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Abstract

In recent years, significant advancements in
conversational question and answering (CQA)
have been driven by the exponential growth
of large language models and the integration
of retrieval mechanisms that leverage external
knowledge to generate accurate and contex-
tually relevant responses. Consequently, the
fields of conversational search and retrieval-
augmented generation (RAG) have obtained
substantial attention for their capacity to ad-
dress two key challenges: query rewriting
within conversational histories for better re-
trieval performance and generating responses
by employing retrieved knowledge. However,
both fields are often independently studied, and
comprehensive study on entire systems remains
underexplored. In this work, we present a
novel retrieval-augmented conversation (RAC)
dataset and develop a baseline system compris-
ing query rewriting, retrieval, reranking, and
response generation stages. Experimental re-
sults demonstrate the competitiveness of the
system and extensive analyses are conducted
to apprehend the impact of retrieval results to
response generation.

1 Introduction

Conversational question answering (CQA), also
known as interactive or sequential QA, focuses on
answering questions within a conversational con-
text (Webb, 2006; Saeidi et al., 2018; Reddy et al.,
2019). However, existing studies often constrain
questions and answers within predefined contexts,
excluding the retrieval process (Reddy et al., 2019;
Choi et al., 2018). This limitation creates a gap
between the ideal and actual CQA environment. A
more realistic scenario is to retrieve relevant pas-
sages related to a question each turn of the conver-
sation and use these passages to provide answers.
We refer this new task as Retrieval-Augmented Con-
versation (RAC).

*Corresponding author

The integration of retrieval fundamentally dis-
tinguishes RAC from conventional CQA. It is es-
sential to construct proper search queries for re-
trieving external knowledge. Conversational search
plays a pivotal role in addressing this challenge.
It involves query reformulation based on under-
standing of conversational history, resolving coref-
erence or anaphora across multiple turns, and ex-
panding queries with supplementary terms to en-
hance retrieval performance (Kim et al., 2021; Qian
and Dou, 2022; Wu et al., 2022; Mo et al., 2023;
Mao et al., 2023). Another significant challenge
in RAC lies in utilizing the retrieved knowledge
to provide accurate responses. Recent advance-
ments in large language models (LLMs) have led
to the widespread use of generative models for
open-domain QA tasks. These models, referred
to as retrieval-augmented generation (RAG) mod-
els, offer superior performance and flexibility (Raf-
fel et al., 2020; Min et al., 2020; Lewis et al.,
2020b). Moreover, generative models are well-
suited for answering questions in conversational
settings. In summary, RAC is a mixture of conver-
sational search and RAG that covers query reformu-
lation, passage retrieval, and response generation.
By addressing both retrieval and generation aspects,
RAC aims to bridge the gap between the ideal and
current CQA environments.

Despite its significance, no dedicated datasets
for RAC exist. While Anantha et al. (2021) in-
troduce the QReCC dataset that meets some con-
ditions of RAC: requiring retrieval at each turn,
query reformulation based on conversational his-
tory, and answering questions using retrieved pas-
sages, the gold answers in the dataset commonly
consist of extracted sentences or phrases, which do
not fully align with human-like responses suitable
for conversational settings. To address this limi-
tation, we introduce a new RAC dataset, derived
from publicly available knowledge-retrieval con-
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versation dataset on AI-Hub1, a prominent Korean
data platform. The conversations include multiple
utterances between a user question and its expert
response. In each turn, supporting factors2 used for
the response are annotated, along with a referred
document in the form of a URL. Details for the
data construction are specified in Section 2.

Using this comprehensive dataset, we develop
a strong baseline system that encompasses query
rewriting, retrieval, reranking, and response gener-
ation. Query rewriting model is trained to rewrite
queries from a current question with its conver-
sation history. Furthermore, we train the model
on the passage collection to enhance the ability
of generating relevant terms inspired by the re-
cent generative retrieval paradigm (Li et al., 2023,
2024). For passage retrieval, we adopt BM25 re-
triever due to its competitive performances, already
demonstrated in other studies (Wu et al., 2022; Mo
et al., 2023). Rather than excessively refining the
retriever, we focus on reranking the retrieved pas-
sages. These passages are reranked based on the
average probabilities that the query rewriting model
generates the query used for retrieving them. Fi-
nally, following Fusion-in-Decoder (FiD) (Izacard
and Grave, 2021), responses are generated using
top-k retrieved passages that are fed into the en-
coder one-by-one and their last hidden states are
concatenated to form the encoder hidden states for
the decoder.

Experimental results demonstrate that training
the query rewriting model on the entire passage
collection and optimizing the reranking stages lead
to remarkable performance improvements. In sum-
mary, our contributions are as follows:

• We introduce a novel RAC dataset bridging
the gap between existing CQA and ideal RAC
we aim to achieve, covering up the retrieval
and generation aspects.

• Our RAC system establishes a robust baseline.
In particular, the proposed learning method for
query rewriting model and reranking approach
enhance performance significantly.

• We conduct an empirical analysis on the base-
line system, shedding light on the challenges
faced by the entire RAC system.

1https://www.aihub.or.kr
2Note that the supporting factors are provided from the

original dataset but we do not utilize them for developing
baseline system.

2 Data Construction

To comprehensively address the requirement of
RAC, a dataset must comprise conversations with
referenced passages for response generation, as
well as passage collections for retrieval purposes.
However, existing CQA datasets are insufficient for
the entire RAC because they provide questions and
answers constrained on given contexts or do not
cover an answering stage. Neither conversational
search nor RAG datasets are also inadequate, as
they primarily focus on query rewriting to improve
retrieval performance and response generation us-
ing retrieved knowledge, respectively. To bridge
the gap, we utilize the knowledge-retrieval con-
versation dataset and address its limitations. The
dataset contains conversations between a user and
an expert on several topics, including supporting
factors configuring the responses by the expert and
documents referenced for the supporting factors.

Passage collections The original dataset only
provides document URLs that are referenced and
hence it does not support retrieval stage. There-
fore, we crawled whole Korean wikipedia pages
and publicly opened news data over 20 years to re-
flect various eras. About 1M news were randomly
selected from the overall news data and then the
crawled data are chunked into passages of fixed
length. It is worth to note that retrieval was not
performed for the crawling because it may lead
to a biased passage collections. Finally, a total of
1,345,209 passages were collected for incorporat-
ing the retrieval process.

Human-written query As colloquial questions
often do not suit for retrieval purposes, proper
queries are needed to deal with the query rewriting
aspect of the RAC. To construct queries, we utilize
questions and their conversational histories, exclud-
ing responses corresponding to the current ques-
tions because responses may contain key terms that
simplify retrieval stage. For example, consider Fig-
ure 1, where the term "irritable bowel syndrome"
in the response is difficult to be derived from the
initial question, but it can be used to rewrite a query
from the second question by utilizing the history.
Likewise, relevant passages were not provided to
prevent excessive paraphrasing. Eventually, 10,266
queries were written by human annotators.

Relevant passage annotation In real-world sce-
narios, multiple relevant passages may exist for
a single input query, whereas the original dataset
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Figure 1: The overview of the baseline system, consisting of query rewriting, retrieval, reranking, and response
generation. The baseline system is constructed as pipeline so that each model is trained separately.

only offers one passage per a question. To ad-
dress this discrepancy, we first retrieved passages
using Elastic Search (elasticsearch, 2015) with the
human-written queries and labeled the top-5 re-
trieved passages based on their relevance to the
question. This process resulted in the annotation of
17,606 additional relevant passages.

Finally, the constructed dataset is available on
our Github site3.

3 Retrieval-Augmented Conversation

Although some studies about RAG construct end-
to-end training systems that backpropagates loss
of response generation to the retrieval model, we
break the entire process into pipelines to alleviate
the difficulties of systems as a beginning of RAC.
Consequently, the overall system is divided up to
query rewriting, retrieval, reranking, and response
generation stages.

The encoder-decoder model, such as T5 (Raffel
et al., 2020) or BART (Lewis et al., 2020a), was
adopted as a backbone for both query rewriting
and response generation because the architecture
is particularly beneficial for the subtasks by cross-
attending to given inputs after the self-attention
layer and ensuring that input contexts well affect
to the generated tokens. The details of the baseline
system is specifically explained in the following
subsections.

3.1 Training Method for Query Rewriting
The goal of query rewriting is to transform a ques-
tion into a query for improving retrieval perfor-
mance, as the original form of the question is often

3https://github.com/NLPlab-skku/rac

not suitable for retrieval purposes. It is crucial to
make the query contain named entities or relevant
nouns contained in a relevant passage as well as re-
solve coreference or anaphora in the question based
on its conversational history.

Motivated by recent studies on generative re-
trieval (Li et al., 2023, 2024), we develop the query
rewriting model utilizing a generative pretrained
language model (PLM). The query rewriting model
is trained to generate queries not only from ques-
tions but also from passages, enabling the model to
memorize relevant passage-query pairs and hence
implicitly incorporate pertinent terms when rewrit-
ing queries. Given that relevant passages accom-
panied by queries are a small subset of the overall
passage collection, it is essential to assign queries
to the remaining passages. Therefore, we structure
the training process into multi-stages. Initially, the
model is trained on relevant passages annotated in
training data, along with questions and their con-
versational histories, to generate the human-written
queries. Subsequently, pseudo queries are gener-
ated for the entire passage collection and used as
targets in the following training stages. To elabo-
rate the model, the generated pseudo queries are
updated after the end of each training stage, except
for the initial training queries. The proposed train-
ing method also brings a data augmentation effect,
ensuring the model to progressively improve its
query rewriting capabilities.

Specifically, when a question is used as an input,
the current question and a previous conversational
history are separated by a separation token ’</s>’,
and questions and responses in the history are sep-
arated by a newline token ’\n’ as described in Ap-
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pendix B. Then, let qi and Ck = {qk, rk}i−1
k=0 be

the current question and previous conversational
history, the model is trained by the typical teacher
forcing learning:

L = −
T∑

t=1

log
(

Pr(wt| w1:t−1, C
k, qi)

)
, (1)

where w and T refer to a token and length of target
query, respectively. Likewise, a passage can be
used for an input context by replacing Ck. It is
noteworthy that the trained query rewriting model
is also used for reranking stage to leverage learned
knowledge of relevant query-passage pairs.

3.2 Reranking with Query Rewriting Model
Although cross-encoder models usually have been
employed for the reranking stage, training a cross-
encoder retriever is cost-ineffective because they re-
quire sophisticated training setups, including care-
fully selected hard negative samples and extended
training times compared to dense retrievers. To ad-
dress these challenges, we utilize the query rewrit-
ing model for reranking the retrieved passages.

The query rewriting model, trained on the entire
passages to generate queries, implicitly memorizes
relevant query and passage pairs. Accordingly, the
probability of the model generating a query from a
relevant passage would be higher than from other
passages, and thereby we can leverage this ability
of the model for reranking stage. To infer a new
score, si, of a passage retrieved by an input query,
the passage is passed through the query rewriting
model, which outputs probability distributions of
query length over the vocabulary. The probabili-
ties of tokens corresponding to the query are then
averaged:

si =
1

T

T∑

t=1

Pr(wt| w1:t−1, pi), (2)

where p represents the input passage. Finally, the
retrieved passages are reranked based on the com-
puted scores.

3.3 Response Generation
Given that the rank of relevant passages within
retrieval results remains unknown, it is advisable
to utilize multiple top-ranked retrieved passages.

Fusion-in-Decoder Attempting to encode all re-
trieved passages together may pose challenges re-
sulting in obscure representations, as the model

would attend to tokens from both relevant and ir-
relevant passages indiscriminately. To address this,
we employ the FiD architecture, which indepen-
dently encodes each passage. The input sequences
for the encoder are constructed by concatenating
the each retrieved passage with a question. Subse-
quently, all representations from the encoder are
concatenated and passed to the decoder for cross-
attention. The decoder is then trained by selectively
attending to the representations necessary for gen-
erating accurate responses.

Large Language Model Although the FiD
model can handle that a question is simultane-
ously attended to relevant and irrelevant passages
through its unique architecture, recent LLMs have
shown non-trivial performances in natural language
processing fields. Therefore, we also generate re-
sponses using a LLM, GPT-4o-mini. The input
prompts are as follows:

<s> Question: q0
Passage 1: p0
.
.
.
Passage k: pk
Response: </s>

3.4 Retrieval Models

We evaluate the generated queries on the tradi-
tional BM25 using Pyserini (Yang et al., 2017).
The hyperparameters are set to default, which are
k1 = 0.82 and b = 0.68. In addition, a dense re-
triever is also employed for the comparison. Since
there is no publicly available Korean dense re-
triever, we newly pretrain an encoder using a shal-
low decoder following prior studies (Shen et al.,
2023; Zhang et al., 2023; Liu et al., 2023; Wang
et al., 2023) and fine-tune the dense retriever with
the contrastive learning (Karpukhin et al., 2020).
The specific pretraining method for the encoder is
described in Appendix C.

4 Experiments

4.1 Dataset

We preprocessed the original dataset to align with
the RAC environment, including query rewriting,
retrieval, and response generation. To this end, we
excluded turns where retrieval was unnecessary and
where relevant passages were either nonexistent or
modified. In addition, since the original dataset
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Splits train dev test
# conversations 770 194 239

# turns 5,550 1,403 1,727
# relevant passages 3.47 3.47 3.49

Table 1: Statistics of the preprocessed dataset.

was divided into training and validation set, we
merged the whole data and randomly split them
into training, validation, and test sets. Finally, a
total of 1,203 conversations were divided into train-
ing, validation, and test sets. Each conversation
comprises approximately 10 turns, with an average
of 3.47 relevant passages per turn. It is important to
note that each turn retains its previous history and
the excluded turns are also contained in the history
to maintain the conversational context. The statis-
tics of the preprocessed dataset are summarized in
Table 1.

4.2 Implementation Details
We implemented the encoder-encoder model in
PyTorch (Paszke et al., 2019) using a pre-trained
Kobart-base-v2 initialization from the huggingface
(Wolf et al., 2020) both for query rewriting and
response generation. The details of selected hyper-
parameters are specified in Appendix D.

4.3 Main Results
Passage Retrieval The proposed reranking strat-
egy significantly improved the first-stage retrieval
results from the dense and BM25 retriever, reported
in Table 2. As a result, more than half of the queries
retrieved relevant passages within the top five re-
sults. Given that the query rewriting model trained
to generate (pseudo) queries from passages is famil-
iar to relevant query and passage pairs, the probabil-
ity that a query generated from a relevant passage
become higher than that generated from irrelevant
passages.

The performance of BM25 generally exceeded
that of the dense retriever. This can be attributed
to the nature of human-written queries, which are
constructed using a small number of terms derived
from previous conversational histories or current
questions. As a result, the model trained to gen-
erate such queries outputs that are well-suited to
the BM25 retriever, which relies on the overlap of
terms between a query and a passage. In contrast,
the dense retriever, which is designed to capture the
semantics of inputs, struggles to effectively capture
context from those brief terms.

Following the competitive query reformulation

method Mo et al. (2023), we additionally trained
response generation model that uses only a user
question (not a query) as an input without passage
retrieval. Then, generated responses were used
for expanding queries to enhance the semantics
of input queries for the dense retriever. With the
expanded queries, the retrieval performance of the
dense retriever is significantly improved as shown
in Table 3. However, the performance is still lower
than that of BM25 (i.e., first-stage retrieval). The
result demonstrates that dense retrievers do not
always guarantee superior performances compared
to BM25 in line with the retrieval results on other
CQA datasets, such as QReCC (Anantha et al.,
2021).

Response Generation with FiD We generated
responses with diverse retrieval results to under-
stand the correlation between retrieval and response
generation. Although the retrieval performance of
the dense retriever and BM25 exhibited some dif-
ferences, the final responses generated using the
retrieved passages were almost identical, as shown
in Table 4. Moreover, responses generated from
passages retrieved by the dense retriever scored
higher than those generated using BM25 results, de-
spite BM25’s higher retrieval performance. Specif-
ically, response generation performance increased
in line with significant improvements in retrieval
performance. However, there was no significant
difference in response generation performance for
similar levels of retrieval results. For instance, the
overall results, i.e., retireval and response gener-
ation, can be categorized into two groups: the
results from first-stage retrieval and those from
the reranked ones. These groups achieved similar
intra-scores within the groups but showed differ-
ent inter-scores between the groups. This indicates
that minor differences in similar retrieval results
can be attributed to fluctuated ranks of top-retrieved
passages.

Response Generation with LLM We built the
baseline system as a pipeline by separating the over-
all process into several subtasks: query rewriting,
first-stage retrieval, reranking, and response gener-
ation. Actually, reranking stage is not a mandatory
stage among the subtasks, but it is important to
get passages more relevant to questions. Although
modern LLMs may well generate human-like re-
sponses compared to fully fine-tuned model (i.e.,
FiD), the quality of the responses can be increased
with respect to the quality of retrieved passages.
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Retriever Stages Retrieval Metrics
MRR Recall@5 MAP@5 NDCG@5 Hit@5

Dense First-stage ret. 0.272 0.213 0.143 0.192 0.382
+Reranking 0.439 0.393 0.293 0.359 0.575

BM25
First-stage ret. 0.332 0.272 0.192 0.249 0.460
+Reranking 0.453 0.414 0.310 0.377 0.595
HUMAN WRITTEN 0.512 0.436 0.322 0.404 0.681

Table 2: Retrieval results both on dense and sparse (BM25) retriever. The higher value indicates the better
performance in all metrics. Since we train and evaluate the response generation model with top-5 retrieved passages,
the metrics are also calculated with 5 passages ranked at top.

Query Retrieval Metrics
MRR R@5 MAP@5 NDCG@5

Rewritten 0.272 0.213 0.143 0.192
+expansion 0.319 0.259 0.155 0.231

Table 3: First-stage retrieval results of the dense re-
triever using the rewritten queries and expanded queries
as inputs.

Retriever Stages Response Generation Metrics
ROUGE-L BLEU METEOR

Dense First-stage ret. 0.076 0.054 0.221
+Reranking 0.101 0.066 0.244

BM25 First-stage ret. 0.083 0.059 0.228
+Reranking 0.102 0.065 0.241

Relevant-only 0.194 0.127 0.335

Table 4: Performances of the response generation with
the FiD model across the retrieval results. We also gen-
erated responses with only relevant passages from the
original dataset that provides one passage per question.

Table 5 compares the response generation perfor-
mances between the FiD model and LLM (i.e.,
GPT-4o-mini). As expected, the LLM generally
performs better than the FiD model. Nevertheless,
what we want to emphasize is that both models ben-
efited from precisely reranked passages, stressing
the importance of retrieval quality again.

4.4 Learning Passages for Query Rewriting

In Table 6, the retrieval results are reported from
which queries are generated the query rewrit-
ing model trained with passages and that with-
out passages. When the model learned questions
only, without the passages, the performance de-
clined 0.022%p in terms of Mean Reciprocal Rank
(MRR). This degradation of performance demon-
strates that the model, trained on passages to gen-
erate queries following the generative retrieval
paradigm, is enhanced to effectively memorize the
passages and implicitly generate terms contained

Generator Ret. Stage Response Generation Metrics
ROUGE-L BLEU METEOR

FiD First-stage ret. 0.083 0.059 0.228
+Reranking 0.102 0.065 0.241

LLM First-stage ret. 0.134 0.056 0.309
+Reranking 0.154 0.062 0.324

Table 5: Performance compariosn between the FiD
model and LLM for response generation. The input
passages are retrieved by BM25.

Stages Retrieval Metrics
MRR R@5 MAP@5 NDCG@5

First-stage ret. 0.332 0.272 0.192 0.249
-passage learning 0.310 0.265 0.186 0.239

Table 6: Comparison of the first-stage retrieval results
using BM25 according to whether the query rewriting
model learns passages or not.

in relevant passages, thereby aiding the term-based
retriever.

4.5 Analysis on Generated Responses

Effect of the Number of Relevant Passages
for Response Generation Given the uncertainty
about the existence of relevant passages in the re-
trieval results, it is reasonable to utilize several
passages ranked at the top. Consequently, the num-
ber of retrieved relevant passages may influence
response generation. Figure 2 illustrates perfor-
mance changes on two metrics of the generated
responses both the FiD model and the LLM rela-
tive to the number of relevant passages among the
retrieved ones. Generally, as the number of relevant
passages in the retrieval results increased, perfor-
mance steadily improved. However, the ROUGE-L
score significantly dropped when all the retrieved
passages were relevant. This occurred because the
cases take a very small portion of the overall cases
and the generated responses were typically shorter
than the gold ones affecting to calculation of the
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Figure 2: Performances on generated responses accord-
ing to the number of retrieved relevant passages. -R
and -M denote ROUGE-L and METEOR, respectively.
The x-axis indicates the number of retrieved relevant
passages.

metrics, leading to a sudden drop in the ROUGE-L
metric both for the FiD model and LLM.

Furthermore, since performance does not show
significant differences across the number of rele-
vant passages except in cases where there are no
relevant passages or all passages are relevant, it
is crucial for the RAC system to retrieve passages
that actually leverages response generation rather
than to retrieve as many relevant passages, proved
by response generation results using relevant-only
passages in Table 4. To achieve this, integrating
retriever and response generation models into an
end-to-end system could be effective and it will be
the future direction of our study.

Human Evaluation We conducted human evalu-
ation on the responses generated by the FiD model
based on four criteria: relevance to the question,
partial relevance to the question, partial irrelevance
to the question, and irrelevance to the question. The
guidelines for the metrics are as follows:

• Relevant to Question: The response directly
addresses the question, providing relevant in-
formation or a clear response.

• Partially Relevant to Question: The re-
sponse contains some relevant information but
may not fully answer the question or may in-
clude extraneous details.

• Partially Irrelevant to Question: The re-
sponse contains somewhat relevant informa-
tion but the core content is irrelevant or wrong
to the question.

• Irrelevant to Question: The response does

# Relevant Human Evaluation
Rel. Partial rel. Partial irrel. Irrel.

0 16.2% 30.7% 27.6% 25.5%
1 22.2% 26.7% 36.7% 14.4%
2 30.4% 22.4% 35.1% 12.1%
3 34.6% 22.6% 32.1% 10.7%
4 19.3% 29.8% 45.6% 5.3%
5 33.3% 8.3% 41.7% 16.7%

Total 22.3% 27.2% 32.7% 17.8%

Table 7: Human evaluation on generated responses.
Each value represent the portion of the evaluated data
out of the case.

not address the question, providing irrelevant
or off-topic information.

Consistent with the analysis of the correlation be-
tween the numbers of retrieved relevant passages,
the human evaluation discovered that the model
does not always provide relevant responses, even
when all retrieved passages were pertinent to the
given questions. Furthermore, the responses ex-
hibited the highest percentage of irrelevance. This
typically occurred when past information appeared
across all retrieved passages, leading to incorrect
responses. Thus, it can be concluded that the gen-
eration model is weak for temporal questions, ne-
cessitating more sophisticated strategies to address
time-dependent questions.

Another interesting observation is that the model
provided (partially) relevant responses even when
it did not use relevant passages in nearly half of the
cases. Upon closer examination, it was noted that
there are many scenarios where diverse responses
are possible to questions. These types of responses
are not well-addressed by existing evaluation met-
rics, indicating a need to develop better methods
for evaluating generated responses.

5 Conclusion

In this work, we introduced RAC and presented the
new dataset that satisfies its requirements. With the
comprehensive dataset, a strong baseline system
comprising query rewriting, retrieval, reranking,
and response generation was constructed. Specif-
ically, the query rewriting model was trained fol-
lowing the generative retrieval approach and also
used for reranking stage by leveraging the ability
of query generation from passages, resulting in sig-
nificant improvement of the retrieval performance.
Our empirical experiments and analyses discover
the challenges of RAC and enlighten the future
direction of the entire system.
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Limitations

In this work, we utilized a small encoder-decoder
model for query rewriting, which are weak in terms
of parameterization compared to LLMs. As recent
progress in natural language processing is largely
contributed by LLMs, it would be interesting to
employ larger and decoder-only models to get more
effective queries.

In addition, the proposed dataset was constructed
in Korean so that language specific features might
influence the results. For language-agnostic gen-
eralization of the RAC, experiments on diverse
languages are required. Hence, we are going to
translate the dataset into English and publicly open
it after verification to facilitate studies on RAC.
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A Related Work

A.1 Conversational QA

CoQA is a dataset designed for building conver-
sational question answering systems, containing
127k questions from 8k conversations across seven
domains. The dataset emphasizes conversational
questions and free-form text answers with high-
lighted evidence in the passages. The study shows
that conversational questions pose unique chal-
lenges such as coreference and pragmatic reason-
ing, which are not present in traditional reading
comprehension datasets. Evaluations reveal that
current models significantly lag behind human per-
formance, indicating substantial room for improve-
ment. CoQA aims to stimulate advancements in
conversational question answering (Reddy et al.,
2019).

Anantha et al. (2021) presented a dataset for
Question Rewriting in Conversational Context
(QReCC), containing 14,000 conversations with
80,000 question-answer pairs. This is the first
approach to incorporate information retrieval and
reading comprehension as subtasks to answer the
question within conversational histories. A strong
baseline approach combining state-of-the-art mod-
els for question rewriting and competitive open-
domain QA model is proposed. Nevertheless, there
is a still limitation that the dataset does not provide
rationale for answering questions which make it
harder to analyze intermediate stages.

A.2 Conversational Search

Kim et al. (2021) addresses the challenge of re-
solving dependencies in conversational question
answering (CQA). It introduces a consistency train-
ing framework to enhance model performance by
ensuring that the model’s answers remain consis-
tent throughout a conversation. They introduced
a novel training framework that leverages consis-
tency training to handle conversational dependen-
cies. Maintaining answer consistency across con-
versation turns results in improved performance on
existing CQA datsets.

Qian and Dou (2022) presents a model called
CRDR designed to handle query rewriting and con-

text modeling within a unified framework for con-
versational search scenarios. The CRDR modifies
only the necessary parts of the original query, en-
hancing both the accuracy and efficiency of query
rewriting. This explicit rewriting helps highlight
relevant terms, improving the contextualized query
embedding.

Wu et al. (2022) focuses on improving conversa-
tional passage retrieval by rewriting queries using
reinforcement learning. A query rewriting model
(ConQRR) is optimized for passage retrieval per-
formance rather than just human readability. Their
experiments demonstrates that human-rewritten
queries are precisely clear, but may omit context
useful for retrieval, affecting performance. The
proposed model significantly enhances retrieval ef-
fectiveness by aligning the query rewriting process
with the retrieval task’s requirements.

Mo et al. (2023) explores generative query refor-
mulation to improve conversational search. A dual
approach combining query rewriting and query ex-
pansion to address ambiguous queries and supple-
ment them with additional context were proposed.
The ConvGQR model integrates both rewriting and
expansion techniques to produce more effective
search queries. Emipirical results show that the
combined approach outperforms traditional meth-
ods in generating queries that lead to better retrieval
performance.

Mao et al. (2023) introduces LLM4CS, a frame-
work leveraging large language models (LLMs)
to interpret users’ contextual search intent in con-
versational search scenarios. By generating multi-
ple query rewrites and hypothetical responses, the
framework creates an integrated representation of
the user’s search intent. Evaluations on conversa-
tional search benchmarks demonstrate the frame-
work’s effectiveness and robustness, outperforming
existing methods and even human rewrites in some
cases. The study underscores the potential of LLMs
in enhancing conversational search systems.

A.3 Retrieval-augmented Generation
Lewis et al. (2020b) first introduced the word
retrieval-augmented generation for knowledge-
intensive NLP tasks. The paper introduces a RAG
approach that combines retrieval mechanisms with
generative models to handle knowledge-intensive
NLP tasks. By incorporating retrieved informa-
tion from knowledge bases, the model can generate
more accurate and informed responses for tasks
like question answering.
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Izacard and Grave (2021) explores enhancing
generative models for open-domain QA by in-
corporating passage retrieval, proposing Fusion-
in-Decoder (FiD) architecture. Generative mod-
els have shown promise without external knowl-
edge but require large parameters, making them
costly. The authors investigate how these models
can benefit from retrieving relevant text passages.
The approach achieves state-of-the-art results on
benchmarks like Natural Questions (NQ) and Triv-
iaQA, showing significant performance improve-
ment with more retrieved passages.

Pan et al. (2024) presents LLMLingua-2, a
method for task-agnostic prompt compression to
improve generalizability and efficiency in LLMs.
Traditional prompt compression methods rely on
information entropy, which may be suboptimal.
LLMLingua-2 uses data distillation from an LLM
and formulates prompt compression as a token clas-
sification problem to maintain the integrity of the
original prompt. The approach employs a Trans-
former encoder to capture essential information
using bidirectional context. The model shows sig-
nificant performance gains and robust generaliza-
tion across various datasets, achieving faster com-
pression and reduced latency compared to existing
methods.

REALM (Retrieval-Augmented Language
Model) integrates a knowledge retriever with
language model pre-training. This approach allows
the model to retrieve and use external knowl-
edge during both pre-training and fine-tuning.
REALM significantly improves performance on
open-domain question answering benchmarks
by providing interpretability and modularity,
outperforming state-of-the-art models by a large
margin (Guu et al., 2020).

B Input Format of the Query Rewriting
Model

When input is a question with previous histories,
the input form for the model is as follows:

<s> History:
Question: q0
Response: r0
.
.
.
Question: qi−1

Response: ri−1 </s>

Input: qi </s>

C Training Dense Retriever

Although DPR demonstrates promising perfor-
mance, pretraining the encoder enhances the model
to be more advanced. Typically, the model is pre-
trained to improve the vector representation of in-
put passages by employing a shallow decoder. In
line with previous studies, we also incorporate a
shallow decoder with an encoder exclusively for
pretraining purposes.

Input tokens are separately constructed for the
encoder and decoder by replacing some tokens in a
passage with a mask token for language modeling.
The ratio of masking remains consistent, but the
positions where tokens are replaced differ between
the modules. It is notable that the same token can
be masked for both the encoder and decoder, as
illustrated below:

xe = [CLS] t0 [MASK] t2 [MASK], ... [SEP], (3)

xd = [CLS] [MASK] t1 t2 [MASK], ... [SEP], (4)

where t denotes the tokens in the passage. The
encoder and decoder are then trained to reconstruct
the original tokens at the masked positions. Specif-
ically, the last hidden state of the first token, [CLS],
from the encoder is fed into the decoder, aligned
with the word embeddings of other tokens. Con-
sequently, the language modeling loss from the
decoder is backpropagated to the encoder through
the encoder’s [CLS] hidden state. This process
enhances the vector representation used for calcu-
lating vector similarity in the dense retriever, as
it effectively memorizes input context to aid the
decoder in reconstructing the original input.

After pretraining, the encoder is fine-tuned by
following typical dense retrievers that maximize
vector similarities between queries and their rele-
vant passages through the contrastive learning:

LRet
i = − log

ef(qi,p+i )/τ

ef(qi,p+i )/τ +
∑B

j=1 ef(qi,p−i,j)/τ
,

(5)
where qi, p+i , and p−i,j refer to vector representa-
tions of query, positive passage, and negative pas-
sages, respectively. The score is inferred by the
scoring function f that calculates cosine similar-
ity between two vectors after divided by the tem-
perature hyperparameter of τ . The impact of the
pretraining is reported in Table 8.
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Methods Metrics
MRR Recall@5 MAP@5 NDCG@5 Hit@5

Non-pretrained 0.242 0.189 0.122 0.167 0.357
Pretrained 0.272 0.213 0.143 0.192 0.382

Table 8: The retrieval results of pretrained and non-pretrained dense retriever. The pretrained retriever performed
better than the non-pretrained one.

D Implementation Details

Query rewriting model For the first stage, the
model was trained on questions and passages in
training data during 100 epochs. For the remain-
ing training stages, the models was trained during
5 epochs as the entire passages are used, which
leaded to a load of training time.

Response generation model To implement FiD
model, we slightly modified the code of BART
model in the huggingface to make the model en-
code several passages at the time and then generate
a response with the encoded passages. To train
the model, it is essential to include multiple pas-
sages for the training to meet the test environment
where top-k retrieved passages are processed by
the encoder. Hence, we used k-1 top-ranked pas-
sages retrieved by BM25 using the human-written
queries in addition to the relevant passage in the
training data. To prevent the model learning the
order of the input passages, they are fed in to the
model in randomly shuffled orders. The model was
trained during 20 epochs on the training data.

Both models are trained using AdamW
(Loshchilov and Hutter, 2019) with a batch size
of 256 and learning rate of 5e-5. Each training took
about 3 hours on a RTX A6000 GPUs.
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