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Abstract
We present systematic efforts in building long-
context multilingual text representation model
(TRM) and reranker from scratch for text re-
trieval. We first introduce a text encoder (base
size) enhanced with RoPE and unpadding, pre-
trained in a native 8192-token context (longer
than 512 of previous multilingual encoders).
Then we construct a hybrid TRM and a cross-
encoder reranker by contrastive learning. Eval-
uations show that our text encoder outperforms
the same-sized previous state-of-the-art XLM-
R. Meanwhile, our TRM and reranker match
the performance of large-sized state-of-the-art
BGE-M3 models and achieve better results
on long-context retrieval benchmarks. Further
analysis demonstrate that our proposed models
exhibit higher efficiency during both training
and inference. We believe their efficiency and
effectiveness could benefit various researches
and industrial applications.1

1 Introduction

Text retrieval aims to find relevant passages or docu-
ments from a large corpus given a query (Manning,
2008). It is often implemented as a multi-stage
process, consisting of two main components: a re-
triever and a reranker (Gao et al., 2021a; Zhang
et al., 2022; Zhao et al., 2024). The retriever iden-
tifies a set of candidate documents that are poten-
tially relevant to the query based on the similarity
between their sparse (lexical term weights) or/and
dense representations from a text representation
model (TRM). While the reranker reorders these
retrieved candidates to refine the results based on
the relevance score generated by a more precise yet
computationally demanding model that processes
both the query and a candidate document together.

Recent advances in large language models
(LLMs) and retrieval augmented generation (RAG)

*Corresponding Author
1Models are released at https://hf.co/Alibaba-NLP/

gte-multilingual-base.

Random Encoder 2k Text Encoder 8k Text Encoder

1k Text Embedder8k TRM8k Reranker

Contrastive Fine-TuningContrastive Pre-TrainingMLM Pre-Training

Figure 1: Training pipeline. We first build an 8k long-
context multilingual encoder. Then based on it, we train
text representation and reranking models for retrieval.

(Gao et al., 2023) systems have led to an unprece-
dented surge in demand for versatile, plug-and-
play TRMs and rerankers. These new applications
heavily involve processing long and multilingual
texts, which could not be addressed by conven-
tional encoder-based models and urgently require
upgraded ones. To this end, some resort to enhanc-
ing existing multilingual encoders, e.g., XLM-R
(Conneau et al., 2020), with extended context win-
dow up to 8192 (Chen et al., 2024). Others turn
to use multilingual LLMs which already have the
required capabilities (Zhang et al., 2023a), but their
models might be computationally expensive for
self-hosted search services.

In the English community, it has been proven
that training long-context encoders from scratch is
promising for text retrieval (Günther et al., 2023;
Nussbaum et al., 2024). In this work, we con-
tinue this journey, presenting systematic efforts in
building the long-context multilingual text encoder,
TRM, and reranker. We suggest a holistic pipeline
(Figure 1) as well as several techniques in modeling
and training for multilingual long-context retrieval.

Concretely, we first introduce a text encoder en-
hanced with Rotary Position Embedding (RoPE,
Su et al., 2024) and unpadding (Portes et al., 2023),
pre-trained by masked language modeling (MLM)
(Devlin et al., 2019) via a two-stage curriculum
for the native 8,192 tokens context. Based on our
encoder, we propose a hybrid TRM capable of gen-
erating both elastic dense (Kusupati et al., 2022)
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Figure 2: Our text encoder architecture.

and sparse vectors for efficient first-stage retrieval,
as well as a cross-encoder reranker. We construct
them via the contrastive learning objective (Wang
et al., 2022; Li et al., 2023) with large-scale metic-
ulously curated datasets, providing robust off-the-
shelf retrieval models.

We conduct extensive experiments to verify our
method. For the text encoder, we evaluate on
two natural language understanding (NLU) bench-
marks, i.e., XTREME-R (Ruder et al., 2021) and
GLUE (Wang et al., 2018), and show that our en-
coder outperforms the same-sized previous state-
of-the-art XLM-R. For the TRM and reranker, we
evaluate on multiple retrieval benchmarks with
multilingual and long-context settings, e.g., MIR-
ACL (Zhang et al., 2023b) and MLDR (Chen et al.,
2024), where our models match the performance
of state-of-the-art BGE-M3 (Chen et al., 2024)
and achieve better long-context performance by
a smaller size. We open-source our models and
code to facilitate further research and applications.

2 Method

2.1 Text Encoder
To construct powerful long-context multilingual
text encoder models, we implement several en-
hancements to BERT (Devlin et al., 2019) architec-
ture and train it from scratch using the vocabulary
of XLM-R2 (Conneau et al., 2020) series.

Specifically, we replace the absolute positional
embeddings with RoPE (Su et al., 2024), and up-
grade the feedforward network (FFN) to gated lin-
ear unit (GLU) (Shazeer, 2020). To ensure compat-

2https://hf.co/FacebookAI/xlm-roberta-base

ibility with libraries like FlashAttention (Dao,
2023), we remove the dropout applied to attention
scores. In addition, we pad the token embedding
size to be a multiple of 64, which could speedup
the model throughput (Portes et al., 2023).

Unpadding Mode Inspired by Portes et al.
(2023), we unpad the input batch to reduce redun-
dant computations associated with padding tokens
(Figure 2). We use xFormers (Lefaudeux et al.,
2022) to implement the variable length attention.
It dispatch the attention forward and backward to
different kernels3 based on the numerical precision,
attention head size and device type. We unpad the
MLM labels as well to reduce the computation cost
of predicting non-masked tokens.

Data We assemble our multilingual pre-training
data from a combination of the following sources:
C4 (Raffel et al., 2020), Skypile (Wei et al., 2023)
(2021-2023 subsets), mC4 (Xue et al., 2021), Cul-
turaX (Nguyen et al., 2024), Wikipedia (Founda-
tion) and books (proprietary). We filter them and
curate a dataset covering 75 Languages. Appendix
Table 7 presents the statistics of our dataset.

Training Curriculum We pre-train the model
via masked language modeling (MLM) (Devlin
et al., 2019)4. The MLM probability is set to 30%
(Portes et al., 2023). Following Conneau and Lam-
ple (2019) and Conneau et al. (2020), the data from
different languages is sampled by a multinomial
distribution with probabilities {qi}i=1...N , where

qi =
pαi∑N
j=1 p

α
j

with pi =
ni∑N
j=1 nj

, (1)

and ni is the number of texts in language i. We
set α = 0.5. This sampling strategy could increase
texts from low-resource languages. To train the na-
tive 8192-context model more efficiently, we adopt
a phased training curriculum (Xiong et al., 2024):

• MLM-2048: we chunk the input into 2048
tokens and set RoPE base to 10, 000.

• MLM-8192: we chunk the input into 8192
tokens and set RoPE base to 160, 000.

Through this method, we could train the model
with a large context length in limited resources 5.

3We adopt the memory-efficient attention (Rabe and Staats,
2021) in this work.

4We remove the next sentence prediction objective of
BERT following (Liu et al., 2019).

5In our early experiments of English models, we investi-
gated continue training by RetroMAE (Xiao et al., 2022) after
MLM-8192. However, we did not observe any improvement.
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Figure 3: Our TRM and reranker.

Training Setup Following Portes et al. (2023),
we use the learning rate decoupled6 AdamW
(Loshchilov and Hutter, 2018) with weight decay
1e− 5. We disable gradient clipping (set to 0) (Liu
et al., 2019). All models are trained on A100 GPU
servers by BF16 PyTorch native automatic mixed
precision via transformers (Wolf et al., 2020).
We list the detailed hyper-parameters of each train-
ing stage in Appendix A.2 and Table 8. We denote
the resulting models as mGTE-MLM-2048/8192.

2.2 Text Representation Model
Based on our encoder, we construct the TRM for
the first-stage text retrieval in two steps: contrastive
pre-training and fine-tuning (Wang et al., 2022; Li
et al., 2023). Both steps share the same InfoNCE
(Oord et al., 2018) learning objective:

L = − log
exp(s(q, d+)/τ)

∑N
i=1 exp(s(q, di)/τ)

, (2)

where τ , q, and d denote the temperature param-
eter, query and document. The positive d+ is the
relevant document to q, and other irrelevant docu-
ments are negatives. These negatives can be either
hard-negatives or in-batch negatives (documents of
other instances in the same batch). s(q, d) is the
relevance score of q and d, measured by the dot
product or cosine similarity between their respec-
tive representations.

Contrastive Pre-Training We take the encoder
output hidden state of the [CLS] token as the dense
representation (i.e., embedding) and compute the
relevance score by cosine similarity. Our pre-
training data (Appendix Table 9) comprise natu-
rally occurring text pairs (e.g., question-answer
pairs from Quora and StackExchange, title-content
pairs of CommonCrawl), translation pairs (Team
et al., 2024), and crosslingual instruction tuning
data (Muennighoff et al., 2023b). We train the

6However, Xie et al. (2023b) state that the decoupled
weight decay is not ideal. We recommend to keep the de-
fault setting.

model with a batch size of 16, 384 and a learn-
ing rate of 5e − 4 for 240k steps. Each batch is
sampled from a single data source by the same dis-
tribution of Eq.1. The queries (resp. documents)
are truncated to the max tokens of 512 (resp. 1024).
We reverse scale the RoPE base from 160, 000 to
20, 000 to fit the 1024 context length and acquire
the long-context retrieval ability (denotes revNTK,
ablation in §3.4). We set τ of InfoNCE to 0.01
and only use in-batch negatives. More details refer
to Appendix B.3. We denote this contrastive pre-
trained model as mGTE-CPT, which is actually an
unsupervised embedding model.

Matryoshka Embedding Many of recently re-
leased models and APIs offer elastic embeddings
by Matryoshka representation learning (MRL)
(Kusupati et al., 2022), providing competitive sub-
vectors of embeddings to save index storage and
speedup search. Let e ∈ RH denotes an embed-
ding and e:d is the sliced sub-vector from dimen-
sion 0 to d < H . MRL7 optimizes the weighted
sum of multiple losses from different d dimensional
sub-vectors, i.e., compute InfoNCE by sd(e

q
:d, e

d
:d).

We add this objective to our TRM fine-tuning stage.

Sparse Representation Chen et al. (2024) show
that neural sparse representations (term/token
weights predicted by TRM) could greatly improve
the long-context retrieval performance. We fol-
low this design, computing the term weight wt of
each token of the input by wt = ReLU(Wht),
where ht is the encoder hidden state of token t
with dimension size H and W ∈ RH×1 is ran-
domly initialized. If a token appears multiple
times in the text, we keep the max weight. The
relevance score is computed by the joint impor-
tance of the co-occurring terms (denoted as q ∩ d)
within the query and document pair: ssparse(q, d) =∑

t∈q∩d(w
q
t · wd

t ). This is then used to derive the
InfoNCE loss for training.

Contrastive Fine-Tuning Now we construct the
TRM by multi-task learning of matryoshka embed-
ding and sparse representation:

LTRM = λLsparse +
∑

d∈D
wdL:d , (3)

where D = {32k | k ∈ N, k ≥ 1, 32k ≤ H} is
MRL dimension set, wd is the weight of dimension
d, and λ is the weight of sparse representation loss.

7Here we mean the MRL-E in Kusupati et al. (2022).

1395



Model Avg. Pair Class. M.C. Structure Prediction Question Answering Cross-lingual Retrieval
XNLI XCOPA UDPOS WikiANN XQuAD MLQA TyDiQA-GoldP Mewsli-X LAReQA Tatoeba

#Languages (Total 50) 15 11 38 47 11 7 9 38 11 38
Metrics Acc. Acc. F1 F1 F1/EM F1/EM F1/EM mAP@20 mAP@20 Acc.

mBERT-base 59.43 66.63 55.49 71.80 62.34 66.23 / 51.03 57.37 / 42.44 55.01 / 38.05 44.65 75.26 39.49
XLM-R-base 62.02 74.50 50.45 73.84 61.23 72.83 / 58.01 61.54 / 46.45 53.09 / 37.11 42.09 63.43 67.20
mGTE-MLM-2048 65.24 73.17 63.62 73.25 60.87 75.33 / 60.00 64.02 / 48.57 53.58 / 36.68 44.41 72.13 72.02
mGTE-MLM-8192 64.44 73.37 61.98 73.14 59.83 74.81 / 59.37 64.24 / 48.80 49.85 / 33.27 44.52 71.54 71.10

Table 1: XTREME-R (Ruder et al., 2021) results in the cross-lingual zero-shot transfer (models are trained on
English data) setting. M.C. stands for Multiple Choice. The EM scores are not included in the average.

Model Params Pos. Seq. Len. GLUE Avg.

RoBERTa-baseα 125M Abs. 512 86.4

XLM-R-base 279M Abs. 512 80.44
mGTE-MLM-2048

305M RoPE
2048 83.42

mGTE-MLM-8192 8192 83.47

Table 2: GLUE (Wang et al., 2018) devset averages (w/o
WNLI). The detailed scores for each subset are shown
in Table 13. αTaken from Table 8 of Liu et al. (2019).
The rest are from our runs, refer to Appendix C.2.

We fine-tune our contrastive pre-trained embedding
model on diverse high-quality datasets with hard-
negatives (e.g., MS MARCO (Nguyen et al., 2016),
MIRACL (Zhang et al., 2023b), listed in Table 11).
We adopt a dynamic batching strategy (Chen et al.,
2024) to fine-tune 8192-context data. The batch
sampling strategy is the same as the pre-training
stage. The τ of MRL and sparse is set to 0.05 and
0.01 respectively. Other details refer to Appendix
B.3. We denote this fine-tuned model as mGTE-TRM.

2.3 Text Reranking Model

We also build a reranker using the cross-encoder
architecture. It takes the query q and document d
together as input: [CLS] q [SEP] d, and directly
predicts their relevance score by the [CLS] output
state: srerank = Wh[CLS]. In our experiment, W ∈
RH×1 is randomly initialized.

The model is fine-tuned by InfoNCE in one step8

based on our pre-trained 8k-context text encoder
model. Unless otherwise specified, we employ
identical data and training settings as our TRM
fine-tuning stage (§2.2). The difference lies in our
adjustment of the hard-negatives. We describe the
detailed settings in Appendix B.4. We denote this
model as mGTE-reranker.

8We found that the contrastive pre-training of reranker does
not improve the performance.

Model Seq. en zh fr pl

BGE-M3-unsupervised† 8192 56.48 57.53 57.95 55.98

mGTE-CPT 512∗ 60.16 58.67 59.72 57.66
8192 60.04 58.63 59.74 57.11

mE5-base 514 59.45 56.21 56.19 55.62
mE5-large 514 61.50 58.81 56.07 60.08
BGE-M3 (Dense)† 8192 59.84 60.80 58.79 60.35
mGTE-TRM (Dense) 8192 61.40 62.72 59.79 58.22

E5-mistral-7b 32768 66.63 60.81 48.33 -
voyage-multilingual-2 32000 - - 61.65 -
Cohere-multilingual-v3.0 512 64.01 - 56.02 -
OpenAI-3-large 8191 64.59 - - -
OpenAI-3-small 8191 62.26 - - -

Table 3: Embedding model performance on MTEB
English (Muennighoff et al., 2023a), Chinese (Xiao
et al., 2024), French (Ciancone et al., 2024) and Polish
(Poświata et al., 2024). The scores of other models are
retrieved from the MTEB online leaderboard. ∗To be
consistent with the setting in contrastive pre-training, in
retrieval tasks, the max sequence length of the document
side is set to 1024. †Denote our runs.

3 Evaluation

We separately evaluate our text encoder in §3.1,
TRM and reranker in §3.2 and §3.3.

3.1 Natural Language Understanding
We evaluate the encoder on the cross-lingual nat-
ural language understanding (NLU) benchmark
XTREME-R9 (Ruder et al., 2021) and the English
NLU benchmark GLUE (Wang et al., 2018). Re-
sults show that our encoder outperforms the same-
sized previous state-of-the-art XLM-R (Conneau
et al., 2020) on all benchmarks.

XTREME-R We focus on the zero-shot cross-
lingual transfer setting where models are fine-
tuned on English trainset and tested on multi- and
cross-lingual data. The fine-tuning setup is de-
scribed in Appendix C.1. We run mBERT-base,

9We use XTREME-R (Ruder et al., 2021) instead of
XTREME (Hu et al., 2020) since we found the retrieval tasks
of XTREME is unstable and difficult to evaluate.
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Params Seq. Len. Avg. MLDR MIRACL MKQA BEIR LoCo
Metric nDCG@10 nDCG@10 recall@20 nDCG@10 nDCG@10
#languages (Total 33) 13 18 25 1 1

BM25 - - 47.0 53.6 31.9 28.1 41.7 79.9
mE5-base 279M 514 53.5 30.5 62.3 53.7 48.9 72.2
mE5-large 560M 514 57.7 34.2 65.4 63.5 51.4 74.3
E5-mistral-7b 7111M 32768 62.4 42.6 62.2 62.4 56.9 87.8
OpenAI-3-large - 8191 - - 54.9 62.1 55.4 79.4

BGE-M3 Dense
568M 8192

64.3 52.5 67.7 67.8 48.7 84.9
BGE-M3 Sparse 55.1 62.2 53.9 36.3 38.3 84.9
BGE-M3 Dense + Sparse 67.7 64.8 68.9 68.1 49.4 87.4

mGTE-TRM Dense
304M 8192

66.7 56.6 62.1 65.8 51.1 88.9
mGTE-TRM Sparse 57.2 71.0 55.9 31.6 39.2 88.1
mGTE-TRM Dense + Sparse 68.9 71.3 64.5 66.0 51.4 91.3

Table 4: Retrieval results on MIRACL (Zhang et al., 2023b) and MLDR (Chen et al., 2024) (multilingual), MKQA
(Longpre et al., 2021) (crosslingual), BEIR (Thakur et al., 2021) and LoCo (Saad-Falcon et al., 2024) (English).
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Figure 4: Elastic embedding results on MTEB English.

XLM-R-base, and our encoder, as shown in Table
1. Our 2048 and 8192 encoder models achieve av-
erage scores that are higher than those of XLM-R
by 3.22 and 2.42 points, respectively.

GLUE We also report the performance on the de-
vset of GLUE benchmark (Wang et al., 2018). The
fine-tuning details refer to Appendix C.2. Table
2 presents the average scores (Table 13 provides
the full results). Our models consistently outper-
form XLM-R-base and reasonably lag behind the
English RoBERTa-base (Liu et al., 2019).

3.2 Text Embedding
Our contrastive pre-training actually yields a text
embedding model. To understand the pre-training
and fine-tuning of TRM, and to compare with other
models, we first run the most popular text embed-
ding benchmark MTEB (Muennighoff et al., 2023a)
as well as its Chinese, French and Polish versions.

Multilingual MTEB The results in Table 3
also present the scores of LLM-based models
and commercial APIs for reference. For con-
trastive pre-trained models, our model outper-

forms BGE-M3-unsupervised (Chen et al., 2024)
on all four subsets, through our backbone has
fewer params than XLM-R-large. Comparing with
BGE-M3 and mE5 (Wang et al., 2024b), our final
TRM achieves best scores on Chinese and French,
and is competitive on English.

Elastic Embedding We compare our TRM (only
elastic embeddings) with open-source model and
commercial APIs on MTEB English (Figure 4).
Our model presents close scores to the same-sized
English-only nomic-v1.5, which is promising for
a multilingual model. However, it is still behind
OpenAI APIs, which is reasonable since they are
guessed to be much larger models.

3.3 Text Retrieval

We conduct evaluations to our TRM and reranker
on retrieval benchmarks in multilingual (Miracl
(Zhang et al., 2023b) and MLDR (Chen et al.,
2024)), crosslingual (MKQA (Longpre et al.,
2021)) setting, and the commonly used English
BEIR (Thakur et al., 2021) and LoCo (Saad-Falcon
et al., 2024). Our models are close to the state-of-
the-art large models on Miracl, MKQA and BEIR,
while achieve better scores on long-context datasets
MLDR and LoCo. Details are in Appendix E.

First-Stage Retrieval We compare our TRM
to the hybrid model BGE-M3 (Chen et al., 2024),
dense models like mE5 (Wang et al., 2024b) and
E5-mistral-7b (Wang et al., 2024a), and BM25.
As shown in Table 4, our TRM consistently outper-
forms mE5 and OpenAI APIs, better than BGE-M3
on MLDR, and close to it on the rest parts.
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Params Seq. Len. Avg. MLDR MIRACL MKQA BEIR
Metric nDCG@10 nDCG@10 recall@20 nDCG@10
#languages (Total 33) 13 18 25 1

Retrieval (mGTE-TRM Dense) 304M 8192 58.9 56.6 62.1 65.8 50.9

jina-reranker-v2-multilingual 278M 8192 59.4 53.2 65.8 68.8 49.7
bge-reranker-v2-m3 568M 8192 65.7 66.8 72.6 68.7 54.6
mGTE-reranker 304M 8192 67.4 78.7 68.5 67.2 55.4

Table 5: Results of reranking based on the candidates retrieved by our TRM dense model (refer to Table 4).

Model Attn. Unpad. Encoding
Time

Search
Latency

BGE-M3
eager × 1800s

20.35ms
SDPA-MEA 744s

mGTE-TRM

eager × 695s

15.07ms
SDPA-MEA × 298s

eager ✓ 675s
SDPA-MEA ✓ 279s

MEA ✓ 52s

Table 6: Dense retrieval efficiency. Encoding time is
running MLDR-hi corpus (3806 texts with average 4456
tokens after truncating to maximum 8192) on one A100
GPU with FP16. Search latency is measured on a faiss
index with 8.8M texts. MEA is the memory-efficient
attention in xFormers. SDPA-MEA denotes MEA dis-
patched by scaled dot-product attention of PyTorch.

Reranking In Table 5, we evaluate rerankers
based on the candidates retrieved by Our-TRM
dense model. Our model outperforms the powerful
bge-reranker-v2-m3 (Chen et al., 2024) with a
smaller size. Moreover, it greatly surpasses the
same-sized jina-reranker-v2-multilingual.

3.4 Analysis

Efficiency We compare the efficiency of our
TRM with BGE-M3 on dense retrieval in Table 6. To
simulate the real-world scenario, the encoding time
is the duration of encoding texts without length
grouping. Our TRM is up to 14 times faster than
BGE-M3 (52s v.s. 744s). The end-to-end unpadding
with xFormers is crucial for encoding, which re-
duces the time by 5 times (52s v.s. 279s).

Scaled Contrastive Pre-Training We utilize the
reversed NTK scaling in contrastive pre-training
to reduce required text length, where we set the
RoPE base to 1/8 of the original and train the 8k
encoder with 1k max length. To evaluate the ef-
fectiveness, we run the same training without the
reversed NTK, comparing the MLDR scores in Fig-
ure 5. With revNTK, models exhibit slightly lower
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Figure 5: MLDR scores in contrastive pre-training.
none keeps the RoPE untouched in pre-training. 1024
and 8192 are the max sequence length in evaluations.
revNTK-8912 recovers the 8k context by NTK scaling.

performance on 1k context but achieve more stable
8k performance across different training steps.

4 Related Work

Training long-context TRMs has become a hot
topic recently. OpenAI released 8191 context APIs
(Neelakantan et al., 2022) have set the target for
open-source community. Portes et al. (2023) and
Günther et al. (2023) replace position embedding
of BERT with Alibi (Press et al., 2022) attention
bias and pre-train from scratch, which is shown to
be effective in build 8k TRMs. Nussbaum et al.
(2024) explore the more powerful RoPE (Su et al.,
2024) in BERT pre-training and their 2048-context
pre-trained encoder achieve better retrieval perfor-
mance on English. Zhu et al. (2024) suggest patch
E5 (Wang et al., 2022) with RoPE. We also use
RoPE and provide multi-stage training for native
8192-context text encoder, TRM, and reranker.

Chen et al. (2024) propose long-context multilin-
gual TRM and reranker based on XLM-RoBERTa-
large (Conneau et al., 2020) by extending position
embedding to 8192 via continue training. We pre-
train native 8k multilingual models from scratch
for better long-context performance and efficiency.
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5 Conclusion

We present the holistic practice of building native
8192-context multilingual retrieval models. We
first suggest a text encoder with RoPE and un-
padding, which is pre-trained by a two-stage MLM
curriculum for 8k context. Evaluations on NLU
benchmarks show that our encoder outperforms
XLM-RoBERTa in the same size. Based on our
encoder, we construct a hybrid TRM and a cross-
encoder reranker by contrastive learning. The TRM
is pre-trained with reversed RoPE NTK scaling
and fine-tuned to generate both Matryoshka embed-
dings and sparse representations. Results on mono-
lingual and crosslingual retrieval benchmarks show
that our TRM and reranker are close to larger ones
on regular datasets, and achieve better performance
on long-context datasets. This means our models
are more efficient for industrial applications.
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Appendix

A MLM Pre-Training

In this section, we describe the data and training
configurations of the MLM pre-training of our sug-
gested text encoder.

A.1 Data
Our multilingual pre-training data are composed
from following sources:

• C4 (Raffel et al., 2020),
• Skypile (Wei et al., 2023) (2021-2023 sub-

sets),
• mC4 (Xue et al., 2021) (excluded English),
• CulturaX (Nguyen et al., 2024),
• Wikipedia (Foundation),
• books (proprietary).

We filter them and curate a dataset with 1,028B to-
kens (by XLM-R tokenizer), covering 75 languages
(Chinese Simplified and Traditional are counted as
one). Table 7 presents the statistics of our final
dataset.

A.2 Training Details
We pre-train out text encoder with a two-stage cur-
riculum by masked language model (MLM) objec-
tive. The first stage model is trained on maximum

length 2048 with batch size 8192 for roughly 0.6
epoch (250k steps) on sampled data (by XLM sam-
pling Eq.1). In the second stage, we down sample
texts shorter than 2048 and continue train the model
for 30k steps with maximum length 8192 and batch
size 2048. The RoPE base is set to 10, 000 and
160, 000 for the first and second stage, respectively
(Xiong et al., 2024; Liu et al., 2024; Men et al.,
2024).

The text encoder is initialized in base size
(12 layers of hidden state size 768) by PyTorch
default initialization. We train the model by
transformers library (Wolf et al., 2020) in BF16
precision. Following Portes et al. (2023), we use
the learning rate decoupled AdamW optimizer with
weight decay 1e-5. The other hyper-parameters are
in Table 8. During training, we split texts that ex-
ceed the max sequence length into chunks, but we
do not modify shorter texts.

The 250k steps of first stage, MLM-2048, took
10.75 days on 32 A100 80G GPUs. The 30k steps
of second stage, MLM-8192, took 20.5 hours on
32 A100 80G GPUs. We acknowledge that this
is not the optimal setting and recommend further
explorations to optimize the pre-training.

A.3 Additional Discussion on RoPE
We chose RoPE (Su et al., 2024) (to replace abso-
lute position embedding) due to its advantageous
properties. RoPE offers excellent context exten-
sion capabilities, allowing models to be trained
on shorter context windows and then run infer-
ence on longer ones. Additionally, it implements
asymmetric relative distance encoding, meaning
D(i, j) ̸= D(j, i), which appears to be particularly
important for the training of BERT-like encoder-
only models that rely on bidirectional attention.
Furthermore, the effectiveness of RoPE has been
empirically validated by numerous models, such as
RoFormer (Su et al., 2024) and LLaMA (Touvron
et al., 2023).

B Contrastive Learning

In this section, we describe the data and training
configurations of the contrastive learning of our
TRM and reranker.

B.1 Pre-Training Data
Following previous studies, we create large-scale
weakly correlated text pairs from diverse sources.
The data are primarily consisted of four parts: En-
glish pairs (Wang et al., 2022; Li et al., 2023),
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ISO code Language Tokens (M) Size (GiB) ISO code Language Tokens (M) Size (GiB)

af Afrikaans 1,489.19 5.30 ky Kyrgyz 500.40 3.27
ar Arabic 14,549.36 79.53 lo Lao 2.43 0.01
az Azerbaijani 688.72 3.13 lt Lithuanian 1,824.46 6.38
be Belarusian 1,090.61 6.17 lv Latvian 1,823.43 6.38
bg Bulgarian 1,454.57 8.94 mk Macedonian 735.46 4.89
bn Bengali 1,291.58 9.21 ml Malayalam 778.66 7.27
ca Catalan 1,294.05 4.65 mn Mongolian 958.83 5.91

ceb Cebuano 633.06 2.02 mr Marathi 861.05 7.48
cs Czech 1,465.00 5.27 ms Malay 96.37 0.39
cy Welsh 582.49 1.84 my Burmese 902.46 7.26
da Danish 1,030.30 4.01 ne Nepali 657.65 6.32
de German 18,097.31 67.90 nl Dutch 5,137.98 18.65
el Greek 874.87 5.09 no Norwegian 992.51 3.91
en English 187,110.31 771.79 pa Punjabi 726.41 4.96
es Spanish 148,713.06 601.04 pl Polish 2,949.88 10.42
et Estonian 1,111.31 4.10 pt Portuguese 49,594.59 198.64
eu Basque 787.46 2.99 qu Quechua 0.07 0.00
fa Persian 1,203.16 7.22 ro Romanian 2,215.05 7.98
fi Finnish 949.88 3.73 ru Russian 93,966.28 597.92
fr French 136,785.00 512.28 si Sinhala 878.65 7.03
gl Galician 772.47 3.22 sk Slovak 884.38 3.31
gu Gujarati 973.27 6.95 sl Slovenian 1,100.81 4.05
he Hebrew 1,842.74 8.36 so Somali 0.82 0.00
hi Hindi 1,032.67 8.27 sq Albanian 700.78 2.73
hr Croatian 480.19 1.54 sr Serbian 1,139.38 6.84
ht Haitian 0.03 0.00 sv Swedish 840.00 3.37
hu Hungarian 1,341.23 5.10 sw Swahili 31.58 0.13
hy Armenian 805.98 4.88 ta Tamil 926.84 8.54
id Indonesian 25,564.33 119.84 te Telugu 857.91 7.01
is Icelandic 987.89 3.63 th Thai 12,782.08 119.52
it Italian 11,068.23 40.50 tl Filipino 275.16 1.01
ja Japanese 135,684.28 601.19 tr Turkish 1,065.05 4.42
jv Javanese 0.62 0.00 uk Ukrainian 893.70 5.68
ka Georgian 834.90 7.25 ur Urdu 1,051.83 6.19
kk Kazakh 1,020.27 6.57 vi Vietnamese 67,850.87 305.51
km Khmer 746.15 6.54 yo Yoruba 0.04 0.00
kn Kannada 919.83 7.15 zh-cn Chinese (Simplified) 43,727.30 167.23
ko Korean 22,865.85 91.78 zh-tw Chinese (Traditional) 73.39 0.26

Table 7: MLM pre-training data, where we have a total of 1,028B tokens (by XLM-RoBERTa tokenizer). The raw
texts are stored in 4.47 TiB arrow files. We report the list of 75 languages (Chinese Simplified and Traditional are
counted as one) and include the number of tokens and the size of the data (arrow files, in GiB) for each language.
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Hyper-param MLM-2048 MLM-8192

Number of Params 304M
Number of Layers 12
Hidden Size 768
FFN Inner Size 3072
Number of Attention Heads 12
Attention Head Size 64
Dropout 0.1
Attention Dropout 0
Learning Rate Decay Linear
Adam ϵ 1e-6
Adam β1 0.9
Adam β2 0.98
Gradient Clipping 0.0
Precision PyTorch BF16 AMP
Weight Decay 1e-5
Max Length 2048 8192
Batch Size 8192 2048
Peak Learning Rate 5e-4 5e-5
Warm-up Ratio 0.06 0.06
Max Steps 250000 30000
RoPE base 10000 160000

Table 8: MLM pre-training hyper-parameters.

Chinese pairs (Li et al., 2023; Xiao et al., 2024),
multilingual pairs (cc-news10), and crosslingual in-
struction and translation pairs (Muennighoff et al.,
2023b; Team et al., 2024). We filter the data by re-
moving duplicates and low-quality pairs, resulting
in a total of 2,938.8M pairs. Table 9 lists the statis-
tics of our contrastive pre-training data (cc-news is
separately presented by languages in Table 10).

B.2 Fine-Tuning Data
We collect publicly available high-quality dataset
as our fine-tune data as detailed in Table 11. For
English, we utilize seven datasets: MS MARCO
(Nguyen et al., 2016), Natural Questions (NQ)
(Kwiatkowski et al., 2019), TriviaQA (Joshi et al.,
2017), HotpotQA (Yang et al., 2018), SQuAD (Ra-
jpurkar et al., 2016), FEVER (Thorne et al., 2018),
AllNLI from SimCSE (Gao et al., 2021b). For Chi-
nese, we compile six datasets: DuReader (Qiu et al.,
2022), mMARCO-zh (Bonifacio et al., 2021), T2-
Ranking (Xie et al., 2023a), CmedQAv2 (Zhang
et al., 2018), SimCLUE11, Multi-CPR (Long et al.,
2022). Additionally, we incorporate three mul-
tilingual datasets: Mr.TyDi (Zhang et al., 2021),
MIRACL (Zhang et al., 2023b), and MLDR (Chen
et al., 2024). We exclusively use the trainset of
each dataset and employ our contrastive pre-trained
model to mine hard negatives.

10commoncrawl.org/blog/news-dataset-available
11https://github.com/CLUEbenchmark/SimCLUE

B.3 TRM Training Setup

Here we separately describe the training setting of
the contrastive pre-training and TRM fine-tuning.

Contrastive Pre-Training In the contrastive pre-
training, we train a dense representation model
(embedder) which take the [CLS] hidden state as
the embedding of the input. We use the same XLM
sampling strategy (eq.1) to sample batches from
each source of Table 9 or cc-news subset of Table
10, where the texts of one batch only come from
one single source, and the batch size is 16, 384. We
train the model by transformers with deepspeed
ZeRO (Rajbhandari et al., 2020) stage 1 in FP16
precision for roughly 0.4 epoch (240k steps, took
154 hours on 16 A100 80G GPUs) of our data
(3.93B pairs on sampled data by Eq.1). We use
the AdamW optimizer with the learning rate 2e-4,
linear decay, and warm-up ratio 0.05. The β1 =
0.9, β2 = 0.999, and ϵ = 1e− 07. We set gradient
clipping to 1.0.

TRM Fine-Tuning In the fine-tuning stage, we
further train our embedding model with high-
quality datasets as detailed in §B.2. For each query,
we incorporate one positive passage and 8 hard neg-
ative passages. To enhance long-context retrieval
capabilities and maximize training efficiency, we
adopt a dynamic batch size strategy as previous
work (Chen et al., 2024). Firstly, we group the
training data according to their lengths for each
dataset. Different batch sizes are then used for
varying lengths during training. Additionally, we
divide the entire batch into multiple sub-batches,
encoding each sub-batch iteratively with gradient
checkpointing (Chen et al., 2016) and then gather
them to get the final batch’s embeddings. We train
the embedding model with 10 epochs with 8 A100
80G GPUs. All other hyper-parameters remain
consistent with those used in the contrastive pre-
training stage. In Table 12, we list the batch size of
different length.

B.4 Reranker Training Setup

We utilize the identical fine-tuning dataset for both
the reranker and the TRM. For each query, we intro-
duce 10 negative samples, comprising 6 hard nega-
tives and 4 randomly selected negatives. All train-
ing parameters expect batch size are kept consistent
with those employed for the TRM. The batch sizes
are listed in Table 12.
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Source Language Pairs (M) Size (GiB) Source Language Pairs (M) Size (GiB)

agnews English 1.15 0.30 stackoverflow_title_body English 18.01 20.49
amazon_qa English 1.10 0.37 wikihow English 0.13 0.03
amazon_review_title_body English 87.86 43.58 wikipedia English 33.17 19.39
arxiv_title_abstract English 2.26 2.26 yahoo_body_answer English 0.68 0.44
baai_mtp_en English 196.60 178.70 yahoo_qa English 1.20 0.55
beir_dbpedia English 4.64 1.59 yahoo_question_body English 0.66 0.20
beir_debate English 0.38 0.63 baai_mtp_zh Chinese 100.13 231.42
beir_pubmed_title_abstract English 0.13 0.19 baidu_baike Chinese 34.21 39.05
biorxiv_title_abstract English 0.20 0.32 baike_qa_train Chinese 1.43 1.34
clueweb English 3.94 6.62 commoncrawl_zh Chinese 28.42 92.79
clueweb_anchor English 4.51 7.69 gpt3_qa_all Chinese 4.97 2.39
cnn_dailymail English 0.31 1.28 gpt3_summarization Chinese 4.48 1.62
commoncrawl English 139.94 506.84 medical_quac_wenda_10m Chinese 10.00 4.55
dpr_reddit English 199.82 125.71 medical_scholar Chinese 8.43 7.81
gooaq_qa English 3.01 0.97 qcl Chinese 7.40 43.23
hlp_wikipedia English 19.48 13.55 web_text_zh_train Chinese 4.12 2.07
medrxiv_title_abstract English 0.20 0.32 wikipedia Chinese 4.45 1.07
msmarco English 2.89 19.56 wodao Chinese 59.13 190.29
npr English 0.59 1.03 zh_sft_data_v1 Chinese 0.45 0.43
reddit_title_body English 124.89 90.36 zh_sft_data_v2 Chinese 2.24 1.37
s2orc_citation_abstract English 30.58 67.81 zhihu_qa Chinese 53.42 40.99
s2orc_citation_title English 51.03 10.84 zhihu_title_body Chinese 0.94 0.29
s2orc_title_abstract English 41.77 30.29 xp3x Crosslingual 351.87 463.85
stackexchange_qa English 3.00 3.36 translation_eg_NLLB Crosslingual 940.63 323.06
stackexchange_title_body English 4.74 4.00

Table 9: Contrastive pre-training data, where cc-news multilingual data are not included (Table 10). For this Table,
we have a total of 2,595.57M pairs (raw texts stored by 2.55 TiB jsonl files).

Lang. Pairs (M) Size (GiB) Lang. Pairs (M) Size (GiB) Lang. Pairs (M) Size (GiB) Lang. Pairs (M) Size (GiB)
ar 20.407 32.45 fy 0.044 0.03 lb 0.048 0.05 sk 1.093 1.16
az 0.401 0.23 gl 0.114 0.20 lt 0.321 0.24 sl 1.046 0.93
be 0.039 0.06 gu 0.061 0.06 lv 0.438 0.37 sq 0.282 0.51
bg 3.005 5.03 he 0.397 0.84 mk 0.173 0.44 sr 0.910 1.09
bn 0.463 0.33 hi 14.253 29.90 ml 0.408 0.48 sv 3.361 2.90
ca 0.909 1.30 hr 1.268 1.77 mr 0.278 0.35 sw 0.059 0.07
cs 1.834 2.18 hu 2.668 3.40 my 0.045 0.04 ta 2.125 1.26
da 1.090 1.58 hy 0.125 0.09 nl 6.700 7.41 te 0.355 0.33
de 39.715 57.98 id 6.048 7.46 nn 0.162 0.12 tg 0.038 0.03
el 7.170 14.93 is 0.100 0.05 no 1.978 2.21 th 0.124 0.17
en 0.615 1.47 it 27.827 40.57 or 0.038 0.03 tl 0.055 0.07
es 55.201 86.87 ja 4.139 3.95 pa 0.036 0.04 tr 23.840 26.81
et 0.950 0.85 ka 0.074 0.06 pl 3.530 5.77 uk 5.021 8.42
eu 0.051 0.02 kn 0.192 0.16 pt 12.611 19.28 ur 1.625 0.87
fa 4.839 7.99 ko 8.605 12.48 ro 6.678 9.15 vi 4.375 7.03
fi 1.532 1.93 ky 0.061 0.03 ru 39.451 65.74 MIX∗ 0.359 0.28
fr 21.242 32.67 la 0.035 0.06 sh 0.220 0.18

Table 10: The cc-news multilingual pairs (343.26M in total, raw texts stored by 512.8 GiB jsonl files), used in
contrastive pre-training together with all data of Table 9. MIX∗ denotes the mixed pairs of languages that are
less than 1GiB (such as af, ceb). We utilize a very large batch size (16, 384), and since each batch contains text
exclusively from a single source, these low-resource languages might not fill an entire batch. Consequently, we have
merged these languages together.
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Dataset Language Size

MS MARCO, HotpotQA, NQ, NLI, etc. English 1.4M

DuReader, T2-Ranking, SimCLUE, etc. Chinese 2.0M

MIRACL, Mr.TyDi, MLDR Multilingual 118.9K

Table 11: Specification of training data adopted in Fine-
tuning stage.

length BS(E) S-BS(R) BS(E) S-BS(R)

0-500 768 256 512 256

500-1000 384 128 384 128

1000-2000 256 64 256 64

2000-3000 160 48 160 48

3000-8000 80 16 80 16

Table 12: Batch size (BS) and sub batch size (S-BS)
of different length for embedding (E) and reranker (R)
model in the fine-tune stage.

C NLU Evaluation

We evaluate our text encoder as well as baselines on
the multilingual XTREME-R (Ruder et al., 2021)
and English GLUE (Wang et al., 2018) benchmarks.
We describe the fine-tuning setup and the evalua-
tion details in the following subsections. The eval-
uation scripts are available in our github repo12.

C.1 XTREME-R
We only run XTREME-R (Ruder et al., 2021) in
the zero-shot cross-lingual transfer learning setting,
where models are fine-tuned on English trainset
and tested on multi- and cross-lingual data. We
compare our encoder with mBERT-base-cased13

and XLM-RoBERTa-base14. All models are fine-
tuned in the same setting and hyper-parameters.

The results are already presented in Table 1.
As XTREME-R has no final release, we im-

plement the evaluation code based on the code
of XTREME15. However, there are some differ-
ences in the retrieval evaluation, where our code
will deduplicate the retrieval corpus. In addi-
tion, we implement the XCOPA in multiple choice,
which might be different from XTREME-R. In fine-
tuning, if not specified, we use the epoch number
of 3, learning rate of 2e-5, batch size of 32, and
max sequence length of 128 (Hu et al., 2020).

12github.com/izhx/nlu-evals
13hf.co/google-bert/bert-base-multilingual-cased
14hf.co/FacebookAI/xlm-roberta-base
15github.com/google-research/xtreme

XNLI We fine-tune the model on MNLI16

(Williams et al., 2018) trainset and then evaluate
the checkpoint on XNLI17 (Conneau et al., 2018).

XCOPA We run this data as the multiple choice
task. The model is first trained on SIQA18 citesap-
etal-2019-social and then COPA19 (Roemmele
et al., 2011) for 5 epochs on each dataset. The
checkpoint of COPA is evaluated on XCOPA20

(Ponti et al., 2020).

UDPOS We extract pos-tagging data from the
UD (de Marneffe et al., 2021) v2.7 and train the
model on trainset of English parts by 10 epochs.

WikiANN We fine-tune the model on the trainset
of English by 10 epochs and evaluate on selected
WikiANN (Rahimi et al., 2019) testsets21.

XQuAD We fine-tune on the trainset of SQuAD
(Rajpurkar et al., 2016) v1.122 for 3 epochs with
the learning rate 3e-5 and max length 384. Then
we evaluate the checkpoint on XQuAD23 (Artetxe
et al., 2020).

MLQA We directly evaluate the same checkpoint
of XQuAD on MLQA24 (Lewis et al., 2020) with
the same setting.

TyDiQA-GoldP We train the model on TyDiQA-
GoldP25 (Clark et al., 2020) trainset in the same
setting as XQuAD. Then we evaluate the check-
point on the testset.

Mewsli-X We generate the data following their
github26. This is a updated version so that we can
not compare with the results in the XTREME-R
paper. We train the model on the English wikipedia
(mention, entity)-pairs for 2 epochs with the batch
size 64 and max length 64. Then we evaluate the
checkpoint in the language agnostic retrieval set-
ting, refer to Ruder et al. (2021) for more details.

16hf.co/datasets/nyu-mll/glue MNLI subset.
17hf.co/datasets/facebook/xnli
18hf.co/datasets/allenai/social_i_qa
19hf.co/datasets/aps/super_glue copa split.
20hf.co/datasets/cambridgeltl/xcopa
21hf.co/datasets/unimelb-nlp/wikiann
22hf.co/datasets/rajpurkar/squad
23hf.co/datasets/google/xquad
24hf.co/datasets/facebook/mlqa
25hf.co/datasets/juletxara/tydiqa_xtreme
26https://github.com/google-research/

google-research/blob/master/dense_
representations_for_entity_retrieval/mel/
mewsli-x.md#getting-started
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LAReQA This task is actually conducted on
XQuAD-R27 (Roy et al., 2020). We fine-tune
the model on the trainset of SQuAD v1.1 in dual-
encoder architecture ([CLS] as the embedding) and
retrieval setting for 3 epochs with the batch size
16, max query length 96, and max document length
256. Then we evaluate the checkpoint on XQuAD-
R in same setting.

Tatoeba We directly evaluate the checkpoint
from LAReQA on Tatoeba28 (Facebook, 2019) in
the same setting.

C.2 GLUE

The GLUE benchmark (Wang et al., 2018) is En-
glish transfer learning, i.e., models are trained and
tested on the trainset and testset of each dataset
(CoLA (Warstadt et al., 2019), SST-2 (Socher et al.,
2013), MRPC (Dolan and Brockett, 2005), STS-B
(Cer et al., 2017), QQP, MNLI (Williams et al.,
2018), QNLI (Rajpurkar et al., 2016), RTE).

We evaluate the GLUE benchmark based on the
scripts29 and data30 provided by transformers.
In fine-tuning of each dataset, we use the epoch
number of 3, learning rate of 2e-5, batch size of 32,
and max sequence length of 128. For MRPC, STS-
B, and RTE, we start from the checkpoint of MNLI
following (Liu et al., 2019). The MNLI checkpoint
is shared with XNLI of XTREME-R (§C.1).

The detailed results are in Table 13. We also
include scores of our English models (Our-en-*,
pre-trained on C4-en) and baselines (Portes et al.,
2023; Günther et al., 2023; Nussbaum et al., 2024).

D Text Embedding Evaluation

We have demonstrated the average scores on
MTEB English, Chinese, French and Polish (Table
3). In this section, we delve into the details, pre-
senting results of different tasks on each language.
For a fair comparison, we do not include the de-
rived models (developed by secondary training on
other public off-the-shelf models) in English and
Chinese. In addition to the results obtained from
the online leaderboard, our own MTEB evaluations
were conducted using version 1.2.0 of mteb library.

27hf.co/datasets/google-research-datasets/
xquad_r

28hf.co/datasets/mteb/tatoeba-bitext-mining
29github.com/huggingface/transformers/tree/

main/examples/pytorch/text-classification#
glue-tasks

30hf.co/datasets/nyu-mll/glue

MTEB-en Table 14 shows the results on English
MTEB (Muennighoff et al., 2023a). For refer-
ence, we include our English embedding models
(Our-en-base/large-embed, trained by the two-
stage contrastive learning on the English part of
our data) and top-performing systems from the on-
line leaderboard. We can see that the multilingual
models still have a noticeable gap compared to the
English models.

MTEB-zh Table 15 presents the C-MTEB (Xiao
et al., 2024) (MTEB Chinese subset) results. We in-
clude the results of several LLM-based embedding
models and APIs. Given that the Chinese commu-
nity is also keen on optimizing embedding models,
the gap between multilingual models and Chinese
models is quite noticeable.

MTEB-fr Table 16 demonstrates the F-MTEB
(Ciancone et al., 2024) (MTEB French subset) re-
sults. Our TRM dense is comparable to the spe-
cialized French API mistral-embed. However,
compared to our our-cpt model, the improvement
from fine-tuning is not significant.

MTEB-pl Table 17 lists the Polish MTEB
(Poświata et al., 2024) results. Our model does not
outperform large-sized BGE and mE5. We specu-
late this may be due to the limited amount of Polish
pairs in the contrastive pre-training, resulting in
insufficient training.

E Text Retrieval Evaluation

The retrieval process can be divided into two main
stages: recall and reranking. In the recall stage,
documents are retrieved using both dense vectors
and sparse representations. The final recall score
is calculated by weighting the dense retrieval score
with a fixed coefficient of 1 and the sparse retrieval
score with coefficients ranging from 0.001 to 0.01.
Documents not retrieved by either method receive
a score of 0. During the ranking stage, the top 100
documents from the recall results are selected as
candidates. These candidates are then sorted using
our reranker model to produce the final retrieval
results.

We present the detail results of MLDR (Chen
et al., 2024) (multilingual long-context retrieval,
Table 18), MKQA (Longpre et al., 2021) (multi-
lingual, Table 19), MIRACL (Zhang et al., 2023b)
(multilingual, Table 20, BEIR (Thakur et al., 2021)
(English, Table 21) and LoCo (Saad-Falcon et al.,
2024) (English long-context, Table 22).
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Single Sentence Paraphrase and Similarity Natural Language Inference
Model Params Pos. Seq. Avg. CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE

RoBERTa-baseα 125M Abs. 512 86.4 63.6 94.8 90.2 91.2 91.9 87.6 92.8 78.7
MosaicBERT-base-128β 137M Alibi 128 85.4 58.2 93.5 89.0 90.3 92.0 85.6 91.4 83.0
MosaicBERT-base-2048γ 137M Alibi 2048 85 54 93 87 90 92 86 92 82
JinaBERT-baseδ 137M Alibi 512 82.6 51.4 94.5 88.4 89.5 80.7 85.7 92.2 78.7
nomic-bert-2048γ 137M RoPE 2048 84 50 93 88 90 92 86 92 82
GTEv1.5-en-base-2048 137M RoPE 2048 85.15 54.46 93.81 93.21 90.00 88.61 86.73 91.67 82.67
GTEv1.5-en-base-8192 137M RoPE 8192 85.61 57.02 93.35 92.14 90.21 88.78 86.69 91.85 84.84

XLM-R-base 279M Abs. 512 80.44 30.74 92.43 92.74 89.16 87.74 84.54 90.37 75.81
mGTE-MLM-2048 305M RoPE 2048 83.42 49.65 92.66 91.17 89.95 88.41 85.40 91.38 78.70
mGTE-MLM-8192 305M RoPE 8192 83.47 48.41 92.32 90.94 89.77 88.50 85.58 91.34 80.87

RoBERTa-largeα 355M Abs. 512 88.9 68.0 96.4 90.9 92.4 92.2 90.2 94.7 86.6
MosaicBERT-large-128β 434M Alibi 128 86.1 59.7 93.7 88.2 90.9 92.0 86.9 93.0 84.5
JinaBERT-largeδ 435M Alibi 512 83.7 59.6 95.0 88.5 88.2 80.9 86.6 92.5 78.5
GTEv1.5-en-large-512 434M RoPE 512 88.16 64.80 94.50 92.09 91.50 89.23 89.12 93.78 90.25
GTEv1.5-en-large-2048 434M RoPE 2048 87.02 60.09 94.61 92.14 91.47 89.12 89.02 92.31 87.36
GTEv1.5-en-large-8192 434M RoPE 8192 87.58 60.39 95.07 93.45 91.37 89.19 89.20 93.90 88.09

Table 13: GLUE (Wang et al., 2018) devset scores (w/o WNLI). αTaken from Table 8 of Liu et al. (2019). βTaken
from Table S3 of Portes et al. (2023). γTaken from Table 2 of Nussbaum et al. (2024). δTaken from Table 2 of
Günther et al. (2023). The rest of the numbers are from our runs, refer to §C.2 for details.

MTEB English Param. Dim. Seq. Avg. Class. Clust. PairC. Rerank. Retr. STS Summ.
#Datasets (→) 56 12 11 3 4 15 10 1

gte-Qwen2-7b-instruct (Li et al., 2023) 7613M 3584 131072 70.24 86.58 56.92 85.79 61.42 60.25 83.04 31.35
neural-embedding-v1 - - - 69.94 87.91 54.32 87.68 61.49 58.12 85.24 30.87
NV-Embed-v1 (Lee et al., 2024a) 7851M 4096 32768 69.32 87.35 52.8 86.91 60.54 59.36 82.84 31.2
voyage-large-2-instruct - 1024 16000 68.28 81.49 53.35 89.24 60.09 58.28 84.58 30.84
gte-Qwen2-1.5B-instruct (Li et al., 2023) 1776M 1536 131072 67.16 82.47 48.75 87.51 59.98 58.29 82.73 31.17
google-gecko (Lee et al., 2024b) 1200M 768 2048 66.31 81.17 47.48 87.61 58.9 55.7 85.07 32.63
GritLM-7B (Muennighoff et al., 2024) 7242M 4096 32768 66.76 79.46 50.61 87.16 60.49 57.41 83.35 30.37
E5-mistral-7b (Wang et al., 2024a) 7111M 4096 32768 66.63 78.47 50.26 88.34 60.21 56.89 84.63 31.4
text-embedding-3-large - 3072 8191 64.59 75.45 49.01 85.72 59.16 55.44 81.73 29.92

mxbai-embed-large-v1 (Lee et al., 2024c) 335M 1024 512 64.68 75.64 46.71 87.2 60.11 54.39 85 32.71
nomic-embed-text-v1 (Nussbaum et al., 2024) 137M 768 8192 62.39 74.12 43.91 85.15 55.69 52.81 82.06 30.08
gte-en-large-v1.5 434M 1024 8192 65.39 77.75 47.96 84.53 58.5 57.91 81.43 30.91
gte-en-base-v1.5 137M 768 8192 64.11 77.17 46.82 85.33 57.66 54.09 81.97 31.17

mE5-base (Wang et al., 2024b) 278M 768 514 59.45 73.02 37.89 83.57 54.84 48.88 80.26 30.11
mE5-large (Wang et al., 2024b) 560M 1024 514 61.5 74.81 41.06 84.75 55.86 51.43 81.56 29.69
BGE-m3 (dense)† (Chen et al., 2024) 568M 1024 8192 59.84 74.08 37.27 84.50 55.28 48.82 81.37 31.55
mGTE-TRM (dense) 305M 768 8192 61.40 70.89 44.31 84.23 57.47 51.08 82.11 30.58

BGE-m3-unsupervised† (Chen et al., 2024) 560M 1024 8192 56.48 69.28 38.52 80.92 54.03 42.26 78.30 32.11

mGTE-CPT 305M 768
512∗ 60.16 72.89 45.05 84.60 58.41 44.93 80.77 29.94
8192 60.04 72.70 45.35 84.63 58.36 44.46 80.59 30.77

Table 14: Results on MTEB English subset (Muennighoff et al., 2023a). We compare models from the online
leaderboard, where derived models (developed by secondary training on other public off-the-shelf models) are not
listed. †Denote our runs. ∗To be consistent with the setting in contrastive pre-training, in retrieval tasks, the max
sequence length of the document side is set to 1024.
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C-MTEB Param. Dim. Seq. Avg. Class. Clust. PairC. Rerank. Retr. STS
#Datasets (→) 35 9 4 2 4 8 8

gte-Qwen2-7b-instruct (Li et al., 2023) 7613M 3584 131072 72.05 75.09 66.06 8 7.48 68.92 76.03 65.33
piccolo-large-zh-v2 (Huang et al., 2024) - - - 70.95 74.59 62.17 90.24 70 74.36 63.5
OpenSearch-text-hybrid - 1792 512 68.71 71.74 53.75 88.1 68.27 74.41 62.46
Baichuan-text-embedding - 1024 512 68.34 72.84 56.88 82.32 69.67 73.12 60.07
gte-Qwen2-1.5B-instruct (Li et al., 2023) 1776M 1536 131072 67.65 71.12 54.61 86.91 68.21 71.86 60.96
E5-mistral-7b (Wang et al., 2024a) 7111M 4096 32768 60.81 70.17 52.3 72.19 61.86 61.75 50.22

mE5-base (Wang et al., 2024b) 278M 768 514 56.21 65.35 40.68 67.07 54.35 61.63 46.49
mE5-large (Wang et al., 2024b) 560M 1024 514 58.81 67.34 48.23 69.89 56 63.66 48.29
BGE-m3 (dense)† (Chen et al., 2024) 568M 1024 8192 60.80 66.95 45.75 73.98 62.88 65.43 52.43
mGTE-TRM (dense) 305M 768 8192 62.72 64.27 47.48 78.34 68.17 71.95 52.73

BGE-m3-unsupervised† (Chen et al., 2024) 560M 1024 8192 57.53 65.04 47.10 64.09 58.14 61.45 48.42

mGTE-CPT 305M 768
512∗ 58.67 64.64 50.21 63.95 63.77 64.23 46.74
8192 58.63 64.38 49.84 63.99 64.13 64.30 46.77

Table 15: Results on C-MTEB (Xiao et al., 2024) (MTEB Chinese). We compare models from the online leaderboard,
where derived models (developed by secondary training on other public off-the-shelf models) are not listed. †Denote
our runs. ∗To be consistent with the setting in contrastive pre-training, in retrieval tasks, the max sequence length of
the document side is set to 1024.

F-MTEB Param. Dim. Seq. Avg. Class. Clust. PairC. Rerank. Retr. STS Summ.
#Datasets (→) 26 6 7 2 2 5 3 1

gte-Qwen2-7b-instruct (Li et al., 2023) 7613M 3584 131072 68.25 81.76 55.56 90.43 78.7 55.65 82.31 31.45
gte-Qwen2-1.5B-instruct (Li et al., 2023) 1776M 1536 131072 66.6 78.02 55.01 86.88 83.76 52.56 81.26 30.5
voyage-multilingual-2 - 1024 32000 61.65 68.56 46.57 78.66 82.59 54.56 80.13 29.96
voyage-law-2 - 1024 16000 60.58 68.45 44.23 77.3 82.06 52.98 80.29 30.34
mistral-embed - 1024 - 59.41 68.61 44.74 77.32 80.46 46.81 79.56 31.47
E5-mistral-7b (Wang et al., 2024a) 7111M 4096 32768 48.33 57.72 41.16 76.08 62.2 23.44 65.36 32.22

mE5-base (Wang et al., 2024b) 278M 768 514 56.19 66.8 42.66 74.82 71.76 41.19 77.22 30.76
mE5-large (Wang et al., 2024b) 560M 1024 514 56.07 68.39 38.7 76.19 72.14 42.17 79.37 30.92
BGE-m3 (dense)† (Chen et al., 2024) 568M 1024 8192 58.79 71.57 36.54 79.78 77.36 51.13 80.78 31.05
mGTE-TRM (dense) 305M 768 8192 59.79 68.72 41.66 79.47 76.47 52.97 81.36 29.74

BGE-m3-unsupervised† (Chen et al., 2024) 560M 1024 8192 57.95 69.87 38.43 78.51 75.42 50.05 77.18 28.80

mGTE-CPT 305M 768
512∗ 59.72 70.79 41.15 80.29 76.19 53.44 76.87 29.04
8192 59.74 70.69 41.07 79.56 77.10 53.55 77.24 28.74

Table 16: Results on F-MTEB (Ciancone et al., 2024) (MTEB French). We compare top-performing models from
the online leaderboard. †Denote our runs. ∗To be consistent with the setting in contrastive pre-training, in retrieval
tasks, the max sequence length of the document side is set to 1024.

MTEB Polish Param. Dim. Seq. Avg. Class. Clust. PairClass. Retr. STS
#Datasets (→) 26 7 1 4 11 3

gte-Qwen2-7b-instruct (Li et al., 2023) 7613M 3584 131072 67.86 77.84 51.36 88.48 54.69 70.86
gte-Qwen2-1.5B-instruct (Li et al., 2023) 1776M 1536 131072 64.04 72.29 44.59 84.87 51.88 68.12
mmlw-roberta-large (Dadas et al., 2024) 435M 1024 514 63.23 66.39 31.16 89.13 52.71 70.59
mmlw-e5-large (Dadas et al., 2024) 560M 1024 514 61.17 61.07 30.62 85.9 52.63 69.98
mmlw-roberta-base (Dadas et al., 2024) 124M 768 514 61.05 62.92 33.08 88.14 49.92 70.7

mE5-base (Wang et al., 2024b) 278M 768 514 55.62 59.01 24.97 82.15 44.01 65.13
mE5-large (Wang et al., 2024b) 560M 1024 514 60.08 63.82 33.88 85.5 48.98 66.91
BGE-m3 (dense)† (Chen et al., 2024) 568M 1024 8192 60.35 65.15 25.21 86.46 48.51 69.44
mGTE-TRM (dense) 305M 768 8192 58.22 60.15 33.67 85.45 46.40 68.92

BGE-m3-unsupervised† (Chen et al., 2024) 560M 1024 8192 55.98 60.30 40.17 79.01 43.26 67.05

mGTE-CPT 305M 768
512∗ 57.66 62.72 38.04 79.70 45.55 67.39
8192 57.11 61.55 38.15 79.53 45.29 66.53

Table 17: Results on MTEB Polish subset (Poświata et al., 2024) We compare top-performing models from the
online leaderboard. †Denote our runs. ∗To be consistent with the setting in contrastive pre-training, in retrieval
tasks, the max sequence length of the document side is set to 1024.
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Max Length Avg ar de en es fr hi it ja ko pt ru th zh

BM25 8192 53.6 45.1 52.6 57.0 78.0 75.7 43.7 70.9 36.2 25.7 82.6 61.3 33.6 34.6
mE5large 512 34.2 33.0 26.9 33.0 51.1 49.5 21.0 43.1 29.9 27.1 58.7 42.4 15.9 13.2
mE5base 512 30.5 29.6 26.3 29.2 45.2 46.7 19.0 40.9 24.9 20.9 50.8 37.8 12.2 12.8
E5mistral-7b 8192 42.6 29.6 40.6 43.3 70.2 60.5 23.2 55.3 41.6 32.7 69.5 52.4 18.2 16.8
BGE-m3-Dense 8192 52.5 47.6 46.1 48.9 74.8 73.8 40.7 62.7 50.9 42.9 74.4 59.5 33.6 26.0
BGE-m3-Sparse 8192 62.2 58.7 53.0 62.1 87.4 82.7 49.6 74.7 53.9 47.9 85.2 72.9 40.3 40.5
BGE-m3-Dense+Sparse 8192 64.8 63.0 56.4 64.2 88.7 84.2 52.3 75.8 58.5 53.1 86.0 75.6 42.9 42.0

mGTE-TRM Dense 8192 56.6 55.0 54.9 51.0 81.2 76.2 45.2 66.7 52.1 46.7 79.1 64.2 35.3 27.4
mGTE-TRM Sparse 8192 71.0 74.3 66.2 66.4 93.6 88.4 61.0 82.2 66.2 64.2 89.9 82.0 47.4 41.8
mGTE-TRM Dense+Sparse 8192 71.3 74.6 66.6 66.5 93.6 88.6 61.6 83.0 66.7 64.6 89.8 82.1 47.7 41.4
+ mGTE-reranker 8192 73.8 76.6 70.4 69.3 96.4 89.6 67.8 81.9 68.1 71.1 90.2 86.1 46.7 44.8

Table 18: Evaluation of multilingual long-doc retrieval on the MLDR (Chen et al., 2024) testset (measured by
nDCG@10).

Baselines M3-Embedding mGTE-TRM mGTE-reranker
BM25 mDPR mContriever mE5large mE5base E5mistral-7b OpenAI-3 Dense Sparse Multi-vec D+S All Dense Sparse D+S ReRank

ar 13.4 33.8 43.8 59.7 44.3 47.6 55.1 61.9 19.5 62.6 61.9 63.0 55.9 17.5 56.0 58.2
da 36.2 55.7 63.3 71.7 63.6 72.3 67.6 71.2 45.1 71.7 71.3 72.0 69.8 37.9 69.7 71.0
de 23.3 53.2 60.2 71.2 62.3 70.8 67.6 69.8 33.2 69.6 70.2 70.4 68.9 27.0 69.1 70.1
es 29.8 55.4 62.3 70.8 63.8 71.6 68.0 69.8 40.3 70.3 70.2 70.7 69.6 35.1 70.0 71.0
fi 33.2 42.8 58.7 67.7 53.0 63.6 65.5 67.8 41.2 68.3 68.4 68.9 64.2 35.3 64.5 64.9
fr 30.3 56.5 62.6 69.5 61.2 72.7 68.2 69.6 43.2 70.1 70.1 70.8 69.8 36.9 70.4 71.0
he 16.1 34.0 50.5 61.4 37.4 32.4 46.3 63.4 24.5 64.4 63.5 64.6 55.4 22.0 55.4 56.5
hu 26.1 46.1 57.1 68.0 55.9 68.3 64.0 67.1 34.5 67.3 67.7 67.9 64.6 28.8 65.0 66.1
it 31.5 53.8 62.0 71.2 61.6 71.3 67.6 69.7 41.5 69.9 69.9 70.3 69.0 36.2 69.2 70.1
ja 14.5 46.3 50.7 63.1 51.7 57.6 64.2 67.0 23.3 67.8 67.1 67.9 65.3 19.5 65.2 67.2
km 20.7 20.6 18.7 18.3 28.2 23.3 25.7 58.5 24.4 59.2 58.9 59.5 53.6 21.9 53.8 54.7
ko 18.3 36.8 44.9 58.9 40.4 49.4 53.9 61.9 24.3 63.2 62.1 63.3 55.9 21.4 56.1 58.9
ms 42.3 53.8 63.7 70.2 62.4 71.1 66.1 71.6 52.5 72.1 71.8 72.3 69.9 47.8 70.2 70.9
nl 42.5 56.9 63.9 73.0 65.0 74.5 68.8 71.3 52.9 71.8 71.7 72.3 70.7 47.4 70.9 71.5
no 38.5 55.2 63.0 71.1 62.0 70.8 67.0 70.7 47.0 71.4 71.1 71.6 69.1 39.7 69.2 70.2
pl 28.7 50.4 60.9 70.5 57.2 71.5 66.1 69.4 36.4 70.0 69.9 70.4 68.4 31.4 68.3 69.6
pt 31.8 52.5 61.0 66.8 58.7 71.6 67.7 69.3 40.2 70.0 69.8 70.6 69.6 34.9 69.6 70.7
ru 21.8 49.8 57.9 70.6 58.7 68.7 65.1 69.4 29.2 70.0 69.4 70.0 68.5 25.8 68.5 69.6
sv 41.1 54.9 62.7 72.0 61.3 73.3 67.8 70.5 49.8 71.3 71.5 71.5 69.5 43.3 69.9 70.6
th 28.4 40.9 54.4 69.7 59.7 57.1 55.2 69.6 34.7 70.5 69.8 70.8 65.0 30.6 65.2 66.9
tr 33.5 45.5 59.9 67.3 59.2 65.5 64.9 68.2 40.9 69.0 69.1 69.6 67.7 36.0 67.7 69.0
vi 33.6 51.3 59.9 68.7 60.0 62.3 63.5 69.6 42.2 70.5 70.2 70.9 69.4 37.6 69.3 70.3
zh_cn 19.4 50.1 55.9 44.3 38.3 61.2 62.7 66.4 26.9 66.7 66.6 67.3 68.2 23.2 68.4 69.5
zh_hk 23.9 50.2 55.5 46.4 38.3 55.9 61.4 65.8 31.2 66.4 65.9 66.7 63.7 27.8 63.8 65.8
zh_tw 22.5 50.6 55.2 45.9 39.0 56.5 61.6 64.8 29.8 65.3 64.9 65.6 63.8 26.6 63.9 65.7
Avg 28.1 47.9 56.3 63.5 53.7 62.4 62.1 67.8 36.3 68.4 68.1 68.8 65.8 31.6 66.0 67.2

Table 19: Recall@20 on MKQA (Longpre et al., 2021) dataset for cross-lingual retrieval in all 25 languages. The
All of M3-Embedding denotes the hybrid retrieval result of dense, sparse, and multi-vec scores.

Model Avg ar bn en es fa fi fr hi id ja ko ru sw te th zh de yo

BM25 31.9 39.5 48.2 26.7 7.7 28.7 45.8 11.5 35.0 29.7 31.2 37.1 25.6 35.1 38.3 49.1 17.5 12.0 56.1
mE5large 65.4 76.0 75.9 52.9 52.9 59.0 77.8 54.5 62.0 52.9 70.6 66.5 67.4 74.9 84.6 80.2 56.0 56.4 56.5
mE5base 60.13 71.6 70.2 51.2 51.5 57.4 74.4 49.7 58.4 51.1 64.7 62.2 61.5 71.1 75.2 75.2 51.5 43.4 42.3
E5mistral-7b 62.2 73.3 70.3 57.3 52.2 52.1 74.7 55.2 52.1 52.7 66.8 61.8 67.7 68.4 73.9 74.0 54.0 54.0 58.8
OpenAI-3 54.9 - - - - - - - - - - - - - - - - - -
BGE-M3-Dense 67.8 78.4 80.0 56.9 55.5 57.7 78.6 57.8 59.3 56.0 72.8 69.9 70.1 78.6 86.2 82.6 61.7 56.8 60.7
BGE-M3-Sparse 53.9 67.1 68.7 43.7 38.8 45.2 65.3 35.5 48.2 48.9 56.3 61.5 44.5 57.9 79.0 70.9 36.3 32.2 70.0
BGE-M3-Multi-vec 69.0 79.6 81.1 59.4 57.2 58.8 80.1 59.0 61.4 58.2 74.5 71.2 71.2 79.0 87.9 83.0 62.7 57.9 60.4
BGE-M3-Dense+Sparse 68.9 79.6 80.7 58.8 57.5 59.2 79.7 57.6 62.8 58.3 73.9 71.3 69.8 78.5 87.2 83.1 62.5 57.6 61.8
BGE-M3 All 70.0 80.2 81.5 59.8 59.2 60.3 80.4 60.7 63.2 59.1 75.2 72.2 71.7 79.6 88.2 83.8 63.9 59.8 61.5

mGTE-TRM Dense 62.1 71.4 72.7 54.1 51.4 51.2 73.5 53.9 51.6 50.3 65.8 62.7 63.2 69.9 83.0 74.0 60.8 49.7 58.3
mGTE-TRM Sparse 55.9 66.5 70.4 35.6 46.2 40.0 47.6 66.5 39.8 48.9 47.9 59.3 64.3 47.1 59.4 83.0 70.5 73.7 39.9
mGTE-TRM Dense+Sparse 63.5 73.4 75.1 49.9 57.6 62.7 52.0 74.7 53.5 56.4 52.8 67.1 66.7 63.5 69.5 85.2 75.8 58.4 58.8
+ mGTE-reranker 68.5 77.1 63.1 78.6 56.3 72.4 80.3 79.6 58.6 59.1 74.6 75.5 59.4 56.3 56.5 62.2 72.2 86.3 65.1

Table 20: Multi-lingual retrieval performance on the MIRACL (Zhang et al., 2023b) dev set (measured by
nDCG@10).
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BEIR Avg.
Argu-
Ana

Cli-
mate-
Fever

CQA-
Dup-
Stack

DB-
Pedia

Fever FiQA
Hotpot-

QA

MS
MAR-

CO

NF-
Corpus

NQ Quora
Sci-
docs

Sci-
fact

Touche-
2020

Trec-
Covid

gte-Qwen2-7B-instruct 60.25 64.27 45.88 46.43 52.42 95.11 62.03 73.08 45.98 40.6 67 90.09 28.91 79.06 30.57 82.26
NV-Embed-v1 59.36 68.2 34.72 50.51 48.29 87.77 63.1 79.92 46.49 38.04 71.22 89.21 20.19 78.43 28.38 85.88
gte-Qwen2-1.5B-instruct 58.29 69.72 42.91 44.76 48.69 91.57 54.7 68.95 43.36 39.34 64 89.64 24.98 78.44 27.89 85.38
voyage-large-2-instruct 58.28 64.06 32.65 46.6 46.03 91.47 59.76 70.86 40.6 40.32 65.92 87.4 24.32 79.99 39.16 85.07
neural-embedding-v1 58.12 67.21 32.3 49.11 48.05 89.46 58.94 78.87 42 42.6 68.36 89.02 27.69 78.82 24.06 75.33
GritLM-7B 57.41 63.24 30.91 49.42 46.6 82.74 59.95 79.4 41.96 40.89 70.3 89.47 24.41 79.17 27.93 74.8
e5-mistral-7b-instruct 56.89 61.88 38.35 42.97 48.89 87.84 56.59 75.72 43.06 38.62 63.53 89.61 16.3 76.41 26.39 87.25
google-gecko 55.7 62.18 33.21 48.89 47.12 86.96 59.24 71.33 32.58 40.33 61.28 88.18 20.34 75.42 25.86 82.62
text-embedding-3-large 55.44 58.05 30.27 47.54 44.76 87.94 55 71.58 40.24 42.07 61.27 89.05 23.11 77.77 23.35 79.56

gte-en-large-v1.5 57.91 72.11 48.36 42.16 46.3 93.81 63.23 68.18 42.93 36.95 56.08 89.67 26.35 82.43 22.55 77.49
gte-en-base-v1.5 54.09 63.49 40.36 39.52 39.9 94.81 48.65 67.75 42.62 35.88 52.96 88.42 21.92 76.77 25.22 73.13

BM25 41.7 31.5 21.3 29.9 31.3 75.3 23.6 60.3 22.8 32.5 32.9 78.9 15.8 66.5 36.7 65.6
mE5-large 51.43 54.38 25.73 39.68 41.29 82.81 43.8 71.23 43.7 33.99 64.06 88.18 17.47 70.41 23.39 71.33
mE5-base 48.88 44.23 23.86 38.52 40.36 79.44 38.17 68.56 42.27 32.46 60.02 87.65 17.16 69.35 21.35 69.76

BGE-M3 Dense† 48.34 53.95 29.52 39.09 39.80 81.38 41.30 69.44 38.32 31.43 60.60 88.57 16.39 64.36 22.63 55.59
BGE-M3 Sparse† 38.30 25.08 24.69 27.51 23.21 88.36 26.79 68.45 19.59 27.5 17.98 73.82 8.89 64.37 30.26 48.00
BGE-M3 Dense+Sparse† 49.41 53.88 30.21 39.10 39.89 81.24 40.25 70.11 37.62 32.53 59.58 88.62 15.59 65.74 31.12 55.67

mGTE-TRM Dense 51.07 58.36 34.83 38.12 40.11 92.07 44.99 63.03 39.92 36.66 58.10 88.02 18.26 73.42 22.76 57.4
mGTE-TRM Sparse 39.24 40.06 24.17 25.11 20.0 88.32 28.58 64.68 19.39 28.34 19.71 76.84 10.92 67.72 21.52 53.33
mGTE-TRM Dense+Sparse 51.43 58.48 34.89 38.36 39.72 93.14 44.98 65.01 39.99 36.67 56.90 89.05 18.26 73.45 24.09 58.46
+ mGTE-reranker 55.42 58.53 44.93 38.37 45.62 93.9 44.38 74.51 44.99 36.29 65.21 81.67 18.42 75.59 31.29 77.75

BGE-M3-unsupervised† 42.26 59.07 23.05 38.10 31.16 59.15 36.57 53.39 27.79 30.67 39.69 86.38 15.08 61.26 17.62 54.90
mGTE-CPT-512,1024 44.93 52.99 17.93 45.01 37.63 34.13 48.38 54.39 31.76 39.01 48.48 86.82 22.95 72.46 18.56 63.46
mGTE-CPT-8192 44.46 55.14 15.85 44.73 38.74 27.42 47.45 55.93 31.79 38.62 49.27 86.81 22.72 73.08 17.08 62.27

Table 21: BEIR benchmark (Thakur et al., 2021) nDCG@10 scores. We include top models from MTEB Retrieval
English leaderboard. †Denote our runs.

Model Param. Dim. Seq Avg. Tau Scr. Tau Gov. Tau QMS. QASP. Tit. Art. QASP. Abs. Art.

Jinabase-v2 (Günther et al., 2023) 137M 768 8192 85.5 93.3 98.6 40.8 95.1 99.3
nomic-embed-text-v1 (Nussbaum et al., 2024) 137M 768 8192 85.5 90.9 97.8 44.2 94.9 99.9
text-embedding-3-small - 1536 8192 82.4 92.2 97.7 27.4 95.9 98.9
text-embedding-3-large - 3072 8192 79.4 88.0 93.6 25.5 93.2 96.8
mGTE-en-base-embed 137M 768 8192 87.4 91.8 98.6 49.9 97.1 99.8
mGTE-en-large-embed 434M 1024 8192 86.7 92.6 98.7 44.5 97.8 99.8
mE5base (Wang et al., 2024b) 279M 768 512 72.2 68.9 87.6 30.5 85.1 88.9
mE5large (Wang et al., 2024b) 279M 1024 512 74.3 70.4 89.5 37.6 89.5 85.4
E5mistral (Wang et al., 2024a) 7B 4096 4096 87.8 95.9 98.3 46.8 98.4 99.8
BGE-M3-Dense† (Chen et al., 2024) 568M 1024 8192 84.9 93.8 97.4 41.9 93.2 98.3
BGE-M3-Sparse† (Chen et al., 2024) 568M 1024 8192 84.9 95.5 97.9 46.7 85.7 98.9
BGE-M3-Dense+Sparse† (Chen et al., 2024) 568M 1024 8192 87.4 97.7 98.2 47.7 93.6 99.7

mGTE-TRM Dense 434M 768 8192 88.9 95.1 97.7 58.5 94.6 98.7
mGTE-TRM Sparse 434M 768 8192 88.1 97.6 97.9 60.1 85.5 99.2
mGTE-TRM Dense+Sparse 434M 768 8192 91.3 98.2 98.3 66.5 94.6 98.7

Table 22: The nCDG@10 scores on the LoCo benchmark (Saad-Falcon et al., 2024). †Denote our runs.
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