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Abstract

Extracting product information is crucial for
informed business decisions and strategic plan-
ning across multiple industries. However, re-
cent methods relying only on large language
models (LLMs) are resource-intensive and com-
putationally prohibitive due to differences in
website structures and numerous non-product
pages. To address these challenges, we pro-
pose a novel modular method that leverages
low-cost classification models to filter out com-
pany web pages, significantly reducing compu-
tational costs. Our approach consists of three
modules: web page crawling, product page
classification using efficient machine learning
models, and product information extraction us-
ing LLMs on classified product pages. We eval-
uate our method on a new dataset comprising
approximately 7,000 product and non-product
web pages, achieving a 6-point improvement
in F1-score, a 95% reduction in computational
time, and an 87.5% reduction in cost compared
to end-to-end LLMs. Our research demon-
strates the effectiveness of our proposed low-
cost classification module to identify web pages
containing product information, making prod-
uct information extraction more effective and
cost-efficient.

1 Introduction

Information (e.g., names and descriptions) about
products that a company offers is essential for nu-
merous applications such as product search (Wei
et al., 2013; Brinkmann et al., 2023b), product
recommendation (Malik et al., 2022), and prod-
uct knowledge graph construction (Zalmout et al.,
2021; Deng et al., 2023). Developing a method for
obtaining product information is challenging due to
(1) the exponential growth of companies and their
web pages, which may or may not contain prod-
uct information; and (2) an unknown structure of

∗ indicates equal contribution of the first five authors. All
authors are listed in alphabetical order by first name.

Figure 1: A general depiction of our method, including
its three modules: web page crawling, product page
classification, and product information extraction.

company product pages across different company
websites. Therefore, it is imperative to develop an
automated and cost-efficient method to deal with
the ever-increasing number of web pages and also
handle non-unified structure of product pages.

Previous work has primarily focused on process-
ing product information from e-commerce web
shop data (Zou et al., 2024; Gong and Eldardiry,
2024; Ding et al., 2022; Roy et al., 2021; Yan et al.,
2021). However, in combination with different
page structures across companies, such methods
would fall short if dealing with all web pages on a
company website, where these pages may or may
not be product pages. Moreover, including non-
product pages into the input of a product informa-
tion extraction system increases computational
costs due to the huge number of web pages to pro-
cess. Another challenge is that these pages might
be misleading because they could have a structure
similar to product pages and diminish the quality
of product information. To the best of our knowl-
edge, there is no full method that collects company
web pages from diverse company websites and ex-
tracts product information from such pages while
balancing computational costs and the quality of
the obtained product information.
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In this paper, we propose a novel full pipeline
for extracting product information from all web
pages on a company website. In contrast to previ-
ous work, our method handles pages that may or
may not contain information about products. In
particular, we extract the product name and prod-
uct description presented on a company website.
Our method consists of three major modules (see
Figure 1): (1) crawling, (2) classification, and (3)
extraction. In the crawling module, we scrape the
company website to collect web pages. For the
classification module, we introduce three models
to distinguish between product and non-product
web pages. Finally, for the extraction module, we
instruct a pre-trained LLM to find product names
and descriptions on product web pages. LLMs have
demonstrated effectiveness in extracting informa-
tion from unknown structured inputs (Hui et al.,
2024; Wang et al., 2023).

To evaluate the quality and computational cost of
our method, we curated a new dataset comprising
product and non-product web pages from diverse
companies. The product pages are annotated by a
product scouting expert. To ensure the robustness
of our method, we split the dataset at the company
level to include only unseen companies in the test
set. Our experimental results show that our method
outperforms off-the-shelf LLMs in terms of com-
putational cost efficiency while achieving better
quality then its peers. To measure the quality, we
use precision, recall, and F1 score to assess whether
a method identifies correct product pages. We also
use ROUGE (a recall oriented lexical metric) and
BERTScore (an advanced semantic similarity met-
ric) to evaluate the correctness of the extracted
product names and descriptions.

Our main contributions are: (i) Task: While ex-
tracting product information from product pages is
known, finding products from heterogeneous web
pages across company websites has not been stud-
ied. (ii) Sieve method: We introduce a modular
method to identify product pages from a company
website and then use them to extract product infor-
mation. Worth noting that, our novelty in method
is the entire pipeline that reduces input space for
extraction. (iii) Empirical evaluation: We collect
and annotate a new dataset that contains a represen-
tative cross-section of company websites’ product
and non-product pages. Our experiments demon-
strate that our method is effective and cost-efficient
compared to an off-the-shelf LLM.

2 Related work

Product information extraction involves extracting
attribute/value pairs (specifications) from product
information such as name and description. Extrac-
tion can be performed using a closed-world assump-
tion with a predefined set of attributes, or an open-
world assumption where attributes are unknown
(Zheng et al., 2018). The open-world assumption
is more suitable for extracting product information
from unstructured data obtained through crawling.

Product information extraction approaches can
be categorized into four major groups: (1) rule-
based methods, (2) sequence tagging and named-
entity recognition (NER), (3) extractive question
answering, and (4) generative approaches. Rule-
based methods often use token-matching tech-
niques, such as regular expressions, to extract at-
tribute/value pairs (Gopalakrishnan et al., 2012).
These methods lack scalability, as a new rule is
required for each new attribute (Wang et al., 2020).
The sequence labeling approach often involves con-
structing a model for each attribute (Yan et al.,
2021, Zheng et al., 2018), which also does not
scale and generalize well. To address this, question
answering approaches consider each attribute as a
question - the task is to identify the attribute value
as the answer (Ding et al., 2022). For instance,
Wang et al., 2020 use a single BERT model to en-
code both the context (product information) and
question, which makes the approach scalable and
generizable. A drawback is that this approach is
not suitable for extracting implicit product informa-
tion, i.e. one that is not explicitly mentioned in the
product text (Blume et al., 2023). This problem is
resolved by recent API-based large language mod-
els (LLMs), such as GPT-3.5, used to generate at-
tribute/value pairs based on the product information
provided on the product web page (Gong and El-
dardiry, 2024; Blume et al., 2023; Zou et al., 2024;
Brinkmann et al., 2023a). We employ a generative
approach as the latest state-of-the-art in product
information extraction (Gong and Eldardiry, 2024)
and focus on generating product name and descrip-
tion from the data available on a product page.

3 Method

We develop a novel method to extract products
and their descriptions from company web pages.
Figure 2 depicts details of our method.
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3.1 Crawling
The crawling module consists of two main com-
ponents: URL collection and HTML scraping. To
ensure compliance, we respect the robots.txt for
each company domain. For the URL collection
step, we design two approaches.

Sitemap-based crawler. Our first approach is
based on sitemaps available on company websites.
A sitemap is a hierarchical structure of web pages
on a company website used to navigate the web-
site accurately. By traversing a sitemap, we col-
lect URLs in a computationally efficient manner.
However, this approach may not be effective if
companies do not provide a sitemap, or if sitemaps
are outdated (not including all web pages from the
latest website versions).

Recursive crawler. We start with all hyperlinks
mentioned on the main page of a company website.
We retain those links that belong to the company’s
domain and discard others. We apply this recur-
sion to each of these links for 5 times. To crawl
HTML pages from a set of URLs collected from
a company website, we first exclude URLs that
contain any word from a clearance list. This list is
defined by a product scouting expert, and relies on
path segments (e.g., blog, downloads, and archive).
Using this technique, we ensure that we do not
crawl HTML pages that are clearly non-product
pages. This module outputs a set of URLs and their
corresponding HTML codes.

3.2 Classification
One of the main goals of the proposed method is to
be computationally cost and time efficient. Since
extracting product information from all crawled
web pages is resource and cost inefficient, we intro-
duce a classification module to first identify product
web pages. As shown in Figure 2, we introduce
a sequential classification module based on three
types of information: (1) URL path segments, (2)
URLs, and (3) HTMLs. The main motivation is
that classifying a web page using each informa-
tion type is less computationally expensive than the
subsequent one.

URL path segment classifier. Given a URL, we
extract its path segments by splitting it using “/”
character. Then, if any of the URL’s segments
appear in our predefined whitelist, this page is la-
beled as a product page and given to the extrac-
tion module. This whitelist is curated by product

scouting experts and contains tokens that may in-
dicate a product page. If no URL segments match
the whitelist, the web page is classified as a non-
product page and passed to the URL classifier.

URL classifier. To prevent the classifier from be-
coming biased to company domains, we eliminate
the domain segments from the URL. We filter out
signs, numbers, and stemmed lower-cased words
if their length is shorter than three characters. We
then apply TF-IDF to these pre-processed URLs
before passing them to the classification model. As
with the URL path segment classification, we give
the corresponding HTML to the extraction module
if the model determines that a URL refers to a prod-
uct page. Otherwise, the web page is given to the
HTML classifier.

HTML classifier. In contrast to previous
classification steps, this classifier deals with the
HTML code of a web page. For pre-processing,
we remove the content within tags such as script,
style, and link because such content addresses the
presentation style of an HTML page and is not
relevant for classification. As the final step of the
classification module, if a web page is identified
as a product page, it is passed to the extraction
module. Otherwise, it is a non-product page and
discarded.

Note that the order of the classifiers is chosen for
runtime efficiency: when the first product classifier
predicts a product page, the subsequent classifiers
are skipped, and thus, the more runtime-efficient
models are applied first.

3.3 Extraction
Product name and description are the most essen-
tial information required to represent a product.
Therefore, this module extracts these two pieces of
information from a product page.

Although computationally expensive, LLMs
have proven effective for information extraction
(Brinkmann et al., 2023b; Xu et al., 2024)1. Since
we already narrowed down web pages to only prod-
uct pages, we can reduce the cost by applying these
more expensive models to fewer web pages. To

1Although rule-based information extraction was predomi-
nantly used in industrial settings (Chiticariu et al., 2013), the
emergence of LLMs has led to significant improvements in
many aspects of ML-based components. One notable improve-
ment is the increased flexibility in adapting a model. Given the
challenge posed by the highly diverse input texts in our task,
LLMs are the most suitable choice for the extraction module.
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Figure 2: Component-level view: A breakdown of our method’s modular design.

do so, we use the HTML code of a product page
as context and then prompt pre-trained LLMs to
extract the product name and description from the
context.

We define a context limit for LLM prompts. This
limit is calculated as the prompt length in terms of
number of tokens minus a fixed number of tokens
for the output. To fit HTML to this context limit,
we shrink HTML codes by applying the following
HTML cleaning techniques. The cleaning dynami-
cally adjusts the HTML size to accommodate the
context limit. In particular, we remove JavaScript
codes, CSS styles, comments, hyperlinks, unknown
tags, et sim., to only retain crucial content of a prod-
uct page. If the HTML code still remains longer
than the context length, we transform it to Mark-
down, which is known to be a lighter markup lan-
guage. The process stops as soon as the context
limit is met. If the HTML code and Markdown are
still too long, we apply a hard cutoff.

4 Datasets

We collect and annotate two sets of web pages as-
sociated with different company websites. Table 1
provides major statistics about the datasets. We
use one set for training and the other one for test
purposes. In this way, we ensure that company
websites used during evaluation have not been used
for training our models.

4.1 Training Set

We crawl websites of 83 companies using our
sitemap-based crawler (see Section 3), resulting
in 301,785 web pages. We randomly select 30,077
web pages and instruct one product scouting expert
to label each page with either 0 or 1, where 1 indi-
cates a product page. The expert annotates a page
as a product page if it presents any type of infor-
mation about a product. We obtain 4,513 product
pages and 25,564 non-product pages. Since anno-

Property Train Test Controlled Test

# Companies 83 75 75
# Crawled pages 301,785 45,622 45,622

Product pages

# Pages 4,513 456 309
(Min, Max) / company (1, 1031) (1, 62) (1, 52)
Avg. / company 79.2 17.5 12.9

Avg. HTML size 57,790 45,895 51,858

Non-Product pages

# Pages 25,564 6,619 6,766
(Min, Max) / company (1, 5621) (1, 2387) (1, 2387)
Avg / company 323.6 108.5 110.9

Avg. HTML size 78,266 38,666 38,551

Table 1: Dataset statistics.

tating all product pages with the product name and
description requires a lot of time from the expert,
we let the expert annotate only 558 product pages.
To be even more time-efficient, we use GPT-3.5
to suggest product names and descriptions to the
expert. Then, the expert corrects the mistakes that
GPT-3.5 made with their annotations.

4.2 Test Set

We collect and annotate a set of web pages crawled
from a new set of companies. In particular, we
use both sitemap-based and recursive crawlers to
scrape additional 75 company websites, resulting
in 45,622 web pages. This set contains compa-
nies distinct from those present in the training set.
We randomly select 7,075 web pages to annotate.
From these web pages, we define two variant test
examples.

Test. This set includes all selected web pages
annotated by the same expert who annotated the
training samples. We conduct the same annotation
procedure used for the training set. As a result, each
web page in this test set is accompanied by product
page label, product name, and product description

1447



annotations.

Controlled Test. While the test set has high cov-
erage of web pages, it may be biased in favor of
LLMs since the expert annotates the output of GPT-
3.5. To study the effect of GPT-3.5, we select
all product pages identified by the expert and re-
annotate them with product page labels, product
names, and descriptions from scratch. As shown
in Table 1, the number of product pages in the con-
trolled test is less than that of the test (309 vs 456).
The reason behind this difference is that the ex-
pert annotates a web page as a product page if it
contains any type of information about company
products (e.g., web pages related to product cata-
logue and about us). On the other hand, we label
a web page as a product page only if it includes
detailed information about one product, which is
more aligned with our research in this work.

5 Experiments

We evaluate the performance and cost efficiency
of our method (see Section 3) by empirically ad-
dressing the following questions: (Q1) For the en-
tire task, our method deals with both product and
non-product pages together. How do the effects of
classifying web pages and processing only product
pages impact the quality and computational cost
of product information extraction? (Q2) How ef-
fective is the sequential classification module in
classifying web pages? (Q3) To what extent can a
zero-shot LLM extract product information from a
given product page?

5.1 Experimental Settings

In the pre-processing step, we utilize the Python
modules boilerpy 2 and lxml 3 to remove uninfor-
mative HTML content, such as the page formatting
information.4 The URL classifier is a logistic re-
gression model, trained using scikit-learn. For the
HTML classifier, we fine-tune MarkupLM (Li et al.,
2022) to identify product page HTML strings. Ad-
ditional information about the experimental setup
of the classifiers can be found in Appendix C.

For the extraction experiments, we use Llama-
3-8B-Instruct with zero temperature deployed on
NVIDIA A100-SXM4-80GB MIGs. We utilize
vLLM (Kwon et al., 2023), which leverages the

2https://github.com/jmriebold/BoilerPy3/
3https://lxml.de/
4Note that page formatting can indirectly convey some

information about the content, e.g. prominence.

PagedAttention mechanism, resulting in up to
24x higher throughput compared to HuggingFace
Transformers without requiring any model archi-
tecture modifications. For comparison, we also
use GPT-3.5-Turbo-1160 on Azure with 240k to-
kens per minute (TPM) limits and zero tempera-
ture. It is worth noting that we use our crawling
method as a baseline to collect data for evaluating
the other pipeline components. Developing more
advanced crawling methods and their evaluation
are not within the scope of this paper and left for
future work. We leave more implementation de-
tails, such as the prompts we use to interact with
these models, in Appendix A.

5.2 Results

We report the experimental results supporting our
answers to the above questions.

Identifying product pages and extracting prod-
uct information from them can significantly im-
prove quality and reduce computational costs
of the overall task. To evaluate our method on
the entire task, it is essential to handle both product
and non-product pages together. Table 2 reports
the performance of our method (i.e., Cls. + Ext.)
compared to using only Ext. for all web pages.
Given a web page, we request the Ext. method
(i.e., LLaMA) in one prompt to return three out-
puts: (1) a binary product page label, (2) product
name, (3) and product description. If this method
finds no product name or description, it returns
“Not Found” accordingly. We observe that using
our classification module to identify product pages
and then feeding only these web pages to the Ext.
model improves the performance remarkably. This
is because the Ext. model may incorrectly identify
non-product pages as product pages and then ex-
tract incorrect information from these pages as a
product name and description. Although extensive
prompt engineering may improve the performance
of the Ext. model, it is a computationally expensive
process. One significant advantage of our method
is that the Cls. module substantially reduces the
computational cost of the extraction component
while its cost compared to the whole method is
next-to-zero. Table 3 compares our method with
two LLM baselines in terms of total execution time
and expenses. For this experiment, we use 11,660
web pages as input, among which 583 samples
are product pages. We measured the total process-
ing time and total expense with 10, 50, 100, and
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Test Controlled Test
Model BertScore ROUGE BertScore ROUGE

Product Name
Ext. 88.97 28.33 89.10 27.98
Cls. + Ext. 95.33 93.90 95.39 94.54

Product Description
Ext. 85.97 26.26 86.13 25.94
Cls. + Ext. 92.72 92.45 93.27 93.26

Table 2: Task evaluation. Cls. is our classification
module and Ext. is our extraction module using LLaMA.
BertScore is weighted average F1-score. ROUGE is
ROUGE-1.

≈Time (Min) ≈ Expense (EUR)

GPT-3.5 133 35
Cls. + GPT-3.5 7 3

LLaMA 101 16
Cls. + LLaMA 5 2

Table 3: Total execution time and expenses of the exam-
ined methods.

500 parallel threads. We discuss the results of 100
threads here and report the rest in Appendix B. Af-
ter classifying web pages using our classification
module and feeding only product pages to the Ext.
module (powered by GPT-3.5 or LLaMA), the total
time and expense significantly diminish. We fur-
ther observe that 15% of requests to GPT-3.5 were
rejected with an error message 429, indicating that
we reach the TPM limit, suggesting to retry after
2 seconds. This highlights a significant limitation:
using GPT-3.5 on Azure would not be scalable for
processing large volumes of HTML pages with the
given default subscription.

The classification module achieves a higher re-
call and F1 score compared to each individual
classifier. We compare the performance of our
classification module to each of its components
to gain insight into its overall effectiveness. Ta-
ble 4 shows the results. We use the classifier with
URL path segment features as the baseline as it is
a straightforward method to filter out non-product
pages. The expert definition of these terms resulted
in a high precision value and consequently low re-
call. The “URL” in Table 4 is a Logistic Regression
model trained on TF-IDF feature representations
of URLs. It shows the best recall and F1 scores
among the three classifiers. However, the pages
that this classifier identifies as non-product should
be rechecked with HTML classifier to ensure we
do not miss any product pages. “All” represents

b Test Controlled Test
Cls b P R F1 P R F1

Path Seg.b91.16 36.18 51.81 71.27 41.75 52.65
URL b62.42 62.28 62.35 48.35 71.20 57.59
HTML b61.61 57.02 59.23 49.53 67.64 57.18

All b55.85 82.68 66.67 42.96 93.85 58.94

Table 4: Classification module evaluation in terms of
precision (P), recall (R) and F1-meaure (F1). All is the
classification module used in our method.

the performance of our classification module where
three components are sequentially connected (Fig-
ure 2). Our module outperforms the classification
components, demonstrating its effectiveness for use
in our entire method.

Prompting off-the-shelf LLMs is sufficient to ex-
tract product information. To study the impact
of LLaMA as an off-the-shelf model for extracting
product information in our method, we compare its
performance with a fine-tuned BERT model as a
baseline. As Table 5 shows, LLaMA, without any
fine-tuning and in a zero-shot setting, outperforms
the fine-tuned BERT extraction model, evaluated
only on product pages. The extraction results show
a slight improvement for the controlled set com-
pared to the test set. This effect is also evident
in the task evaluation (Table 2). The finding sug-
gests that expert annotations are not biased towards
the GPT-3.5 suggestions, since the models perform
equally well on a manually annotated dataset.

For the BERT Ext. we fine-tune DistilBERT
(Sanh et al., 2019). To harness the full content of
web page, we extract text snippets from HTML
of the page along with their corresponding nearest
tags. With this, we can simplify the extraction task
by formulating it as classification, where a model
should predict labels “product name”, “product de-
scription”, and “other” for each text snippet. We
label text snippets from all product pages in the
training set, excluding 558 pages that are already
annotated with product name and descriptions. In
particular, we identify explicit information about
the text content within HTML tags (e.g. class=

“product_name”). Since this approach is more ef-
fective for product names than for descriptions due
to the text length, we also identify descriptions as
text that contains the identified product name and
is longer than 100 characters. Due to the higher
frequency of “others” labels compared to the other
two labels, we randomly sample a maximum of five
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b Test Controlled Test
Model bBertScore ROUGEb BertScore ROUGE

Product Name
BERT Ext. b 89.61 52.55 b 87.25 47.99
LLaMA Ext.b 91.98 62.07 b 92.77 71.58

Product Description
BERT Ext. b 83.15 25.71 b 82.93 24.53
LLaMA Ext.b 87.62 37.63 b 88.05 39.79

Table 5: Extraction module performance using only the
product pages. BertScore is average F1-score. ROUGE
is ROUGE-1.

cases per product page. We fine-tune DistilBERT
on 1,368 product names, 388 product descriptions,
and 1,326 others examples. We select the best per-
forming model on 558 annotated web pages from
training set. We report the performance of this best
model on our test sets. During the prediction step,
we retrieve the text snippets with the highest scores
for product name and description, and then remove
the HTML tags.

Overall, the results in Table 4 and Table 5 show
the validity of the methods used in our classification
and extraction modules.

In another small-scale validation experiment,
we want to explore the performance of more stan-
dard linguistic tools, i.e., named entity recognizers
(NER, Keraghel et al., 2024). The task of NER is
closely related to our task of extracting the product
name. However, a crucial difference is that we do
not operate on the plain text but on the HTML, and
that we aim for the main product name. Thus, work
like GPT-NER (Wang et al., 2023), that bridges the
gap between LLMs and classic sequence labeling,
is close to our work, although we have HTML tags
as indirect string markers. For those reasons, the
experiment can only be applied to product names,
not to descriptions, and with some further modi-
fications. Two named entity recognizers provide
the entity type PRODUCT by default: Stanza NER
(Stanford NLP) (Qi et al., 2020) which is trained
on the OntoNotes corpus 5, and SpaCy NER 6. In
both cases, the entity type PRODUCT is only avail-
able for English. Thus, the test dataset is restricted
to English pages in a preprocessing step. Further,
HTML tags are removed and the plain text is taken
as input to the models. A difference to the previ-
ous extraction modules is that the tools extract all

5https://stanfordnlp.github.io/stanza/ner_
models.html

6https://spacy.io/usage/linguistic-features/
#named-entities

Test
Model BertScore ROUGE

Product Name
Spacy NER 72.00 04.44
Stanza NER 75.89 13.51

Table 6: Extraction performance for product names on
English product pages using NER. BertScore is average
F1-score. ROUGE is ROUGE-1.

product names, rather than the main one. In the
evaluation, all predicted product names are taken
into consideration. The results are given in Table 6.
The results show decent performance for BertScore,
but very low ROUGE scores.

6 Conclusions

We introduced a full pipeline to efficiently extract
product information from web pages on a company
website. This approach is in contrast to previous
work where any type of web pages (product vs non-
product pages) is fed into extraction models, which
is inefficient and costly.

Our method consists of three modules: web page
crawling, product page classification, and product
information extraction. By introducing a classifica-
tion module that effectively filters out non-product
pages, we achieve cost-efficiency and reduce com-
putational overhead. The classification module im-
proves the qualitative performance of extraction as
well. The reason behind this is that the classifier
is more effective in filtering out non-product pages
compared to the examined pre-trained LLM.

While being effective, our approach still has two
limitations. The method is not optimized for ex-
tracting several products per page. Also, there are
no processes to recognize and merge products that
are mentioned several times on different pages. The
former needs additional prompting whereas the lat-
ter can be addressed by duplicate detection meth-
ods.

In future, building on the promising initial
results, we plan to extend our method to extract
technical details from product pages, as LLMs
have often been capable of generating such
information as structured output. In addition,
regular retraining of classifiers and performance
monitoring is needed to keep the high quality of
the overall method.
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Appendices

A Additional details of the LLM
extraction setup

For the LLM-based product information extraction,
we use the following prompt template for both GPT-
3.5-Turbo-1160 and Llama-3-8B-Instruct:
You are an AI Assistant for market research called Product Extractor. Your primary
responsibility is to parse unstructured text such as HTML or Markdown and extract
structured information from it. Ensure that the output of your responses is consistently
formatted in JSON and free of invalid escape characters.

Provide a confidence score on a scale of 0.0 to 1.0, where 0.0 indicates uncertainty, 0.5
suggests moderate certainty, and 1.0 denotes full certainty.

If any information is missing, use the phrase "not found" and provide a certainty score on a
scale of 0.0 to 1.0.

{format_instructions}

## Input
{input}

Answer only in the requested format.

And these are the format_instructions:

The output should be formatted as a JSON instance that conforms to the JSON schema
below.
As an example, for the schema
{

"properties": {
"foo": {

"title": "Foo",
"description": "a list of strings", "type": "array",
"items": {

"type": "string"
}

}
},
"required": ["foo"]

}
the object {"foo": ["bar", "baz"]} is a well−formatted instance of the schema.
The object {"properties": {"foo": ["bar", "baz"]}} is not well−formatted.

Here is the output schema:
```
{

"properties": {
"product_name": {

"title": "Product Name",
"description": "name of the product",
"type": "string"

},
"product_description": {

"title": "Product Description",
"description": "full product description",
"type": "string"

},
"product_name_confidence": {

"title": "Product Name Confidence",
"description": "product name confidence", "example": "0.8",
"type": "number"

},
"product_description_confidence":{

"title": "Product Description Confidence",
"description": "product description confidence", "example": "0.9",
"type": "number"

}
},
"required": ["product_name", "product_description", "product_name_confidence", "

product_description_confidence"]
}
```

B LLM scaling experiments

As part of our scaling experiments, we aimed to
assess the extraction processing time of deployed
Llama-3-8B-Instruct models on our infrastructure.
We conducted experiments with 1, 2, and 3 in-
stances of Llama-3-8B-Instruct deployed on 1, 2, or

3 NVIDIA A100-SXM4-80GB MIGs. For model
serving, we utilized vLLM (Kwon et al., 2023),
which leverages the PagedAttention algorithm re-
sulting in up to 24x higher throughput compared to
HuggingFace Transformers, without requiring any
model architecture modifications. For this exper-
iment, we use 583 web pages as input containing
product information. We measured the total pro-
cessing time, processing time per file, and average
processing time per file with 10, 50, 100, and 500
parallel threads, as illustrated in Figure 3 a).

We bench-marked the execution times of GPT-
3.5-Turbo-1160 on Azure and compared them to
those of Llama-3-8B-Instruct. The results are pre-
sented in 3 b) and 3 c), with the latter showing
the number of failed requests for GPT-3.5-Turbo
versus Llama-3-8B-Instruct. Notably, when call-
ing GPT-3.5-Turbo, we encountered an error code
429, indicating that we had exceeded the token rate
limit of our current OpenAI S0 pricing tier which is
240K TPM. The error message suggested retrying
after 2 seconds which highlights a significant limi-
tation: using GPT-3.5-Turbo on Azure would not
be scalable for processing large volumes of HTML
pages, as we would repeatedly hit the TPM limit.

C Additional details of the classification
setup

Having a look at the results of the URL classifier
in Table 7, the final dataset for training contains
10,935 samples and it takes ≈0.2 seconds to train
the model with scikit-learn on a standard local ma-
chine. In the context of the URL classifier, the
train dataset is even extended with an additional
set of 308 product pages from a previous scouting
project of other experts, increasing the number of
product pages to a total of 4,821 samples. The F1
score reached a value of 97.9%, with a precision
of 100% and a recall of 95.8%. The high values in
comparison to the test set results can be attributed
to our experimental approach. After conducting
fine-tuning experiments, we adopted an iterative se-
lection process, by adding false positives and false
negatives from the hold-out split, which were iden-
tified after training on a majority of product pages
and a subset of non-product pages. No additional
fine-tuning experiments were performed, but the
default parameter set was chosen. The procedure of
selecting false positives and false negatives was re-
peated several times, always training from scratch
and including all data from the training dataset. In
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Figure 3: (a) Average extraction time per HTML file and number of running threads using LLama-3-8b-Instruct. (b)
Comparison of average extraction times between GPT-3.5-Turbo-1160 and LLama-3-8B-Instruct.

(c) Number of failed requests of GPT-3.5-Turbo-1160 and LLama-3-8B-Instruct.

terms of model interpretability, the first 30 term
coefficients of the final logistic regression model
can be seen in Figure 4.

Regarding the HTML classifier, it is not trivial
to evaluate the similarity of HTML files in order
to come up with an empirically well representative
and diverse training dataset. A naïve approach is to
train and evaluate the model in a cross-validation
setup and investigate the outcome in terms of out-
liers. Therefore, the MarkupLM was initially eval-
uated applying 5-fold cross-validation with a rela-
tively balanced subset of the training set. Further-
more, additional experiments for hyperparameter
tuning resulted in 1,000 training iterations with a
batch size of 18 and a dropout rate of 0.5. The
optimizers Adam, SGD, and AdamW showed a
similar performance, so AdamW was chosen with
a learning rate of 1 × 10−5 and a weight decay
of 1× 10−4. Other parameter selections have not
resulted in convergence. Later on, this setup was
extended with more non-product pages, constantly
added to each split. A total number of 134 experi-
ments has been logged with MLflow although not
all of these experiments resulted in successful runs.

The final setup includes ≈83% of the product
pages for training and the rest for the hold-out split.
Considering the non-product pages and the imbal-
anced classes in general, just ≈17% of them were
added to the training part and ≈10% to the hold-
out split. The remaining test set, solely consisting
of non-product pages, was used for monitoring the
negative F1 score while optimizing towards the dev

set, thus not influencing the learning process. It is
worth noting that the constantly added prediction
time of the comparably large test set significantly
increases the runtime of the training process, which
is ≈6.5h on a g4dn.4xlarge (GPU) instance from
AWS.

Due to its higher recall in comparison to the
other folds, the model of the 3rd split was chosen to
be deployed for using it as part of the pipeline clas-
sification module. Its F1 score reached a value of
91.1% with 86.2% precision and a recall of 96.6%
over the complete training cycle, as shown in in
Table 7. The development split is imbalanced, com-
prising 754 positive and 2,693 negative samples.
Consequently, we would expect a higher precision
than 86.2% on a balanced hold-out set. This expec-
tation is supported by the model’s performance on
the test dataset, with larger sample size of 18,451.
Here, the negative recall is 96.8%, closely mirror-
ing the 95.7% negative recall observed in the dev
split. The implementation of early stopping after
50 iterations, i.e. continued training of the current
model solely if the F1 score on the hold-out split
increased or switching back to a previous model,
has led to the final model selection at iteration 700
of 1,000.

Given the curated tokens of product scouting ex-
perts, the URL path segment classifier can be taken
as the baseline for the overall experimental setup
of the classification components in Table 7. The
URL classifier outperforms this whitelist-based ap-
proach. While the HTML classifier outperforms
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Figure 4: First 30 term coefficients of logistic regression model.

PS all URL test PS test HTML dev PS dev Base dev HTML test PS test Base test

# pages - 10,935 - 8,047 - 8,047 8,047 - 8,047
Acc. 0.8299 0.9999 0.8744 0.9585 0.8123 0.9799 0.9682 0.8618 0.9818

F1 pos. 0.5309 0.9787 0.0049 0.9105 0.6023 0.9579 - - -
P pos. 0.4528 1.0 0.0025 0,8615 0,5606 0.9339 0.0 0.0 0.0
R pos. 0.6414 0.9583 0.2500 0.9655 0.6507 0.9832 - - -
F1 neg. 0,8961 0,9999 0,9329 0,9729 0,8771 0.9868 0,9838 0,9258 0.9908
P neg. 0,9316 0,9999 0,9989 0,9900 0,8977 0.9948 1.0 1.0 1.0
R neg. 0,8631 1.0 0,8751 0,9565 0,8574 0.9789 0,9682 0,8618 0.9818

Table 7: Evaluation metrics for the different classifiers and the given amount of pages used for training (HTML test
set solely consists of non-product pages). Abbreviations: PS - URL path segment classifier, URL - URL classifier,
HTML - HTML classifier, Base - LightGBM HTML classifier, Acc. - accuracy, F1 - F1 score, P - precision, R -
recall, pos. - positives, neg. - negatives.

Model Accuracy F1 Score Precision Recall AUC

Light Gradient Boosting Machine 0.9778 0.9758 0.9738 0.9779 0.9970
Extreme Gradient Boosting 0.9771 0.9750 0.9723 0.9779 0.9965

Extra Trees Classifier 0.9739 0.9715 0.9691 0.9740 0.9955
Random Forest Classifier 0.9721 0.9696 0.9668 0.9724 0.9961

Gradient Boosting Classifier 0.9693 0.9663 0.9700 0.9627 0.9943
Decision Tree Classifier 0.9616 0.9583 0.9533 0.9635 0.9618

Ada Boost Classifier 0.9570 0.9529 0.9558 0.9503 0.9901
K Neighbors Classifier 0.9542 0.9498 0.9517 0.9480 0.9840

Ridge Classifier 0.9375 0.9321 0.9248 0.9398 0.0
SVM - Linear Classifier 0.9370 0.9317 0.9230 0.9410 0.0

Table 8: 10-fold cross-validation results of the 10 best performing baseline models for HTML classification.
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(a) Company 1 product page (b) Company 2 product page (c) Company 3 product page

Figure 5: Product pages from different companies

the URL path segment classifier as well, the more
appropriate baseline here is to compare the deep
learning approach with a collection of models deal-
ing with TF-IDF input (Lin et al., 2023). This
approach is similar to the one chosen for URL clas-
sification, but due to the size and diversity of the
given HTML pages, it needs to be limited to the
top 10K features of all training documents. Fur-
thermore, it makes use of the same cleaning func-
tionality as applied within the MarkupLM setup
and it excludes English stop words. With an ac-
curacy of ≈98% on the dev and the test hold-out
split, the LightGBM classifier shows better results
than the deep learning model in Table 7. In addi-
tion, Table 8 lists the training evaluation metrics
of the LightGBM classifier and comparably good
models. However, when applying the LightGBM
model to page content of unknown companies, the
performance drops drastically in comparison to the
MarkupLM results in Table 4. In case of the test
set, the F1 score reaches a value of ≈24%, with
a precision of 40.0% and a recall of 17.1%. In
comparison, the precision decreases to 32.8% on
the controlled test set, while the recall increases
to 20.7%, resulting in an F1 score of 25.4%. This
drop of performance is reasonable for the given
amount of data and the limited feature space, be-
cause the complexity of an arbitrary company web
page of type product or non-product cannot easily
be generalized by a TF-IDF-based approach.

D Product pages

Our method is designed to handle product pages
from various companies, each with their unique
HTML structure and format. In contrast, product
catalog pages (e.g., Amazon or Shopify) are not the
focus of this work, as they typically have a standard-
ized structure and can be easily parsed using tools
like Beautiful Soup and regular expressions. Fig-
ure 5 illustrates the diversity of HTML pages from
three different companies, with the original text
replaced by dummy Lorem ipsum code for demon-

stration purposes. To view the actual product pages,
click on the link below each image. This highlights
the complexity of the pages we encounter, many
of which resemble ordinary blog posts or about us
pages. Furthermore, it underscores the importance
of having a product page classifier component prior
to the extraction component to ensure accurate pro-
cessing.
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