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Abstract

Citywalk, a recently popular form of urban
travel, requires genuine personalization and un-
derstanding of fine-grained requests compared
to traditional itinerary planning. In this paper,
we introduce the novel task of Open-domain
Urban Itinerary Planning (OUIP), which gen-
erates personalized urban itineraries from user
requests in natural language. We then present
ITINERA, an OUIP system that integrates spa-
tial optimization with large language models
to provide customized urban itineraries based
on user needs. This involves decomposing
user requests, selecting candidate points of
interest (POIs), ordering the POIs based on
cluster-aware spatial optimization, and gen-
erating the itinerary. Experiments on real-
world datasets and the performance of the de-
ployed system demonstrate our system’s ca-
pacity to deliver personalized and spatially co-
herent itineraries compared to current solu-
tions. Source codes of ITINERA are available
at https://github.com/YihongT/ITINERA.

1 Introduction

As a novel form of urban travel, citywalk (Ger-
mano, 2023) invites travelers to wander through
city streets and immerse themselves in local cul-
ture, offering a more dynamic, immersive, and fine-
grained travel experience compared to traditional
tourism. Planning a citywalk is a complex urban
itinerary planning problem (Halder et al., 2024),
involving travel-related information gathering, POI
selection, route mapping, and customization for
diverse user needs. Specifically, citywalk differs
from traditional tourism by (1) Dynamic Informa-
tion: involving rapidly changing POIs and needing
up-to-date information on temporary events, (2)

∗Equal contribution. BCorresponding authors.

Personalization: prioritizing individual preferences
over widely recognized POIs, and (3) Diverse Con-
straints: considering complex constraints like per-
sonal interests and accessibility requirements. An
example of the OUIP problem is shown in Fig. 1.

Existing itinerary planning studies focus on tra-
ditional tourism. They consider coarse-grained
user requirements such as geographical constraints
(Rani et al., 2018) and time budgets (Hsueh and
Huang, 2019) to improve the quality of an itinerary
(Chen et al., 2013; Sylejmani et al., 2017). While
these optimization-based approaches maintain the
quality of POIs and spatial coherency, they struggle
to address dynamic and detailed personal demands,
leading to itineraries that lack personalization and
diversity.

Recently, large language models (LLMs) (Ope-
nAI, 2023) have shown impressive applications in
understanding user needs and following instruc-
tions. However, their limitations in itinerary plan-
ning are evident (Xie et al., 2024): (1) Pure LLMs
cannot refer to specific POI lists, resulting in out-
dated or hallucinated POIs. (2) LLMs lack the op-
timization capabilities required for planning tasks,
leading to suboptimal itineraries. Consequently,
LLM-generated itineraries can be circuitous, lack
detail, and include impractical information.

To address these limitations, in this work, we
first define the Open-domain Urban Itinerary Plan-
ning (OUIP) problem, which involves generating
personalized travel itineraries based on user re-
quests in natural language. Then, we propose
ITINERA, a holistic OUIP system that integrates
spatial optimization with LLMs. ITINERA com-
prises five LLM-assisted modules: User-owned
POI Database Construction (UPC), Request De-
composition (RD), Preference-aware POI Retrieval
(PPR), Cluster-aware Spatial Optimization (CSO),
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Figure 1: The OUIP problem and the OUIP system.

and Itinerary Generation (IG), to deliver personal-
ized and spatially coherent itineraries.

Our overall contributions are:
• We introduce the OUIP problem to provide per-

sonalized urban travel itineraries based on users’
natural language inputs and propose metrics to
measure the quality of generated itineraries.

• We develop ITINERA, an LLM-based OUIP
system that combines spatial optimization with
LLMs to create fine-grained urban itineraries tai-
lored to users’ requests.

• Extensive experiments on the real-world dataset
and performance of the deployed system show
that ITINERA creates personalized, spatially co-
herent, and high-quality urban itineraries that
meet user requirements.

2 Related Work

LLMs in Urban Applications Since ChatGPT,
LLMs have demonstrated strong knowledge and
reasoning capabilities. Recent studies highlight
the potential of LLMs in urban data processing
(Yan et al., 2023) and urban planning (Zhou et al.,
2024). These works reveal LLMs’ capabilities
in predicting human mobility patterns (Mo et al.,
2023; Xue et al., 2022) and emphasize their predic-
tive strength (Wang et al., 2023). In transportation,
LLMs contribute to traffic safety analysis (Zheng
et al., 2023a), enhance traffic forecasting (de Zarzà
et al., 2023), and automate accident report genera-
tion (Zheng et al., 2023b) , showing their applicabil-
ity in urban transportation. Leveraging LLMs for
travel planning has recently gained public interest.
TravelPlanner (Xie et al., 2024) proposes a sand-
box environment with various tools for benchmark-

ing LLMs on multi-day travel planning, revealing
LLMs’ current limitations for complex planning
tasks. Unlike TravelPlanner, our system focuses
on fine-grained OUIP, addressing urban itinerary
planning within a single day, but can be seamlessly
extended to multi-day travel planning.

Itinerary Planning (IP) Current research on IP
focuses on creating itineraries based on a set of
POIs. Some methods directly optimize the spatial
utilities of the itinerary, while others define IP as
an Orienteering Problem (OP) and consider con-
straints that include time (Zhang and Tang, 2018;
Hsueh and Huang, 2019), space (Rani et al., 2018),
must-see POIs (Taylor et al., 2018), categories (Bol-
zoni et al., 2014) , and their combinations (Gionis
et al., 2014; Yochum et al., 2020), to indirectly
ensure the spatial coherence and quality of the
itinerary. However, their ability to personalize is
limited. Recommendation-based methods (Ho and
Lim, 2022; Tang et al., 2022) could be applied to
the IP task, but they depend on historical user be-
havior data. Overall, existing IP methods struggle
with open-domain, user natural-language inputs,
failing to generate personalized itineraries, making
them unsuitable for OUIP.

3 Methodology
We formalize the OUIP problem and explain how
ITINERA generates itineraries, as shown in Fig. 2.

3.1 Open-domain Urban Itinerary Planning
(OUIP) Problem

To enable personalized OUIP, an open-domain sys-
tem is essential. Such a system allows users to
freely express their diverse requirements and expec-
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{
“itinerary”: “Starbucks Coffee 

-> … -> Yuyuan Garden",
“overall reason”: “This 

itinerary takes you through 
the heart of the city, 
beginning …",
"pois": {
“1”: “The journey starts at 

Starbucks Coffee, for coffee 
lovers...",
“4": "Next, we'll explore 

Beijing East Road, a bustling 
artery of the city that …",
    …
   "41": "The final stop, 
Yuyuan Garden, is a peaceful 
retreat from the urban 
hustle, …
}

}
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Figure 2: An overview of the proposed ITINERA system.

tations, enabling the planning of urban itineraries
tailored to their specific needs and purposes.

Formally, given a user request r in natural lan-
guage and the user-owned POI database P =
{pj}Nj=1, the OUIP problem aims to find an
itinerary generator G to select and order a subset of
POIs from P to create a coherent travel itinerary
I as an ordered list of POIs that optimally aligns
with the user’s requests r while adhering to spatio-
temporal considerations: I ∼ G (P|r).
3.2 User-owned POI Database Construction

Travelers often have specific places they want to
visit or particular requirements for the POIs in their
itinerary. To ensure a fully personalized itinerary
planning process, we have developed an automated
pipeline that extracts POIs and relevant details from
social media, catering to these individual needs.
Users can input travel post links, and the pipeline
uses LLMs to extract POIs and their descriptions,
calls Map APIs and embedding models to obtain
their locations and embeddings, and integrates the
information into the user-owned POI database P
and embedding database E .

The user-owned POIs enable users to create per-
sonalized POI databases, maintain timely POI infor-
mation, and customize travel itineraries, enhancing
itinerary experiences. We execute a daily routine
to aggregate POIs from trending posts across multi-
ple cities and maintain an up-to-date, dynamic and
comprehensive POI database. This database serves
as the initial set of POIs for any new user, sub-
stantially mitigating the potential cold start issue
for POI acquisition. The pipeline and the database
format are detailed in §E and §B.

3.3 Request Decomposition
Upon receiving user requests, we use LLMs to
structure and extract information. A single user
request r can be decomposed into multiple inde-
pendent subrequests, each reflecting preferences at
different levels and classified by granularity, speci-
ficity, and attitude. Granularity includes (1) POI-
level and (2) itinerary-level subrequests. Specificity
has (1) specific and (2) vague subrequests. Attitude
distinguishes (1) positive subrequests (likes) and
(2) negative subrequests (dislikes).

We prompt the LLM to decompose the user re-
quest r based on these categories. Formally, we
obtain the resulting set of structured subrequests
R = {ri}|R|

i=1 through: R ∼ LLM(PRD(r)),
where PRD wraps the request r with instructions
and examples (see §F.1). Here, ‘pos’ and ‘neg’
indicate attitude-level subrequests. ‘Mustsee’ is a
boolean for specificity-level subrequests, and ‘type’
indicates granularity-level subrequests, which can
be one of ["start" (POI-level origin), "end" (POI-
level destination), "POI" (POI-level), "itinerary"
(itinerary-level)].

3.4 Preference-aware POI Retrieval
After obtaining decomposed subrequests, we select
POIs from the user-owned POI database P that
match their preferences. While LLMs excel in lan-
guage comprehension, they are limited by context
window size and input token cost. Given the vast
amount of POI data and LLM inference speed limi-
tations, we design a preference-aware embedding-
based retrieval approach. For a subrequest ri, we
first use an embedding model Eθ′ to encode the
‘pos’ and ‘neg’ fields: eposi = Eθ′ (r

pos
i ) ; enegi =
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Eθ′ (r
neg
i ), where θ′ denotes the parameters of the

E, and enegi , eposi ∈ Rd are embeddings.
Ideally, we want the queried POIs to best fit

the positive subrequest while avoiding the nega-
tive subrequest. To achieve this, we use the posi-
tive embedding eposi to retrieve k POIs from P to
obtain Ppos

i = {pposi,j }kj=1 and the corresponding
embeddings Eposi = {eposi,j }kj=1 from E with top
similarity scores Sposi = {sposi,j }kj=1, where pposi,j

and sposi,j represent the jth POI and score for ith
positive sub-request. Next, we compute the sim-
ilarity scores between Eposi and enegi and rerank
the POIs based on the gap between positive and
negative similarity scores. Using E ∈ RN×d to
denote the pre-computed POI embeddings in the
user-owned database, the process is:
Ppos

i ,Spos
i , Eposi = scorek (epos

i , E) (1)
Pneg

i ,Sneg
i , Enegi = score (eneg

i , Eposi ) (2)
Pi,Si = rank (Ppos

i ,Spos
i − Sneg

i ) , (3)

where the score(·) function measures embedding
similarities, and the superscript k indicates it re-
turns the top-k results . The rank(·) reorders POIs
from highest to lowest similarity scores.

Lastly, we select the top-k POIs with the highest
summed scores from the union of all retrieved POIs
to form the final set Prt for the user request r:
Prt,Srt = rankk

(
∪|R|

i=1 (Pi,Si)
)
∪
(
Pmust,Smust) , (4)

where Smust has large values to ensure must-see
POIs are included. During the union process,
scores for the same POI under different subrequests
are summed to obtain the final score.

3.5 Cluster-aware Spatial Optimization

3.5.1 Spatial Clustering and Filtering
A spatially coherent itinerary enhances the travel
experience by allowing travelers to move efficiently
between clusters of POIs, reducing transit time and
effort (Bolzoni et al., 2014). Therefore, spatially
filtering and sequencing the retrieved POIs is es-
sential. To achieve this, we compute spatial clus-
ters of the retrieved POIs and select candidates
based on proximity and matching scores, address-
ing cluster-aware spatial optimization by solving
a hierarchical traveling salesman problem (Jiang
et al., 2014). Given the retrieved POIs Prt, we
create a spatial proximity graph G using a distance
matrix D, where each node is a POI and edges con-
nect nodes within a distance threshold τ . A com-
munity detection algorithm divides G into clusters.
We iteratively select the cluster with the highest
summed similarity score until the total number of

Algorithm 1 Spatial Clustering & Candidate POI Selection

Input: Retrieved POI set Prt with scores Srt, Distance
threshold τ , Candidate POIs num threshold Nc

Output: Spatial Clusters C, Candidate POIs Pc

1: // SPATIAL CLUSTERING
2: G← (V,E) with V ← Prt, E ← ∅; C ← ∅; Pc ← ∅
3: for prta , prtb ∈ V with a ̸= b do
4: if distance(prta , prtb ) < τ then
5: E ← E ∪ {(prta , prtb )}
6: end if
7: end for
8: while V ̸= ∅ do
9: c← largest clique in G

10: C ← C ∪ {c}; V ← V \ c
11: end while
12: // SELECTION OF CANDIDATE POIS
13: for each cluster c ∈ C do
14: srtc ←

∑
pj∈c s

rt
j

15: end for
16: Sort C in descending order of Sc = {srtc }Cc=1

17: while |Pc| < Nc do
18: cmax ← argmaxc∈C srtc
19: Pc ← Pc ∪ cmax; C ← C \ {cmax}
20: end while
21: return C,Pc

selected POIs reaches a threshold N c, forming the
candidate POIs Pc for the user request r. The pro-
cess is detailed in Algo. 1.

3.5.2 POI Ordering via Solving Hierarchical
TSP

Algorithm 2 Hierarchical TSP for POI Ordering

Input: Spatial clusters C, candidate POIs Pc, distance
matrix D
Output: Ordered list of candidate POIs Porder

1: // POI ORDERING
2: Corder ← SolveTSP(C, D); Porder ← ∅
3: for each cluster c in Corder do
4: pcstart, p

c
end ← GetClusterEndpoints(c, Corder, D)

5: cpath ← SolveConstraintTSP(c, pcstart, p
c
end, D)

6: Porder ← Porder ∪ cpath
7: end for
8: // START POI SELECTION AND POI REORDERING
9: pstart ← Select(Porder)

10: Porder ← Reorder(Porder, porder
start )

11: return Porder

After obtaining the spatial clusters C, we opti-
mize the access order of the candidate POIs for a
spatially coherent itinerary by determining the ac-
cess order of each cluster and solving TSPs within
each cluster with start and end POI constraints.
Start and end points are selected based on the prox-
imity of POIs in adjacent clusters, as shown in
Fig. 2. This process, outlined in Algo. 2, opti-
mizes and ensures coherent traversal among se-
lected POIs using an efficient hierarchical TSP ap-
proach. ‘SolveTSP’ and ‘SolveTSPWithEndpoints’
handle standard and constrained TSPs, respectively,
while ‘GetClusterEndpoints’ determines the start
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Shanghai Qingdao

Method Rule-based Metrics LLM-Eval ↑ (%) Rule-based Metrics LLM-Eval ↑ (%)

RR ↑
(%)

AM ↓
(meters) OL ↓ FR ↓

(%) PQ IQ Match RR ↑
(%)

AM ↓
(meters) OL ↓ FR ↓

(%) PQ IQ Match

Ground Truth / 124.4 0.44 / 68.9 61.5 80.9 / 356.6 0.31 / 75.4 63.9 71.4

IP 6.4 1573.3 2.96 / 30.3 26.2 17.8 7.6 4134.3 2.86 / 23.6 16.8 20.2
Ernie-Bot 4.0 15.7 513.5 0.91 15.2 42.1 46.5 42.5 27.2 776.2 0.78 21.4 43.4 38.2 33.3
GPT-3.5 16.6 422.4 0.83 13.5 40.4 43.1 45.4 25.5 691.5 0.55 22.0 33.4 39.0 46.6
GPT-4 18.0 267.2 0.56 8.2 45.0 48.2 46.9 27.3 569.4 0.49 19.6 46.6 48.7 48.4
GPT-4 CoT 18.4 258.3 0.49 7.5 / / / 30.2 542.6 0.43 17.8 / / /
ITINERA (ours) 31.4 86.0 0.42 / 69.8 64.6 72.0 35.4 225.8 0.26 / 71.2 68.2 67.8

Beijing Hangzhou

Method Rule-based Metrics LLM-Eval ↑ (%) Rule-based Metrics LLM-Eval ↑ (%)

RR ↑
(%)

AM ↓
(meters) OL ↓ FR ↓

(%) PQ IQ Match RR ↑
(%)

AM ↓
(meters) OL ↓ FR ↓

(%) PQ IQ Match

Ground Truth / 218.3 0.53 / 61.9 57.3 77.0 / 70.9 0.34 / 47.5 53.2 66.3

IP 3.3 3034.2 2.26 / 27.8 18.2 20.4 1.8 1744.4 1.52 / 34.8 31.4 22.5
Ernie-Bot 4.0 18.8 379.4 0.74 12.8 31.2 34.8 32.1 12.9 605.2 1.17 24.4 43.6 34.3 38.2
GPT-3.5 19.7 347.8 0.58 14.3 29.2 40.5 43.8 14.4 665.4 1.16 19.8 41.2 40.8 32.8
GPT-4 20.6 342.6 0.52 11.1 45.4 43.6 45.2 14.8 746.1 1.09 23.2 46.2 39.6 39.4
GPT-4 CoT 21.0 327.7 0.54 10.2 / / / 15.5 455.0 1.09 18.6 / / /
ITINERA (ours) 28.4 79.2 0.46 / 59.2 67.6 75.2 21.4 30.5 0.12 / 61.6 65.4 68.3

Table 1: Overall results on four datasets. LLM-evaluated metrics are win rates against GPT-4 CoT.

and end points for each cluster. The starting point,
pstart, is identified by ‘Select’ from subrequestsR
or by prompting an LLM with Pc and r. Finally,
the ‘Reorder’ function arranges the POIs in the
original order of precedence starting from pstart.
Further details are in §D.

3.6 Itinerary Generation

Selecting a subset from Porder ensures a spatially
coherent itinerary, but a high-quality itinerary must
also meet constraints like time availability and prac-
ticality. It should, for example, avoid consecutive
restaurant visits and schedule activities appropri-
ately, such as bars in the evening or coffee shops in
the morning. Traditional optimization algorithms
can become overly complex and lack variability
(Yochum et al., 2020; Taylor et al., 2018), hinder-
ing itinerary diversity. To address this, we leverage
the advanced reasoning and planning capabilities
of LLMs to generate final itineraries that meet these
diverse constraints.

Specifically, the primary objective of this module
is to effectively utilize LLM to select an optimal
subset from Porder, which closely aligns with user
requests while adhering to various constraints. This
process can be formally defined as follows:

I ∼ LLM
(
PIG

(
r, Porder , Iex

))
, (5)

where Iex indicates extra natural language input
that improves the language quality of the generated
itinerary. The prompt PIG for generating the fi-
nal itinerary contains the following parts: (1) User

request information; (2) Candidate POIs with con-
text; (3) Task description; (4) Specific constraints;
(5) Language style; (6) Output format. The full
prompt is provided in §F.4.

4 Experiments

4.1 Experimental Setup

We collect an urban travel itinerary dataset from
four Chinese cities in collaboration with a lead-
ing travel agency specializing in single-day city-
walk. Each data sample contains a user request, the
corresponding urban itinerary plan, and detailed
POI data. In total, the dataset covers 1233 top-
rated urban itineraries and 7578 POIs. For detailed
data format, sample entries, and key preprocessing
methodologies employed, refer to §B.

We use GPT-4 for final itinerary generation to
ensure quality and GPT-3.5 for other interactions
to speed up responses. Our system and data are
originally in Chinese, and we provide a translated
version in this paper. Additional implementation
details are in §C.

4.2 Evaluation Metrics
A satisfactory itinerary must be spatially coherent
and aligned with the user’s needs, so we designed
the following evaluation metrics.

Rule-based Metrics (1) Recall Rate (RR): the
recall rate of POIs in the ground truth itinerary,
which evaluates the accuracy of understanding user
requests and recommending personalized POIs. (2)
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Variants UPC RD PPR CSO IG Rule-based Metrics LLM-Eval ↑ (%)

RR ↑ AM ↓ OL ↓ PQ IQ Match

GPT-4 CoT × × × × ✓ 18.4 258.3 0.49 / / /
GPT-4 CoT + UPC ✓ × ✓ × ✓ 34.2 240.2 0.52 65.5 61.8 70.6
ITINERA w/o RD ✓ × ✓ ✓ ✓ 22.6 35.4 0.18 68.2 61.5 60.5
ITINERA w/o PPR ✓ ✓ × ✓ ✓ 28.2 84.6 0.38 66.7 63.4 62.2
ITINERA w/o CSO ✓ ✓ ✓ × ✓ 32.8 242.8 1.04 72.1 60.2 74.2
ITINERA w/ GPT-3.5 ✓ ✓ ✓ ✓ ✓ 27.6 79.4 0.56 67.3 58.8 61.4
ITINERA w/ LLaMA 3.1 8B ✓ ✓ ✓ ✓ ✓ 27.8 90.6 0.45 66.9 58.6 63.5
ITINERA (full) ✓ ✓ ✓ ✓ ✓ 31.4 86.0 0.42 69.8 64.6 72.0

Table 2: Ablation study on Shanghai dataset.

Average Margin (AM): the average difference per
POI between the total distance of the generated
itinerary and the shortest distance (via TSP). (3)
Overlaps (OL): the number of self-intersection
points in the generated itinerary. AM and OL mea-
sure spatial optimization for POI visit order, with
lower values being better. (4) Fail Rate (FR):
the percentage of POIs from LLM not matched
with queried map service POIs, which assesses the
LLM’s information accuracy, as failed POIs are
inaccessible and impact the user experience.

LLM-Evaluated Metrics The rule-based met-
rics are intuitive, but some aspects, like POI appeal
and alignment with user requests, are hard to quan-
tify. Thus, we propose several LLM-evaluated met-
rics: (1) POI Quality (PQ): how interesting and
diverse the POIs are; (2) Itinerary Quality (IQ):
the overall quality and coherence of the itinerary;
(3) Match: the alignment between the itinerary
and the user request. We use GPT-4 to rank two
itineraries and compute the win rate, repeated at
least 10 times for reliability. Our LLM-evaluated
metrics have been shown to be consistent with hu-
man judgments, as discussed in Sec. 4.5.

4.3 Overall Results
We consider the following baselines:
• IP (Gunawan et al., 2014): A traditional IP

method. We simplify it to use LLM for time
budgeting and to consider POI ratings as utilities.

• Ernie-Bot 4.0 (Sun et al., 2021): The best-
performing model on Chinese LLM tasks, se-
lected as our dataset and system are in Chinese.

• GPT-3.5, GPT-4 and GPT-4 CoT (OpenAI, 2023):
ChatGPT models with or without Chain-of-
Thought (Wei et al., 2022).

The baseline IP and our method do not compute
the Fail Rate since the candidate POIs are all from
the dataset.
The result is shown in Tab. 1. our proposed ITIN-
ERA outperforms all baselines across all metrics

and achieves better or comparable results compared
with ground truth data. It shows a ≈30% improve-
ment in rule-based metrics over the best baseline,
demonstrating superior personalization of user ex-
periences. It maintains spatial coherence, generat-
ing itineraries only ≈100 meters longer per POI
than the shortest TSP-solved path. ITINERA is
also the only method to outperform GPT-4 CoT
in LLM-evaluated metrics, especially in Match.
These results highlight ITINERA’s effectiveness
in enhancing spatial coherence and aligning with
user requests in OUIP.

4.4 Ablation Study
To validate the effect of each component, we com-
pare the following variants of ITINERA:
• GPT-4 CoT + UPC: integrates the UPC module

to LLMs to generate itineraries based on user-
owned POIs.

• ITINERA w/o RD: uses the entire user input
string’s embedding to retrieve POIs.

• ITINERA w/o PPR: quantifies the contribution of
the PPR module compared to our full system.

• ITINERA w/o CSO: removes the CSO module
and lets the LLM in the IG module determine the
order of candidate POIs for the final itineraries.

• ITINERA w/ GPT-3.5 or LLaMA 3.1 8B: replaces
GPT-4 with either GPT-3.5 or LLaMA 3.1 8B for
generating the final itinerary.

We remove Fail Rate in the ablation study since all
variants equipped with UPC never generate POIs
not present in the database.

The results in Tab. 2 show that UPC enhances
the Recall Rate and Match of the GPT-4 CoT base-
line. Variants “w/o RD,” “w/o PPR,” and “w/ GPT-
3.5” have lower Recall Rate, POI Quality, Itinerary
Quality, and Match than our full model, indicat-
ing a trade-off between spatial optimization and
alignment with user requests. This parallels other
conditional generation tasks, where aligning with
human preferences can reduce inherent system abil-
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Method Rule-based POI Quality Itinerary Quality Match

AM OL Expert User LLM Expert User LLM Expert User LLM

GPT-4 CoT 511.4 0.79 3.2 3.6 30% 2.5 3.0 32% 2.9 2.6 28%
ITINERA 107.6 0.44 3.8 4.3 70% 3.2 3.8 68% 3.6 3.5 72%

Table 3: Deployed System Performance.

ity (Saharia et al., 2022; Di et al., 2021). Removing
the CSO module worsens the Average Margin and
Overlaps but improves Recall Rate, POI Quality,
and Match, showing the full model balances align-
ment with spatial ability. “W/o PPR” shows that
the PPR module can address LLM context window
limitations and save costs. Finally, “w/ GPT-3.5”
outperforms the GPT-3.5 baseline, demonstrating
our system’s adaptability to different LLMs.

To validate that our method is a general frame-
work compatible with both open-source LLMs and
commercial ones, we conduct experiments with
LLaMA 3.1-8B-Instruct (Dubey et al., 2024), a
state-of-the-art model suitable for consumer GPUs.
LLaMA 3.1 offers performance comparable to
GPT-3.5. Nevertheless, the performance of open-
source models still lags behind commercial models.
Considering the maintenance cost of hosting open-
source models locally, we opt to use commercial
models through API following most companies.

4.5 Deployed System Performance

Our deployed system is currently accessible to a
select group of users recommended by our part-
nered travel agency. To verify the effectiveness
of our system in real-world scenarios, we conduct
human evaluations. Human evaluation has been ex-
tensively employed in prior research on generative
tasks (Saharia et al., 2022; Rombach et al., 2022;
Zhuo et al., 2023) where objective metrics fail to
adequately assess specific dimensions of output
quality. We invite 464 regular users of our system
(User) and 33 experienced travel assistants from
our partnered travel agency (Expert) to compare
the two itineraries (randomly ordered) generated by
GPT-4 CoT and our system based on their requests.

The average evaluation results in Tab. 3 show
that our method is preferred by both experts and
regular users across all metrics, especially for
Match, validating the effectiveness of our system in
real-world scenarios. The human evaluation results
are consistent with the LLM evaluation win rate,
indicating that the proposed LLM-evaluated met-
rics are appropriate and adaptable when rule-based
evaluation is insufficient.

4.6 Qualitative Results

We further conduct a qualitative study to demon-
strate the importance of integrating LLM with spa-
tial optimization. Consider a user request “I’m
seeking an artsy itinerary that includes exploring
the river’s bridges and ferries”, we visualize the
results from ITINERA and GPT-4 CoT in Fig. 3.

Henan R…

Hebin Bu…
Shanghai ...Zhapu Ro...

Waibaidu ..

Dongcha…

Duo Yun …

Waibaidu ...

Tianzifang

Zhujiajiao...

Fangta G...

Fangta G...

Museum o...

1993 Old ...

Figure 3: Generated itineraries of ITINERA (left) and
GPT-4 CoT (right).

We find that our itinerary better matches the user
preferences. The itinerary passes several bridges
along the Huangpu River, includes a ferry crossing,
and concludes at the art-atmosphere-rich Duoyun
Bookstore, offering a restful endpoint for users.
In contrast, the POIs selected by GPT are more
mainstream. Moreover, our spatial arrangement
is more logical, avoiding detours and concentrat-
ing selected POIs within two spatial clusters. The
itinerary generated by GPT is spatially poor, has a
disordered sequence of visits, and contains exces-
sively distant POIs. Beyond this example, GPT also
risks hallucinating non-existent POIs, highlighting
the superiority of our system in comparison.

5 Conclusion

We introduce the OUIP problem and a solution
ITINERA that integrates LLMs with spatial opti-
mization. ITINERA enables the generation of per-
sonalized and spatially coherent itineraries directly
from natural language requests. Experiments on
the real-world dataset and deployed system perfor-
mance validate the effectiveness of our approach.
This study not only sets a new benchmark for
itinerary planning technologies but also broadens
venues for further innovations in leveraging LLMs
for complex problem-solving in urban contexts.
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Limitations
Despite the success of ITINERA in generating per-
sonalized itineraries, our system has several limita-
tions. First, while the spatial optimization module
works well in many cases, it may face efficiency
challenges in highly complex urban environments.
Moreover, although LLMs provide significant lan-
guage processing capabilities, they still exhibit lim-
itations in spatial reasoning and real-time decision-
making, which may impact the quality of the gen-
erated itineraries in specific scenarios.

Ethical Statement
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tect user privacy and data. The personalized POI
database is user-owned, and all data processing
follows legal data security and user consent stan-
dards. We have designed the system to be fair and
inclusive, avoiding biases in itinerary recommen-
dations across diverse user groups. Additionally,
we emphasize environmental responsibility by en-
suring that the system promotes sustainable urban
tourism without adversely affecting local culture or
ecosystems. Finally, transparency in the pipeline
is a priority, ensuring users understand how their
itineraries are generated.
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A Demonstration of the Deployed System

Figure 4: Screenshots of the deployed system: POI view & Itinerary view.

We provide screenshots of our deployed system in Fig. 4. The left screenshot shows the POI interface,
where users can add new POIs by direct searching or pasting a link of a travel-related post. They can filter
their desired POIs to display on their personal map. The POI icon represents its category (entertainment,
restaurant, etc.). Users can select several POIs by pressing the bottom right button to create an itinerary.
They can also use our system to generate an itinerary from natural language input (the left figure of Fig. 1).

The right screenshot shows the itinerary interface. Users can browse the itineraries they have created
and generated. They can tap one itinerary to see the details (the middle and right figures of Fig. 1).
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B Dataset

In this section, we provide the data format of the collected real-world dataset. Specifically, the data for each
city contains two tables: one is the POI table, which primarily stores the POIs and their features, and the
other is the Itinerary table, which is used to store users’ natural language requests and the corresponding
ground truth itineraries.

id name address city description longitude latitude rating category context
1 The Bund Zhongshan East 1st Rd, Huangpu Shanghai The Bund is a waterfront area ... 121.4906033011 31.2377704249 5.0 site ...

Table 4: POI data sample.

The sample POI data is shown in Table 4, where the context column is a concatenation of the strings
from all the previous columns. The embedding of each POI is also obtained by calling Eθ′ to embed the
context field. The resulting embedding, E , contains rich semantic information about the POIs.

user_request itinerary
I’m seeking an artsy itinerary that includes exploring the river’s bridges and ferries. [1, 3, 6, ...]

Table 5: Itinerary data sample.

The sample itinerary data is shown in Table 5, which contains two columns: one for the user’s request
and the other storing a list of POI IDs representing the ground truth itinerary (label) for the user’s request.

C Implementation Details

C.1 Method Implementation
We use the OpenAI text-embedding-ada-002 model for embedding purposes. The spatial coherence
of itineraries is optimized through an open-source TSP solver1. Integration of POI data, including
geographical coordinates, user ratings, categorizations, and physical addresses, is facilitated through the
Amap API2.

C.2 Baseline Settings
We use the same itinerary generation prompt for all baselines, including basic task requirements and
output format, as in PIG in §F.4. For GPT-4 CoT, we extend the prompt by integrating “thoughts”, detailed
in §F.5.

We adopt the PIT for the baseline IP for time budgeting. We prompt the LLM baselines to generate
itineraries based on user requests. We searched for each POI in the generated itinerary using the Map API.
Here, the database associated with the Map API is considered to be the current collection of all existing
POIs. We leverage fuzzy string matching3 to determine if there is a match with specific POIs. The failed
POIs contribute to the failure rate metrics. For the matched POIs, attributes of the POI (such as location)
are attached to the itinerary for subsequent evaluation.

1https://github.com/fillipe-gsm/python-tsp
2https://lbs.amap.com/
3https://github.com/seatgeek/thefuzz
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D Cluster-aware Spatial Optimization Supplementary

We present the details of the implementation of algorithms involved in cluster-aware spatial optimization.

D.1 SolveTSP

Algorithm 3 Simulated Annealing for TSP

1: procedure SIMULATEDANNEALING(cities, Tinit, Tmin, α)
2: solution← RandomSolution(cities)
3: T ← Tinit

4: while T > Tmin do
5: newSolution← Neighbor(solution)
6: costDifference← Cost(newSolution)− Cost(solution)
7: if costDifference < 0 or exp(−costDifference/T ) > Random() then
8: solution← newSolution
9: end if

10: T ← α× T
11: end while
12: return solution
13: end procedure

‘SolveTSP’ implements a simulated annealing algorithm for efficiently solving the TSP problem with
a large set of candidates. Simulated annealing is a classic metaheuristic approach where the model
iteratively proposes a new solution and replaces the current solution if a certain condition is satisfied until
the temperature goes down to zero. We detail the implementation for simulated annealing in Algo 3.
• RANDOMSOLUTION: Generates a random permutation of the cities as the initial solution.
• NEIGHBOR: Produces a new solution by making a small change to the current solution. In our

implementation, we consider four types of operations including swapping two randomly selected cities,
inverting a subroute, inserting a randomly selected city to another position, and inserting a randomly
selected subroute to another position.

• COST: Calculates the total distance of the proposed solution’s path.
• Tinit and Tmin: The initial and minimum temperatures for the SA algorithm. In our implementation,
Tinit is set to 5000 and Tmin is set to 0.

• α: The cooling rate that determines how fast the temperature decreases. In our implementation, α is set
to 0.99.
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D.2 SolveTSPWithEndpoints
In each cluster, the dataset typically comprises a limited set of candidate points. Consequently, the
prioritization shifts towards optimizing the accuracy of the resultant solution rather than focusing solely on
computational efficiency. To address the Traveling Salesman Problem (TSP) with predetermined starting
and ending points, we adopt a linear programming (LP) methodology. We detail the formulation of the
linear program in Alg. 4.

Algorithm 4 SolveTSPWithEndpoints

Require: dist, start_point, end_point
1: Solve the following linear program:

Minimize: min
∑

i ̸=j

xij · dist[i][j]

//Ensures each internal node in optimal path has in-degree 1 and out-degree 1

Subject to:
∑

i ̸=k

xik = 1, ∀k ̸= s, e

∑

i ̸=k

xki = 1, ∀k ̸= s, e

//Add constraints for source node and sink node
∑

i̸=s

xsi = 1

∑

i̸=s

xis = 0

∑

i ̸=e

xie = 1

∑

i ̸=e

xei = 0

//Eliminates all subtours
∑

i∈S

∑

j /∈S,j ̸=i

xij ≤ |S| − 1, ∀S ⊂ {1, . . . , n}, S ̸= ∅, S ̸= {1, . . . , n}

//Add binary variable constraints
xij ∈ {0, 1}, ∀i, j

2: Return Optimal path
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E Overview of the POI extraction pipeline

Prompt for Extracting POI Names and Locations

# Guidelines

## Task Background
Your task is to identify and extract mentioned cations in the posts/travelogues provided by users to help them quickly
find these places on a map. Now, based on the content of the post and in context, carry out the extraction and description
of Points of Interest (POIs) mentioned in the post. Focus primarily on places that can be visited, rather than merely on
place names.

## Notes on Handling POIs
1. Comprehensive Definition of POI: Typically used to describe a specific geographical location or site, such as
restaurants, hotels, streets, attractions, museums, bars, cafes, malls, etc. These locations or sites may have specific
value or interest to users or travelers.
2. Characteristics of POI: Specific places recommended or mentioned in the post that are usable for dining, entertainment,
etc.
3. Specificity: A POI refers to a specific, particular place, not a broad geographical area or city name.
4. Uniqueness: When a text is separated by symbols like "/", "&", ",", for example, "Julu Road/Tianzifang", it often
represents two POIs, in this case, "Julu Road" and "Tianzifang" should be extracted separately.
5. Examples of POI: Specific restaurants, performance venues, attractions, shops, streets, etc.
6. Non-POI Examples: Collections of places, food names, types of cuisine, performance groups, exhibition events, etc.

## Post Structure
Title: The post's title.
Text: The main body content of the post.
Text in the images: text recognized from the images.
Transcribed text: text transcribed from the video.

## Task Process
1. Extraction: Based on your reasoning, judgment, and knowledge, extract all mentioned POIs from the post.
2. Verification: In the context of each POI, ensure all POIs fit the definition and are specific places.
3. Address Information: In the context of each POI, find related address information that can be searched on a map, such
as "158 Julu Road, Shanghai."
4. Handling No Information: If no location information is available, return an empty POI list: {{}}.
5. Formatting: Organize information into the specified JSON structure.

## Output Format

### Specific Format

{{
"POI Name": "Related Address Information for the POI"

}}

### Examples

Example 1:
If the original post mentions "Lao Nong Tang Noodle Shop in Luxi: A time-honored noodle shop that appears on Shanghai's
must-eat list all year round!", the output for this POI should be
{{
"Lao Nong Tang Noodle Shop in Luxi": null
}}

Example 2:
If the original post mentions "Red Baron (Jianye District Wentiyi Road branch)
Looking around, the most striking red on the entire Wentiyi Road, seamlessly blending with Mixue Bingcheng", the output
for this POI should be
{{
"Red Baron (Jianye District Wentiyi Road branch)": null
}}

## Output Standards

- The output is a dictionary, with keys being the POI names and values being the related address information for the POI.
If address information is missing, please use "null" to fill in.
- Ensure the output is in valid JSON format and can be parsed by Python json.loads.

## Task Start

Please begin processing the post content: ```{post_info}```.

Note: Ensure the return format follows {{Point of Interest Name: Related Address Information}}. Ensure it can be
json.loads parsed.

The prompt for extracting POI names and locations is provided above. As illustrated in Sec. 3.2, we
design a pipeline to automatically extract POIs and relevant information from user-generated content on
various social media platforms. The pipeline consists of the following steps:
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• Scrape text, images, and videos from the input link of a travel-related post.
• Use automatic speech recognition to obtain transcription from the video and optical character recognition

(OCR) to extract text from the images. Merge them with the original text to obtain the post information.
• Use GPT-3.5 to extract POI names and locations from the post information.
• Use map service API to look up the extracted POI names, obtain the coordinates, and extract POI names,

similar to the evaluation pipeline in Sec.C.
• Use GPT-3.5 to generate POI descriptions from the POI names and post information.

The prompt for generating POI descriptions is provided below.

Prompt for Generating POI Descriptions

{post_info}

Based on the content of the above post, please write out the reasons for recommending each location to tourists in the
following list.
Consider what can be done at this location, its features, and why it is fun.
If the original post lacks information, you may appropriately supplement based on your knowledge, but please ensure
brevity.
The related information for each point should not exceed 30 words.
The results should be output in JSON format, specifically in the form {{Place Name: Information related to the place from
the original post}}, where "Information related to the place from the original post" should be a sentence or phrase, like
a string.
If a place does not have any relevant information, fill in the description related to the place from the original post
with "null".

We execute an automated process to extract POIs from the most recent trending posts and update a
comprehensive POl database. At a regular interval of 24 hours, we obtain recent trending travel-related
posts across multiple cities on social media platforms and run the above pipeline to extract POI names,
locations, and descriptions to maintain the database.
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F Prompts

F.1 Prompt for Decomposing User Requests

Prompt for Decomposing User Requests

Please help me break down a user request into multiple independent requirements, each including both positive and negative
requirements. Return the results in the following format directly based on the **User Request** given, without writing any
code.

### Output Format:

Return a list, where each item is a dictionary representing an independent requirement, with the following key-value pairs:
- **pos**: The positive requirement, representing what the user wants, excluding any negative requirements.
- **neg**: The negative requirement, generally what the user does not want, dislikes, or refuses. All negative
requirements must be captured in this field, for example, "non-spicy" should extract "spicy", "don't want crowded places"
should extract "crowded", "hate noisy" should extract "noisy".
- **mustsee**: Indicates whether this requirement represents a specific place name. If so, this field is `true`,
otherwise, it is `false`.
- **type**: Indicates whether the requirement is for a "place" or an "itinerary", with place having sub-types "place",
"starting point", and "ending point". Overall, this field can have the values "place", "starting point", "ending point",
or "itinerary".

- Your return should be a list in the following format:
[

{{
"pos": "positive requirement", (excluding negative requirements)
"neg": "negative requirement" (what's not wanted, disliked, refused, not wanting to go or see, any negated
requirement),
"mustsee": true (whether it's a must-see point, all specific places should be set to true),
"type": "place"

}},
...

]
- The **positive requirement** must not be empty, and it must not include any negative requirements. All negative
requirements should be summarized in the value of the "neg" field.
- Set to null in cases where there are no **negative requirements** for a specific place.
- Sometimes users only describe what they do not want (negative requirements), in such cases, you should summarize a
**positive requirement** based on the **negative requirement**. For example, if a user says 'don't want spicy food', the
output should include: "pos" corresponding to "food", "neg" corresponding to "spicy".
- Independent requirements must have specific descriptions or demands to be considered a requirement, for example,
"recommend a route" does not count as an independent requirement.
- "mustsee" must be a specific place name, not a general term.
- If a place is definitively a "starting point" or "ending point", then the value of the "type" field should be "starting
point" or "ending point", respectively. "Starting points" and "ending points" are must-see points, with the "mustsee"
field set to true.
- A place can only be considered as a "starting point" or "ending point" if it is a specific attraction or location, and
there can only be at most one "starting point" and one "ending point".
- The return should not include any other content.

### Example Outputs:

Example 1:
User Request: "I want to start by visiting Sinan Mansions, then find something fun to do nearby, and I don't want it to be
crowded"
Output:
[

{{
"pos": "Sinan Mansions",
"neg": null,
"mustsee": true,
"type": "starting point"

}},
{{

"pos": "fun places near Sinan Mansions",
"neg": "crowded",
"mustsee": false,
"type": "place"

}}
]

### mustsee Field Assignment Examples
"mustsee" true for specific place names: "Hualian Supermarket", "Old Mac Coffee Shop", "Wukang Mansion", "Nanluoguxiang",
...
"mustsee" false for general place names: "supermarket", "milk tea shop", "bar", "coffee", ...

### Output Guidelines
- Return a list, each item in the list is a dictionary containing "pos", "neg", "mustsee", and "type" key-value pairs.
- Return as a JSON List.
- The list can be empty; if empty, just return a JSON list.
- The output should not include any other information, ensuring it can be parsed by json.loads.

### User Request
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{user_req}

### Task Overview
Your task is to analyze and break down the **User Request** into independent requirements and return them.
1. First, separate the different independent requirements, breaking down each into positive and negative requirements.
2. Positive requirements should only include what the user wants, and negative requirements should only include what the
user does not want.
3. For each independent requirement, refer to **mustsee field assignment examples** to assign a value to the "mustsee"
field, analyzing whether the **positive requirement** is a specific place name. If so, set "mustsee" to true, otherwise
set it to false.
4. Refer to the **examples** and **output format** to complete the other fields.

#### Notes:
- Do not include duplicate independent requirements; ensure each independent requirement corresponds to different key
points in the user's needs.
- "Itinerary" requirements should be for the whole itinerary, such as including several places, approximate time, etc.,
all others are place requirements.
- The "type" field can only be one of ["place", "itinerary", "starting point", "ending point"].
- All attractions must be completely separated, such as "Nanluoguxiang and Drum Tower" must be split into "Nanluoguxiang"
and "Drum Tower" as two requirements.

Now, based on the **user Request**, refer to the **example outputs**, and return according to the **output guidelines**
and **output format**.

F.2 Prompt for Indicating Travel Time of an Itinerary

Prompt for Travel Time Indication

Please play the role of a top AI Travel Time Planning Assistant. Your job is to determine the time needed for a day's
itinerary based on the user request. If the user request is empty, please default to ["4"].

## Task Overview
Your task is to return the required time for a day's itinerary based on given the user request. If the user request
mention specific time constraints for the route, return the itinerary time directly as per the user's request, up to a
maximum of 8 hours (return ["8"] if it exceeds 8 hours). Please return the itinerary time directly based on the user
request, no need to write any code.

## User Request
{user_reqs}

## Input-Output Examples
- **Example 1**:
- **User Request**: "I'd like to visit a museum, enjoy authentic cuisine, and experience nightlife."
- **Output**: ["8"]

- **Example 2**:
- **User Request**: "I want to tour historical buildings and take in the city views“
- **Output**: ["6"]

- **Example 3** (In this example, the user specifies approximately **five hours** for the route):
- **User Request**: "I plan to explore the Huangpu River and Yu Garden for about five hours."
- **Output**: ["5"]

## Output Specifications
- Return a list of length 1, containing a single integer representing the required itinerary duration (in hours). The
value range is 1 to 8.
- Return as a JSON List with only one element inside.
- The list can be empty; please only return a JSON list.
- Ensure your output contains no additional information and can be parsed by json.loads.

Now, based on the **User Request**, return the time required for a day's itinerary according to the **Output
Specifications**.

In this work, we utilize the inference capability of LLMs to estimate the duration of an itinerary based
on a user request, which is used to instruct the IG module to generate an itinerary with a reasonable
duration. For more complicated considerations, such as stay duration and travel time between POIs, we
leave them for future research.
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F.3 Prompt for Identifying the Start POI

Prompt for Start POI Identification

Please act as a top-tier AI travel planning assistant. Your job is to return the index of the best starting point for a
day trip itinerary based on user needs and provided candidate POIs. If the candidate POIs are empty, please default to
returning ["0"].

### Task Overview
Your task is to return the index of the best starting point for an itinerary based on the given candidate POIs and the
user request. Directly return the starting point's index based on user needs and candidate POIs, without writing any code.

### Candidate POIs
{candidate_strings}

### User Request
{user_reqs}

### Guidelines
1. Ensure the selected POI meets the user request.
2. The starting point should be close to its neighboring points.
3. Prioritize POIs like museums or art galleries, which usually require more exploration time.
4. Avoid starting from bars or clubs.

### Example Inputs and Outputs
- **Example 1**:
- **Candidate POIs**: ["Museum", "Park", "Bar"]
- **Output**: ["0"]

- **Example 2**:
- **Candidate POIs**: ["Shopping Center", "Art Gallery", "Historical Building"]
- **Output**: ["1"]

### Output Specification
1. Return a list of length 1, containing an integer that represents the index of the best starting point.
2. Return as a JSON List, with only one element inside.
3. The output should not contain any other information, ensuring it can be parsed by json.loads.
4. Your response should be a length-1 JSON list, where the index comes from {return_candidates}.

- Example: ["0"]

Now, based on the **Candidate POIs** and **User Needs**, return the index of the best starting point for the day trip
itinerary according to the **Output Specification**. Note, ensure your reply is **a list composed of a single number**
from {return_candidates}, following the requirements in the **Output Specification** to return **a length-1 JSON list**,
and do not return any other content.
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F.4 Prompt for Generating the Itinerary

Prompt for Final Itinerary Generation

You are a highly creative and knowledgeable tour guide, specifically to design a perfect day trip itinerary.
Please consider carefully and use the provided "Candidate POIs" list to craft a one-day itinerary in the form of an
engaging and realistic travel story.

## Itinerary Information

Next, please follow the guidelines I provide to design a memorable day trip itinerary for tourists.

Design a day trip itinerary for tourists:
- **Order of candidate POIs**: {context_string}
- **Must-see POIs**: {keyword_reqs}
- **Keyword Requirements**: {keyword_reqs}
- **User's Original Request**: {userReqList}
- **Start POI**: {start_poi}
- **End POI**: {start_poi}

## Constraints

- **Itinerary time**: Less than {hours} hours
- **POI selection**: Must follow the given sequence order

## Output Format:
{{

"itinerary": "List of POIs, separated by '->'"
"Overall reason": "Overall recommendation reason for the designed day trip itinerary",
"pois": {{

"n": "Description and recommendation reason for each POI", ...
}}

}}

Note:

- "n" is the sequence number, which should be an integer. Sequence numbers in the output must be in ascending order and
match the sequence number of the selected POIs from the candidate list.
- "itinerary" lists all the POIs' names visited, separated by '->', such as "poi1->poi2->...", note that it includes names
only, without sequence numbers, and the order is consistent with the order of POIs in "pois".

## Pre-action Considerations
1. Work on problems step-by-step.
2. Do not omit or simplify anything.
3. Ensure the tourists feel that the itinerary is tailor-made for them.
4. **ONLY CHOOSE** POIs from the **candidate POIs** list, in ascending order of the **candidate POIs sequence**.
5. The number of cafes and bars cannot exceed two, and they must comply with the sequence order of POIs. **Bars should be
placed at the end of the itinerary, and cafes should not be the last stop**.
6. Ensure that every **keyword requirement** is strictly met, for example, if a user mentioned wanting to visit 3 spots,
your planned itinerary should strictly include only 3 POIs as per the user's request.

## Itinerary Creation Steps
1. Based on the **candidate POIs** list, select suitable POIs in ascending order to include in the itinerary. Ensure your
selection is filtered to choose POIs that compose an itinerary of {hours} hours, not all POIs from the **Order of
candidate POIs** list should be included.
2. All included POIs must follow the ascending sequence order of the **Order of candidate POIs**.
3. If the inclusion of a café or bar disrupts the sequence order of POIs, **exclude it from the itinerary**.
4. Ensure every **keyword requirement: {keyword_reqs}** is met by at least one POI in the **candidate POIs sequence**.
5. **User's original requirements: {userReqList}** also need to be seriously considered and ideally met by at least one
POI in the **candidate POIs sequence**.
6. Finally, generate a JSON file containing all selected POIs.

Now, following the **Itinerary Creation Steps** and **Itinerary Restrictions**, plan a {hours} hours itinerary.
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F.5 Prompt for Baseline
We provide the prompt for the baseline GPT-4 CoT below. We remove the “Think step by step” part and
“thoughts” for baselines without CoT in the output format.

Prompt for baseline GPT-4 CoT

You are a travel planning assistant. Please help me plan a city tour itinerary in {city} based on requirements. The output
should include specific Points of Interests (POI), and the itinerary should contain no less than 6 POIs:

## User Request
{user_request}

Think step by step: You need to understand and analyze the user's request, including must-see POIs, positive requests,
negative requests, etc., and then provide your recommended POIs and reasons for recommendation.

## Output Format:
{{

"thoughts": "Your understanding and analysis of user requirements",
"itinerary": "List of POIs, separated by '->'",
"overall_reason": "The overall reason for recommending this one-day tour itinerary",
"pois": {{

"n": "Description and reason for recommending the POI", ...
}}

}}
n starts from 1 and increments. Please strictly follow the output format to return JSON.

F.6 Prompt for LLM-evaluated Metrics
Prompt for LLM-evaluated metrics is provided below.

Prompt for LLM-evaluated Metrics

You are a professional travel assistant. I will provide my request for a one-day travel itinerary, and several candidate
itineraries containing a list of POIs and descriptions. You should help me compare the itineraries and rank them based on
several criteria.

## Criteria
1. POI Quality: how interesting and diverse the POIs are
2. Itinerary Quality: the overall quality and coherence of the itinerary
3. Matchness: the matchness between the itinerary and the user query

## Input Format

Each input candidate itinerary is a dictionary in the following format:

{{
"itinerary": "a list of POIs, separated by '->'"
"overall_reason": "The overall recommendation reason for the designed one-day travel itinerary",
"pois": {{

"n": "description of the POI", ...
}}

}}

## Request

{user_request}

## Candidate Itineraries

{itineraries}

## Output Format

Output a json object (dictionary) with four keys: "poi_quality", "itinerary_quality", "matchness", "language_quality".
Each value is a list of indexes, representing the rank of the candidates with the corresponding key serves as the
criterion (in descending order, i.e. from high to low). For example, '"poi_quality": [4,1,3,2]' suggests that Candidate 4
has the highest POI quality, then Candidate 1 and 3, and Candidate 2 has the lowest POI quality.

Ensure that your output can be parsed with Python json.loads. Do not output anything else.
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