec>

Actual Referring to FIG. 1 and according to one embodiment, a machine learning system 30 may include two modes: a training mode 32 and a
production mode 34. The two modes 32, 34 may be embodied in a computer system and/or a computer readable medium. The system 30 may
execute the two modes in series, where the training mode 32 is executed first, and the production mode 34 is executed second. The training mode
32 may be configured to develop analytical capabilities in a computer system that enable the computer system to predict unknown anatomic
and/or physiologic characteristics of one or more heart valves and/or the surrounding inflow/outflow tracts. These predictive capabilities may
be developed by the analysis and/or evaluation of known anatomic and/or physiologic characteristics of one or more heart valves and/or the
surrounding inflow/outflow tracts. Using a collection of known anatomic and/or physiologic characteristics, a computer may be “trained” to
predict various unknown anatomic and/or physiologic characteristics. The abstract mapping that transforms a set of known characteristics into
one or more predictions of unknown characteristics may be referred to as the “transformation function.” In some embodiments, the training
mode 32 may be configured to construct the transformation function.

Pat_T5* FIG. 1 shows an example machine learning system 30, according to one embodiment. The system 30 includes a training mode 32 and a
production mode 34, which may be switched between each other at any time. The training mode 32 is used to train the system 30, for example
by changing at least one of the anatomical characteristics or physiological characteristics of at least one of the valves. The training mode 32
is used to store quantities associated with the calculated or estimated blood flow through the heart valve based on the perturbed anatomical
characteristic or physiological characteristic. Generally speaking, during the training mode, the system trains the model to estimate blood flow
through the heart valve based on at least one of the anatomical characteristic or physiological characteristic that is manipulated, in the training
mode. The training mode 32 is used to store quantities associated with the calculated or estimated blood flow through the heart valve based on
the perturbed anatomical characteristic or physiological characteristic. The training mode 32 is used to store quantities associated with the
calculated or estimated blood flow through the heart valve based on at least one of the anatomical characteristic or physiological characteristic
that is manipulated, in the training mode.

Pat_GPT-J In system 30, depicted in FIG. 1, training mode 32 uses a computer to calculate a new approximate blood flow through a patient’s heart valve(s),
inflow tract(s) and/or outflow tract(s) using at least one known anatomical characteristic or known physiological characteristic of the patient. The
computer can be part of a server, desktop computer or other computer system and the system 30 can be in the form of a stand-alone unit or part
of a larger computer system. In production mode 34, the computer can be used to calculate a new approximate blood flow through the patient’s
at least one heart valve, inflow tract(s) or outflow tract(s), using the new calculated approximate blood flow through the at least one heart valve,
inflow tract(s) or outflow tract(s). In production mode 34, the computer system can be part of a network of computers, such as a healthcare cloud
and at least some of the steps described below can be performed in a central location or in each individual patient’s healthcare system.P1:Q3

Table 12: An example of patent specification generated by Patentformer, Pat_T5*, and Pat_GPT-J compared to the
actual specification. The input text was embedded with rich context to generate the output specification.

1377

Input Figure

Input Text: <claim_feature> 2. Hardware as claimed in claim 1, wherein the number of weights in a filter is the same as the number of data values in a data
window. <claim_feature_context> 1. Hardware for implementing a Deep Neural Network (DNN) having a convolution layer, the hardware
comprising: an input buffer configured to provide data windows to a plurality of convolution engines, each data window comprising a single
input plane; and each of the plurality of convolution engines being operable to perform a convolution operation by applying a filter to a data
window, each filter comprising a set of weights for multiplication with respective data values of a data window, and each of the plurality of
convolution engines comprising: multiplication logic operable to multiply a weight of the filter with a respective data value of the data window
provided by the input buffer; and accumulation logic configured to accumulate the results of a plurality of multiplications performed by the
multiplication logic so as to form an output for a respective convolution operation. <brief_draw_desc> FIG. 2 is a schematic diagram of
hardware for implementing a Deep Neural Network; <prev_para_num> 107 <prev_para> However, when there is extremely high sparsity
(e.g. almost all of the data or weights are zero) the overhead of fetching the next set of data/weights may not be hidden by the non-zero filter
operations performed by the neuron engines. An improved approach to performing depthwise separable convolutions using the neuron engine
approach set out herein will now be described. <comp_name> hardware <comp_num> 200 <para_num> 108 <fig_num> 2 <spec>

Actual The hardware 200 may be configured in a single plane filter mode in which filters are performed in a window comprising a single plane. In
a typical configuration of a convolution filter, each window in the data contains all input planes, and the filter contains the same number of
weights as the number of elements in the window of depth P planes. In single plane filter mode each window is instead defined as containing
only a single input plane, and (if necessary) separate windows are defined for each input plane. In this case the number of weights in a filter is
the same number as the number of elements in the single plane window. This significantly reduces the number of weights that need to be stored
and transferred in order to perform a filter on a given window.

Pat_T5* In some embodiments of the hardware 200, the number of weights in a filter is the same as the number of data values in a data window, e.g. the
filters are 11 filters. The number of neuron engines required to perform the convolution may therefore be determined by the number of weights
in a filter. For example, a filter may comprise a filter for each of the 12 data planes assuming that the depth of the neural network is eight.

Pat_GPT-J In one example the number of weights in a filter is the same as the number of data values in a data window. Thus in some examples each filter
(e.g. convolution kernel) is the same size as the data window. As each filter is the same size then so is the amount of data (e.g. input planes)
needed to be provided to the convolution engines at one time. For example, for a hardware 200 as described herein having four sets of neuron
engines then each convolution kernel (e.g. filter) needs to be the same size as the input planes to be convolved (i.e. multiplied with). If the
number of filters is F then the number of convolution engines that need to be fed with the same number of input planes will be F. Thus, it will be
appreciated that it will no longer be necessary to fetch a plurality of input planes of data when the data to be convolved is highly sparse.

Table 13: An example of patent specification generated by Patentformer, Pat_T5*, and Pat_GPT-J compared to the
actual specification. The input text was embedded with rich context to generate the output specification.

1378

Input Figure

Input Text: <claim_feature> 3. The method as described in claim 1, further comprising providing audio content of the similar audio files for playback by
the computing device. <claim_feature_context> 1. In a digital medium environment for searching for music, a method implemented by a
computing device, the method comprising: receiving a music search request that includes a music file including music content; receiving a
selected musical attribute from a plurality of musical attributes; generating musical features of the music content, a respective one or more of
the musical features corresponding to a respective one of the plurality of musical attributes; comparing the respective one or more musical
features corresponding to the selected musical attribute to audio features of a plurality of audio files; and determining similar audio files
to the music file based on the comparing of the respective one or more musical features to the audio features of the plurality of audio files.
<brief_draw_desc> FIG. 3 illustrates an example system usable for searching for music in accordance with one or more aspects of the
disclosure. <prev_para_num> 61 <prev_para> – <comp_name> computing device <comp_num> 102 <comp_name> music search system
<comp_num> 104 <comp_name> query music file <comp_num> 112 <comp_name> results panel <comp_num> 130 <comp_name>
first music file <comp_num> 132 <comp_name> second music file <comp_num> 134 <comp_name> third music file <comp_num> 136
<para_num> 62 <fig_num> 3 <spec>

Actual A user can select any of the first music file 132, the second music file 134, or the third music file 136, and play the music content of the selected
file. For instance, a user can click on the displayed representation of one of the music files in the results panel 130 and cause the computing
device 102 to play the music content of the selected music file through a loudspeaker of the computing device 102. In one example, a user can
select one of the first music file 132, the second music file 134, or the third music file 136 and designate the selection as a new query music file
(e.g., to replace the query music file 112). The user can then conduct another search for music files that have music content perceptually similar
to the music content of the new query music file. Hence, the user may continue to refine the search in an iterative way, by designating a music
file returned by the music search system 104 as a new query music file for a next iteration in the search.

Pat_T5* For instance, the computing device 102 may be configured to display an audio content of the first music file 132, the second music file 134, and
the third music file 136, as indicated in the results panel 130, for playback by a user of the computing device 102. As an example, the computing
device 102 may receive a user input request to play the query music file 112. Based on the user input request, the music search system 104
may provide audio content of the first music file 132, the second music file 134, and the third music file 136 to the computing device 102 for
playback by a user of the computing device 102. For instance, the user can select one of the first music file 132, the second music file 134, or the
third music file 136 to play by the user of the computing device 102. As another example, the user can select one of the first music file 132, the
second music file 134, or the third music file 136 to play by the user of the computing device 102.

Pat_GPT-J The results panel 130 also displays the audio content of the third music file 136 for playback. The computing device 102 provides the audio
content for playback. As described above, the computing device 102 may play back similar music files to the query music file 112, such as the
first music file 132, the second music file 134, and the third music file 136. For example, the music search system 104 determines these music
files to be similar to the query music file 112, and causes the computing device 102 to play the audio content of these music files.

Table 14: An example of patent specification generated by Patentformer, Pat_T5*, and Pat_GPT-J compared to the
actual specification. The input text was embedded with rich context to generate the output specification.

1379

Input Figure

Input Text: <claim_feature> 4. The method of claim 3, wherein the model wrapper is deployed only after the approval of the model wrapper is received.
<claim_feature_context> 3. The method of claim 1, further comprising: sending, by the one or more processors after the model wrapper is
generated, the model wrapper and an approval request to a supervisor electronic device; and receiving, by the one or more processors from the
supervisor electronic device, an approval of the model wrapper in response to the approval request. <brief_draw_desc> FIG. 6 is a block
diagram illustrating a process for automating deployment of a predictive model in accordance with one or more embodiments of the present
disclosure. <prev_para_num> 75 <prev_para> As described herein with respect to various embodiments, after the model wrapper is generated
and/or updated, any change to any of the feature generation code, the data grouping code, and/or the modeling code does not affect or change
the model wrapper without reapplying the model wrapper code to any changed code. As also described herein, an approval request may be sent
to a supervisor electronic device after the model wrapper is generated. An approval may then be received from the supervisor electronic device
to approve of the model wrapper in response to the approval request. In various embodiments, the model wrapper may be deployed only after
the approval of the model wrapper is received. In various embodiments, after the approval is received, the model wrapper may be stored on a
server system such that the model wrapper is made available to receive incoming API calls. <comp_name> API code <comp_num> 624
<comp_name> API image <comp_num> 626 <para_num> 76 <fig_num> 6 <spec>

Actual In various embodiments, the deployment of the model wrapper may include sending the model wrapper to a model wrapper repository and
applying an API code, such as the API code 624 to the model wrapper to generate an API image configured to send and receive API calls. The
API image may be, for example, the API image 626 of FIG. 6.

Pat_T5* In some embodiments, after the approval is received, the model wrapper may be deployed. For example, after the approval is received, the
model wrapper may be stored on a server system such that the model wrapper is made available to receive incoming API calls. In various
embodiments, after the model wrapper is deployed, an API call may be received from a client electronic device to deploy the model wrapper
and the API call may result in the deployment of the model wrapper. In various embodiments, the model wrapper may be deployed by running
the API code 624 on the server system and the API image 626 on the client electronic device, respectively.

Pat_GPT-J In accordance with one or more embodiments, FIG. 6 may be a diagram of a process for automating deployment of a predictive model in
accordance with one or more embodiments of the present disclosure. For instance, the API image 626 and the API code 624 may be a result of
applying the model wrapper to various different portions of the underlying predictive model. As described herein, the API code 624 and the
API image 626 may comprise portions of source code, which, when executed by one or more processors, cause the predictive model to be
implemented on a computing system. In some embodiments, the API image 626 and the API code 624 may be implemented as web services and
may be accessible by a user or a developer via a network. In other embodiments, the API image 626 and the API code 624 may be implemented
in any manner and may be executed by the computing system. Further, the API image 626 and the API code 624 may be updated after the
model wrapper is generated and/or updated.

Table 15: An example of patent specification generated by Patentformer, Pat_T5*, and Pat_GPT-J compared to the
actual specification. The input text was embedded with rich context to generate the output specification.

1380

