
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 1595–1607
November 12-16, 2024 ©2024 Association for Computational Linguistics

GraphQL Query Generation: A Large Training and Benchmarking Dataset

Manish Kesarwani1, Sambit Ghosh1, Nitin Gupta1, Shramona Chakraborty1,
Renuka Sindhgatta1, Sameep Mehta1, Carlos Eberhardt2, Dan Debrunner 2,

1 IBM Research, India, 2 IBM StepZen,
Correspondence: manishkesarwani@in.ibm.com

Abstract

GraphQL is a powerful query language for
APIs that allows clients to fetch precise data
efficiently and flexibly, querying multiple re-
sources with a single request. However, craft-
ing complex GraphQL query operations can be
challenging. Large Language Models (LLMs)
offer an alternative by generating GraphQL
queries from natural language, but they struggle
due to limited exposure to publicly available
GraphQL schemas, often resulting in invalid
or suboptimal queries. Furthermore, no bench-
mark test data suite is available to reliably eval-
uate the performance of contemporary LLMs.

To address this, we present a large-scale,
cross-domain Text-to-GraphQL query opera-
tion dataset. The dataset includes 10,940
training triples spanning 185 cross-source data
stores and 957 test triples over 14 data stores.
Each triple consists of a GraphQL schema,
GraphQL query operation, and corresponding
natural language query. The dataset has been
predominantly manually created, with natu-
ral language paraphrasing, and carefully val-
idated, requiring approximately 1200 person-
hours. In our evaluation, we tested 10 state-
of-the-art LLMs using our test dataset. The
best-performing model achieved an accuracy
of only around 50% with one in-context few-
shot example, underscoring the necessity for
custom fine-tuning. To support further re-
search and benchmarking, we are releasing
the training and test datasets under the MIT
License. The dataset is available at https:
//github.com/stepzen-dev/NL2GQL.

1 Introduction

GraphQL is a query language and runtime for APIs,
providing an efficient, powerful, and flexible alter-
native to REST APIs. It allows users to request pre-
cise data across multiple sources in a single query,
minimizing extraneous information and optimiz-
ing network resource usage. This makes GraphQL
ideal for applications on resource-limited devices.

interface Person{
name: String

}
type Student implements Person {

student_id: Int!
weight: Float
height: Float
personal_details :[Personal_details]

}
type Personal_Details {

address: String
contact: String

}
input FloatFilter {

lt: Float
}
input sFilter {

weight: FloatFilter
}
type Query {

studentList :[Student]
get_students(filter:sFilter):[Student]

}

Figure 1: Sample GraphQL Schema

(a) Query 1
(Valid)

(b) Query 2
(Valid)

(c) Query 3
(Invalid)

Figure 2: Sample GraphQL Query Operations

Figure 1 illustrates an exemplar GraphQL
schema that enables users to retrieve student infor-
mation. For clarity, the resolver functions that fetch
the actual data have been omitted. However, in de-
ployment, data for type Student is fetched from a
relational database, while their personal details are
retrieved via a secure API endpoint. This illustrates
how GraphQL can integrate disparate data sources
into a single coherent interface for efficient data
retrieval.

It is crucial to note that this schema provides

1595

mailto:email@domain
https://github.com/stepzen-dev/NL2GQL
https://github.com/stepzen-dev/NL2GQL

only two access points for data retrieval: 1) stu-
dentList, which fetches details of all students, and
2) get_students, which filters students based on
a weight predicate (less than). All permissible
GraphQL query operations for this schema can
utilize only these two access points. For example,
the query in Figure 2a retrieves the name and ad-
dress of all students, while Figure 2b returns the
names of students with weight less than 65. How-
ever, the query in Figure 2c is invalid because the
schema does not support a greater-than predicate
for student weight. In general, challenges may also
arise from inherent cyclic dependencies across type
nodes, cross-source endpoints offering varying ca-
pabilities based on the data source, and custom
schema extensions. This underscores the necessity
for users to thoroughly understand their GraphQL
schema to construct valid query operations.

An interesting alternative is to use state-of-the-
art LLMs to generate GraphQL query operations
from natural language queries. However, due to the
limited availability of publicly accessible GraphQL
schemas, these LLMs have not been sufficiently
exposed to GraphQL data during their training.
Consequently, they often struggle to generate valid
and optimized GraphQL query operations. Fur-
thermore, there is currently no comprehensive test
dataset available to benchmark the performance of
LLMs in generating GraphQL operations.

To remedy this, we present a large-scale, cross-
domain Text-to-GraphQL query operation dataset.
The dataset includes 10,940 training data triples
spanning 185 cross-source data stores and 957
test triples spanning 14 cross-source data stores.
Each data triple consists of a GraphQL schema,
GraphQL query operation, and the corresponding
natural language query. To facilitate this task, we
designed and implemented a custom data genera-
tion pipeline along with a web-based user interface
for the review and annotation of each data element.
This process involved six researchers and required
approximately 1,200 person-hours for data genera-
tion and validation.

Next, we developed an evaluation pipeline that
takes as input the GraphQL schema, the ground-
truth GraphQL query operation, and the LLM-
generated operation to check for query equivalence.
This pipeline was used to validate the effectiveness
of our test dataset. Using this pipeline, we assessed
the performance of 10 state-of-the-art LLMs, and
surprisingly, the best model achieved only approxi-
mately 50% accuracy with one in-context few-shot

example. These results underscore the necessity
of creating complex GraphQL datasets for further
model fine-tuning and benchmarking.

Contributions
To summarize, our contributions are the following:

1. A large-scale, complex, cross-domain, and
cross-source Text-to-GraphQL query opera-
tion dataset, consisting of 10,940 training data
elements. This dataset is designed to cap-
ture various GraphQL complexities, including
Aliases, Filters, Fragments, Multiple Types,
Multiple Endpoints, and Hops.

2. Prepared a separate benchmarking test dataset
comprising 957 test data triples that span 14
cross-source data stores to evaluate the perfor-
mance of query generation.

3. We evaluated the Text-to-GraphQL operation
generation capabilities of a diverse set of
contemporary LLMs and illustrated that our
dataset presents a substantial challenge.

2 Dataset Creation

In this section, we begin by outlining the assump-
tions, followed by a comprehensive overview of
the methodology employed to generate the train-
ing and test datasets. The entire dataset creation
process is summarized in Figure 3.

2.1 Assumptions
We assume that users’ natural language (NL) in-
teractions would involve single-turn conversations,
with all necessary parameters included in the NL
text. To create a cross-source dataset, we developed
custom APIs and manually embedded them into
the GraphQL schema. Although schema linking
and merging were beyond the scope of this paper,
this approach allowed us to integrate data from
multiple sources cohesively. We used IBM Stepzen
as the GraphQL engine but ensured compatibility
with other GraphQL engines by incorporating only
those features commonly available and compliant
with the latest GraphQL specifications (gql, 2021).
For simplicity, we will use "GraphQL query opera-
tion" and "GraphQL query" interchangeably.

2.2 GraphQL Schema Curation
Publicly available GraphQL schemas are quite lim-
ited. For our purposes, we required a comprehen-
sive set of schemas that could cover a diverse range

1596

Figure 3: Dataset creation pipeline.

of GraphQL constructs. Additionally, we needed
the ability to run queries on every schema to ensure
valid query construction.

2.2.1 Database Selection
To address these requirements, we gathered ap-
proximately 200 relational databases from diverse
sources to construct complex GraphQL schemas.
The databases were selected as follows: (1) We
chose 27 complex databases from the CoSQL
dataset (Yu et al., 2019), (2) We populated the
TPCH 1GB database (tpc, 2024), (3) We acquired
170 tables from the WikiSQL dataset (Zhong et al.,
2017), and (4) We created a custom database to
further enhance our schema diversity.

2.2.2 API Development
Given this set of relational databases, we created
a pool of custom APIs and hosted them internally.
Using the IBM Stepzen GraphQL engine, we in-
gested each relational database and API individu-
ally, resulting in the creation of separate GraphQL
schemas for each database and API. Initially, these
schemas were simple and supported only limited
features, serving as the foundational structure for
further enhancements.

2.2.3 Schema Enrichment
To extend the capabilities of these basic schemas,
we manually edited, merged, and enriched them
with a comprehensive set of available GraphQL
constructs. This enrichment process aimed to ex-
pose the model to cross-source schemas comprising
a variety of GraphQL constructs and enable support
for a diverse range of GraphQL queries.

For instance, the basic GraphQL schema for our
example schema (Figure 1) initially comprised only
Student and Personal_details types, and the
studentList field in type Query. Through our en-
richment procedure, we incorporated components
such as interface Person, input FloatFilter,
input sFilter, and get_students(filter) to
make the schema comprehensive and challenging.
The detailed steps are outlined in Appendix E.

2.2.4 Schema Validation
After enriching the GraphQL schema, we deployed
it to our local Stepzen instance. We then accessed
and queried the schema using the Stepzen dash-
board UI, enabling us to validate its accuracy and
functionality.

Following this methodology, we developed a
robust and diverse set of GraphQL schemas capa-
ble of supporting complex queries and varied con-
structs. This approach ensured that our schemas
were not only functional but also enriched to cover
a wide range of GraphQL features.

2.3 GraphQL Query Operation Creation

We adopted two distinct approaches for the creation
of GraphQL queries.

2.3.1 IBM GraphQL Query Generator
We selected a subset of GraphQL schemas and
utilized the open-source IBM rule-based GraphQL
query generator tool (ibm, 2021). However, this
tool has limited capabilities; it generates only basic
projection GraphQL queries, lacking the ability
to perform advanced query operations like deep
nesting or filtering related objects.

1597

Dataset Alias Multi Type Multi Endpoint Filter Zero Hop One Hop Two Hops Fragment
Training 20 9 15 86 25 16 4 2

Test 7 2 2 50 25 16 11 5

Table 1: Overlapping Category-wise Percentage Composition in Training and Test Datasets

Subsequently, we used the IBM Granite-20B-
Code-Instruct LLM (g20, 2024) to generate corre-
sponding NL text for these queries. Although the
generated NL queries were not entirely accurate,
they provided a useful baseline. Finally, we man-
ually validated and corrected both the generated
GraphQL queries and their corresponding NL text.
This approach contributed to ∼ 20% of our dataset.

2.3.2 Manual Query Creation
We deployed a local instance of the Stepzen en-
gine (sz, 2024) with our GraphQL schemas. Using
the Stepzen UI, we manually created the GraphQL
queries and authored the corresponding NL queries.
While creating, we executed each GraphQL query
through the Stepzen interface to ensure they re-
turned populated results, thereby simplifying our
LLM evaluation discussed later in Section 3. Since
both the GraphQL and NL queries were manually
created, this process eliminated the need for the
manual validation required in the first approach.
This approach contributed to ∼ 80% of our dataset.

2.3.3 Dataset Enhancement
After compiling the initial training dataset, we uti-
lized the IBM Granite-20B-Code-Instruct LLM
(g20, 2024) to generate approximately 8-10 para-
phrases for each NL query. This strategy aimed to
increase the linguistic variety within our dataset,
thereby improving the robustness of our dataset.
Following this, a subsequent round of manual val-
idation was conducted, enabling us to refine the
generated NL paraphrases as needed.

2.4 Training Data Distribution

We have categorized the training data into six over-
lapping categories. The category-wise percentage
distribution, which includes intersections among
these categories, is provided in Table 1. Due to
space limitations, we present a brief description
of each category below, with concrete examples
available in Appendix A.

1. Hops - A hop in a GraphQL query refers to
traversing from one type node to another while
resolving nested object relationships. The
number of hops determines the query’s depth

(gql, 2024). We created queries with varying
number of hops, and sub-categorize them into
four levels based on complexity: zero hop,
one hop, two hops, and three or more hops.

2. Filters - It represents the conditions that data
must meet to be included in the response. The
filter category is subdivided into four classes
based on the number of simultaneous filters an
endpoint in a GraphQL schema can support:
zero, one, two, and three or more.

3. Alias - By default, a field’s response key in the
response object uses the field’s name. Aliases
allow assigning a custom name to a response
object, enabling the retrieval of the same field
multiple times with different arguments or re-
naming fields to avoid naming conflicts.

4. Fragments - Fragments enable the reuse of
common field selections, reducing duplicated
text in queries. They are used with the spread
operator (...).

5. Multi Type - A Multi Type GraphQL query
fetches data from multiple distinct type nodes
in a single query operation.

6. Multiple-Endpoints - A multiple-endpoint
GraphQL query fetches data from multiple
distinct fields in the type Query node in re-
sponse to an NL request.

2.5 Test Dataset

The test dataset is generated predominantly using
a different set of GraphQL schemas not present
in the training dataset, ensuring minimal database
overlap between the two sets. This choice was mo-
tivated by the need to ensure the generalizability of
LLMs beyond their known proficiency in semantic
tasks, with the expectation that, after fine-tuning
with our dataset, the LLMs could generate precise
and valid GraphQL queries for previously unseen
schemas. The test dataset comprises 957 test data
triples spanning 14 cross-source data stores, cate-
gorized into the same eight groups as the training
dataset. The composition is provided in Table 1.

1598

2.6 Final Dataset Review

To validate and ensure the quality of our dataset,
we developed a custom web-based user interface
for detailed review of each data element. This tool
facilitated the examination of the dataset by dis-
playing each GraphQL schema, its corresponding
GraphQL query, and the associated NL query se-
quentially. By isolating each data element in this
manner, we were able to systematically review and
verify their accuracy.

In addition to enabling thorough reviews, the
interface provided user-friendly, clickable options
to annotate the dataset. These features included
marking the number of hops, identifying filter pred-
icates, and other key attributes. This systematic
annotation process allowed for precise and consis-
tent documentation of each data element’s charac-
teristics, thereby enhancing the overall quality and
reliability of the dataset.

2.7 Team and Effort Estimate

The team comprises six researchers distributed
across two geographical locations. They all possess
professional fluency in the English language and
bring together a diverse skill set, with expertise in
GraphQL, natural language processing, software
development, and large language models. Each
team member was tasked with preparing a dataset
encompassing various GraphQL complexities and
rigorously validating each data element by review-
ing the alignment between the natural language
query and the GraphQL query operation against
the schema. Subsequently, an independent vali-
dation round was conducted, where a set of data
was reviewed by two researchers who had not pre-
viously seen it. Collectively, the team invested
approximately 1,200 person-hours in the creation
and refinement of the dataset.

2.8 Discussion

This current dataset is compatible with the StepZen
GraphQL Engine (sz, 2024). Although we have en-
sured the use of standard directives, transformation
scripts will still be needed to adapt the GraphQL
schema and queries for reuse with other available
engines. As part of our future work, we intend to
develop these scripts tailored to various GraphQL
engines and expand the scope of our dataset.

3 Experiments and Results

We conducted experiments with 10 state-of-the-
art LLMs, with parameter sizes ranging from 3B
to 34B. We employed three experimental settings:
zero-shot, one-shot, and two-shot, where ’shot’
refers to the number of in-context examples pro-
vided. We used greedy decoding to generate a max-
imum of 500 tokens for all LLMs. This study aims
to: (1) demonstrate that our test dataset poses a sig-
nificant challenge to the LLMs (2) assess whether
providing a few in-context examples improves the
models’ ability to generate GraphQL queries, and
(3) establish initial performance benchmarks for
the Text-to-GraphQL query generation task.

During the evaluation, we constructed prompts
that included instructions summarizing the genera-
tion task and incorporated 0, 1, or 2 few-shot sam-
ples, depending on the setting. Each prompt also
included the test schema and the natural language
query. A sample prompt is outlined in Appendix D.
After obtaining results from the LLM, we executed
both the generated GraphQL query and the ground
truth query, and then compared their outputs to
evaluate accuracy.

For each of the three experimental
settings—Zero-shot, One-shot, and Two-shot—we
have compiled the results in Tables 2, 3, and 4,
respectively. In these tables, the first column
displays the model name, while the next eight
columns detail the performance of each model
on individual categories of GraphQL queries.
The penultimate column indicates the fraction
of test cases that failed due to exceeding the
available LLM context length, and the final column
summarizes the overall performance across all
categories. This category-wise presentation of
results highlights the models’ capabilities in
generating respective GraphQL queries, providing
insights that could guide the selection of the most
appropriate model for specific use cases.

Furthermore, as shown in Table 2, the perfor-
mance of pre-trained LLMs on the GraphQL query
generation task is particularly poor in the zero-shot
setting, with most models achieving an overall ac-
curacy of less than 15%. This indicates that the
LLMs had insufficient exposure to GraphQL data
during the pre-training phase. A summary of the
various types of errors in the generated GraphQL
queries can be found in Appendix B.

Introducing one or two in-context examples led
to marginal performance improvements in some

1599

Model Alias Multi Type Multi-endpoint Filter Zero Hop One Hop Two Hops Fragment Length Error Overall
codellama-34b-instruct 0.0 0.0 33.33 13.21 19.39 8.06 6.9 0.0 0.0 12.37

flan-t5-xl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 51.36 0.0
flan-t5-xxl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 51.36 0.0

flan-ul2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 51.36 0.0
granite-8b-code-instruct 0.0 0.0 0.0 11.32 15.84 2.2 0.0 0.0 3.98 7.65

granite-20b-code-instruct 0.0 0.0 0.0 13.63 32.39 8.42 3.45 0.0 3.04 18.03
granite-34b-code-instruct 0.0 0.0 0.0 20.75 55.79 19.41 18.39 0.0 3.04 33.96

llama-3-8b 0.0 0.0 0.0 6.08 14.66 10.99 1.15 0.0 0.0 9.85
llama-3-8b-instruct 0.0 0.0 11.11 1.47 1.65 0.0 0.0 0.0 0.0 0.73

merlinite-7b 0.0 0.0 22.22 3.77 15.37 14.29 9.77 0.0 0.0 12.68
mistral-7b-v0-1 0.0 0.0 0.0 9.85 39.72 8.42 3.45 0.0 0.0 20.65

Table 2: Performance of LLMs on test dataset in zero shot setting.

Model Alias Multi Type Multi-endpoint Filter Zero Hop One Hop Two Hops Fragment Length Error Overall
codellama-34b-instruct 0.0 11.76 55.56 28.51 65.48 43.22 17.24 0.0 0.0 44.65

flan-t5-xl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 51.36 0.0
flan-t5-xxl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 51.36 0.0

flan-ul2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 51.36 0.0
granite-8b-code-instruct 0.0 0.0 0.0 13.21 43.26 10.99 8.62 0.0 51.36 23.9

granite-20b-code-instruct 0.0 0.0 0.0 19.08 60.05 37.36 21.84 0.0 3.04 41.93
granite-34b-code-instruct 0.0 0.0 44.44 38.36 78.01 42.12 20.11 0.0 0.0 50.31

llama-3-8b 0.0 0.0 0.0 18.45 54.37 16.48 2.3 0.0 0.0 29.25
llama-3-8b-instruct 0.0 0.0 0.0 15.51 51.54 18.68 2.3 0.0 0.0 28.62

merlinite-7b 0.0 0.0 22.22 14.47 49.88 16.12 12.64 0.0 0.0 29.04
mistral-7b-v0-1 0.0 0.0 0.0 8.18 39.24 6.23 0.0 0.0 0.0 19.18

Table 3: Performance of LLMs on test dataset in one shot setting.

Model Alias Multi Type Multi-endpoint Filter Zero Hop One Hop Two Hops Fragment Length Error Overall
codellama-34b-instruct 0.0 17.65 55.56 33.96 70.21 41.03 20.11 0.0 0.0 46.65

flan-t5-xl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 51.68 0.0
flan-t5-xxl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 51.68 0.0

flan-ul2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 51.68 0.0
granite-8b-code-instruct 0.0 0.0 0.0 13.0 42.55 12.09 13.79 0.0 51.36 24.84

granite-20b-code-instruct 0.0 0.0 0.0 21.38 62.65 41.39 21.26 0.0 3.04 43.61
granite-34b-code-instruct 0.0 0.0 44.44 36.69 75.65 45.79 19.54 0.0 0.0 50.21

llama-3-8b 0.0 0.0 0.0 17.61 52.96 16.12 5.17 0.0 3.04 29.04
llama-3-8b-instruct 0.0 0.0 0.0 16.98 48.46 19.05 6.9 0.0 3.04 28.2

merlinite-7b 0.0 0.0 11.11 18.66 53.43 20.88 11.49 0.0 0.0 31.76
mistral-7b-v0-1 0.0 0.0 0.0 8.6 40.9 8.42 1.15 0.0 0.0 20.75

Table 4: Performance of LLMs on test dataset in two shots setting.

models, with the Granite-34B-Code-Instruct LLM
achieving the highest accuracy at around 50%.
However, this improvement remains insufficient
for real-world industrial applications. Models with
lower context limits, such as Flan-T5, faced length
errors due to prompts exceeding their token limits.
This issue represents a significant bottleneck for
employing in-context learning for GraphQL query
generation, as GraphQL schemas are typically large
and could easily surpass context limits, preventing
the inclusion of even a single example. Thus, en-
hancing the base model’s performance by tuning
it with a comprehensive GraphQL dataset remains
the only viable option in such cases.

This underscores the critical need for specialized
GraphQL datasets to support the research commu-
nity. Training datasets can be employed for fine-
tuning, prompt-tuning, or enhancing prompt engi-
neering techniques, all aimed at improving LLM
performance in GraphQL query generation tasks.
A brief discussion on the utility of the training

dataset is provided in Appendix C. Meanwhile, the
test dataset will be utilized for benchmarking gen-
eration capabilities, thereby establishing a mea-
sure of confidence in the LLM’s ability to generate
GraphQL queries.

4 Related Work

GraphQL has gained significant attention in both
academia and industry. While there have been at-
tempts to utilize LLMs for GraphQL query genera-
tion (Levin, 2023; gql, 2023b,a; gor, 2023), to our
knowledge, there is no formal study or available
training or benchmarking datasets to improve and
evaluate this capability. Therefore, in this section,
we briefly review the basic literature on GraphQL.

Studies comparing REST and GraphQL APIs
highlight several advantages of GraphQL. For in-
stance, (Brito et al., 2019) shows that GraphQL
reduces client-server interactions and minimizes
JSON payload sizes, while (Brito and Valente,
2020) demonstrates that GraphQL queries are eas-

1600

ier to implement. Additional studies, such as
(Seabra et al., 2019; Mikuła and Dzieńkowski,
2020), further explore the benefits of GraphQL.

Beyond the advantages over REST APIs, recent
research has focused on testing GraphQL queries
(Belhadi et al., 2024) and conducting mapping in-
vestigations (Quiña-Mera et al., 2023). GraphQL
has also become a critical component in real-world
applications (gq, 2024) and businesses (sz, 2024).
Its potential for data access and integration across
heterogeneous sources is shown in (Li et al., 2024).

Furthermore, from an industry perspective, the
adoption of GraphQL is expected to increase in the
near future. According to a recent Gartner report,
’By 2027, more than 60% of enterprises will use
GraphQL in production, up from less than 30% in
2024’ (gar, 2024).

5 Conclusion and Future Work

In this study, we created and validated a comprehen-
sive Text-to-GraphQL query operation dataset to
enhance and benchmark the performance of LLMs
in generating precise GraphQL queries from nat-
ural language inputs. We employed two distinct
methodologies for dataset creation, integrating both
automated tools and manual query generation. This
approach ensured the comprehensiveness and qual-
ity of the dataset, providing a robust resource for
the enhancement and evaluation of LLM capabili-
ties for GraphQL query generation task.

Our team, composed of six researchers across
two geographical locations, invested approximately
1,200 person-hours in the creation and validation
of the dataset. To ensure careful and responsible
curation, we developed a custom web-based user
interface for detailed review and annotation of each
data element.

Future work will include expanding the dataset
to relax some of the assumptions and address the
limitations highlighted in this paper. We believe
that our dataset will significantly contribute to ad-
vancing research in GraphQL query generation and
the practical application of LLMs in the real world.

References
2021. Graphql query generator.

2021. Graphql spec.

2023a. Gqlpt.

2023b. Graphql explorer.

2023. Weaviate gorilla part 1 graphql apis.

2024. Companies using graphql.

2024. Gartner report: When to use graphql to accelerate
api delivery.

2024. Granite-20b-code-instruct.

2024. Graphql query depth.

2024. Stepzen.

2024. Tpc-h benchmark.

Asma Belhadi, Man Zhang, and Andrea Arcuri. 2024.
Random testing and evolutionary testing for fuzzing
graphql apis. ACM Transactions on the Web, 18(1):1–
41.

Gleison Brito, Thais Mombach, and Marco Tulio Va-
lente. 2019. Migrating to graphql: A practical assess-
ment. In 2019 IEEE 26th International Conference
on Software Analysis, Evolution and Reengineering
(SANER), pages 140–150.

Gleison Brito and Marco Tulio Valente. 2020. Rest vs
graphql: A controlled experiment. In 2020 IEEE
International Conference on Software Architecture
(ICSA), pages 81–91.

Yonatan V. Levin. 2023. A developer’s journey to the ai
and graphql galaxy.

Huanyu Li, Olaf Hartig, Rickard Armiento, and Patrick
Lambrix. 2024. Ontology-based graphql server gen-
eration for data access and data integration. Semantic
Web, (Preprint):1–37.

Mateusz Mikuła and Mariusz Dzieńkowski. 2020. Com-
parison of rest and graphql web technology per-
formance. Journal of Computer Sciences Institute,
16:309–316.

Antonio Quiña-Mera, Pablo Fernandez, José María Gar-
cía, and Antonio Ruiz-Cortés. 2023. Graphql: a
systematic mapping study. ACM Computing Surveys,
55(10):1–35.

Matheus Seabra, Marcos Felipe Nazário, and Gustavo
Pinto. 2019. Rest or graphql? a performance com-
parative study. In Proceedings of the XIII Brazilian
Symposium on Software Components, Architectures,
and Reuse, pages 123–132.

Tao Yu, Rui Zhang, He Yang Er, Suyi Li, Eric Xue,
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, et al. 2019. Cosql: A conversational
text-to-sql challenge towards cross-domain natural
language interfaces to databases. arXiv preprint
arXiv:1909.05378.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103.

1601

https://github.com/IBM/graphql-query-generator
https://spec.graphql.org/October2021/
https://github.com/rocket-connect/gqlpt
https://github.com/geobde/graphqlexplorer
https://weaviate.io/blog/weaviate-gorilla-part-1
https://theirstack.com/en/technology/graphql
https://www.apollographql.com/resources/gartner-when-to-use-graphql-to-accelerate-api-delivery
https://www.apollographql.com/resources/gartner-when-to-use-graphql-to-accelerate-api-delivery
https://huggingface.co/ibm-granite/granite-20b-code-instruct
https://async-graphql.github.io/async-graphql/en/depth_and_complexity.html#limiting-query-depth
https://stepzen.com
https://www.tpc.org/tpch/default5.asp
https://doi.org/10.1109/SANER.2019.8667986
https://doi.org/10.1109/SANER.2019.8667986
https://doi.org/10.1109/ICSA47634.2020.00016
https://doi.org/10.1109/ICSA47634.2020.00016
https://medium.com/@yonatanvlevin/a-developers-journey-to-the-ai-and-graphql-galaxy-3e8e7fd41928
https://medium.com/@yonatanvlevin/a-developers-journey-to-the-ai-and-graphql-galaxy-3e8e7fd41928

A GraphQL Query Operation
Illustration

In this section, we present the enriched version of
the example GraphQL schema shown in Figure 1.
Following this, we provide concrete examples of
GraphQL queries for various categories, including
Aliases, Filters, Fragments, Multiple Types, Multi-
ple Endpoints, and Hops.

A.1 Enriched GraphQL Schema

To demonstrate an example of each category, we
enriched the example GraphQL schema added four
new type nodes. filter on height of the students,
and two new fields (endpoints) in type Query
– get_courses and get_instructors. The en-
riched schema is depicted in Figure 5.

A.2 Hops Example

Figure 6, shows an example of a three-hop
GraphQL query operation corresponding to the fol-
lowing NL query on the enriched GraphQL schema
– Fetch all students. For each student, retrieve their
name, personal details including address, contact
information including email, and emergency con-
tact details including name and phone. .

A.3 Filter Example

Figure 7, shows an example of a two-filter
GraphQL query operation corresponding to the fol-
lowing NL query – Fetch students whose weight is
less than 70 units and height is greater than 150
units. For each student, retrieve their name, weight,
and height

A.4 Alias Example

Figure 8, shows an example of a two-filter
GraphQL query operation corresponding to the fol-
lowing NL query – Fetch two lists of students: one
list where students’ weight is less than 70 units, and
another list where students’ height is greater than
150 units. For the first list, retrieve each student’s
name and weight, and for the second list, retrieve
each student’s name and height.

A.5 Multi-Endpoint Example

Figure 9, shows an example of a two-filter
GraphQL query operation corresponding to the fol-
lowing NL query – Retrieve all students, including
their ID, name, weight, and height. Also, retrieve
all courses, including their ID, name, and the in-
structor’s name and department.

interface Person {
name: String

}

type Student implements Person {
student_id: Int!
weight: Float
height: Float
personal_details: [PersonalDetails]

}

type PersonalDetails {
address: String
contact: Contact

}

type Contact {
email: String
emergency_contact: EmergencyContact

}

type EmergencyContact {
name: String
phone: String

}

type Course {
course_id: Int!
course_name: String
instructor: Instructor
students: [Student]

}

type Instructor implements Person {
instructor_id: Int!

department: String
}

input FloatFilter {
lt: Float
gt: Float

}

input StudentFilter {
weight: FloatFilter
height: FloatFilter

}

type Query {
studentList: [Student]
get_students(filter: StudentFilter): [

Student]
get_courses(filter: CourseFilter): [

Course]
get_instructors(filter:

InstructorFilter): [Instructor]
}

Figure 5: Enriched GraphQL Schema

A.6 Fragment Example

Figure 10, shows an example of a two-filter
GraphQL query operation corresponding to the fol-
lowing NL query – Show details for two students:

1602

For student ID 1, give me ID and name. And, for
student ID 2, give me address along with the ID
and name.

A.7 Multi Type Example

Figure 11, shows an example of a two-filter
GraphQL query operation corresponding to the
following NL query – Fetch course IDs, names,
instructor details (names and departments), and
students’ names along with their weights.

query HopQuery {
get_students {

name
personal_details {

address
contact {

email
emergency_contact {

name
phone

}
}

}
}

}

Figure 6: Three Hop Example query

query FilterQuery {
get_students(filter: { weight: { lt:

70 }, height: { gt: 150 } }) {
name
weight
height

}
}

Figure 7: Two Filters query

query AliasQuery {
c1: get_students(filter: { weight: {

lt: 70 } }) {
name
weight

}
c2: get_students(filter: { height: { gt

: 150 } }) {
name
height

}
}

Figure 8: Alias with different filter query

query MultiEndQuery{
students: get_students {

student_id
name
weight
height

}
courses: get_courses {

course_id
course_name
instructor {

name
department

}
}

}

Figure 9: Multi-Endpoint Example query

Fragment StudentDetails on Student {
student_id
name

}

query WithFragments {
student1: get_students(filter: {

student_id: 1 }) {
... StudentDetails

}
student2: get_students(filter: {

student_id: 2 }) {
... StudentDetails

personal_details {
address

}
}

}

Figure 10: Fragment Example query

query MultiTypeQuery{
courses: get_courses {

course_id
course_name
instructor {

name
department

}
student{

name
weight

}
}

}

Figure 11: Multi Type Example query

1603

B Errors in the Generated GraphQL
queries

The generated GraphQL queries exhibited several
significant issues that negatively impacted the ac-
curacy of LLM models, including:

1. Hallucinated Endpoints: Queries included
GraphQL endpoints that were not present in
the input schema, leading to responses based
on non-existent data.

2. Hallucinated Additional Predicates: Erro-
neous filter predicates were introduced in
the queries that did not align with the cor-
responding natural language (NL) query re-
quirements.

3. Selecting Incorrect Endpoint: Although
the correct fields were fetched, they were re-
trieved from the wrong GraphQL endpoint
within the schema.

4. Fetched Fewer Fields: Inadequate field re-
trieval led to incomplete responses.

5. Returned Additional Data: Given that
GraphQL is designed to fetch specific data,
retrieving all fields from a type node when
only a few are required constitutes a failure
case.

6. Sensitivity with Utterance: Models dis-
played performance instability with minor
variations in input, indicating a lack of ro-
bustness.

C Beyond full fine-tuning

To address the identified issues and enhance model
performance beyond full fine-tuning, the following
strategies could be implemented:

1. Schema Filtering and Enrichment: Consid-
ering that a GraphQL schema can be exten-
sive, identifying and utilizing only the rele-
vant parts of the schema based on the input
NL query could optimize prompt efficiency.
This approach not only conserves token us-
age, reducing inference costs, but also frees
up space to include more in-context examples,
thereby enhancing the guidance provided to
the LLM during generation.

2. Finding More Relevant In-context Exam-
ples: Adding a single in-context example has

shown to improve query accuracy. Expand-
ing this to include a wider array of relevant
examples can enrich the context and improve
model generalization across test data.

3. Dynamic Number of In-context Examples
to Saturate Prompts: The space available
for in-context examples varies with the input
GraphQL Schema. Therefore, the number of
examples can be dynamically adjusted based
on the available context length to enrich the
context further and minimize the risk of length
errors.

4. Lightweight PEFT Tuning Including
Prompt Tuning: Rather than extensive
full finetuning, parameter-efficient tuning
approaches, such as prompt tuning using a
subset of the training dataset, could refine
model responses with minimal computational
overhead.

These enhancements aim to mitigate the identi-
fied issues and improve the accuracy and reliability
of GraphQL query generation by LLMs.

D LLM Prompt

Here, we present a sample prompt used with the
LLMs for GraphQL query operation generation.
The prompt is structured into three distinct sec-
tions:

• Instruction: This section defines the task and
outlines the syntax expected in the generated
GraphQL query.

• In-Context Samples: A few examples are
included here to provide contextual informa-
tion that aids the model in understanding the
intended output.

• Input: This final section incorporates the in-
put GraphQL schema along with the natural
language (NL) query.

Sample LLM Prompt
Your task is to write an API request for a custom
database schema based on the API reference pro-
vided. For guidance on how to correctly format this
API request, consult the API reference here: Note:
Please only use the API reference to understand the
syntax of the request. Make sure your request is
compliant with it.
Here are some quick notes about the API syntax:

1604

- Abbreviation of any word shouldn’t be used, for
examples India can’t be considered as IND.
- All queries should follow below format:

```{
returnType1: subFunction1Name("

parameter1": "value1", "
parameter2": "value2", ...) {

Object1
Object2
Object3

....
}

returnType2: subFunction2Name("
parameter3": "value3", ...) {
Object4

....
}

returnType3: subFunction3Name(filter:
{"parameter4": {"operator": "

value4"}}, ...) {
Object5

....
}

}
```

Training Example 1:
CUSTOM SCHEMA:

```
type Course {

course: String
course_arrange: [Course_arrange]
course_id: Int!
staring_date: String

}
type Course_arrange {

course: Course
course_id: Int!
grade: Int!
teacher: Teacher
teacher_id: Int!

}
type Teacher {

age: String
course_arrange: [Course_arrange]
hometown: String
name: String
teacher_id: Int!

}

type Query {
course(course_id: Int!): Course
courseList: [Course]
coursePaginatedList(first: Int , after:

Int): [Course]
course_arrangeList: [Course_arrange]
teacher(teacher_id: Int!): Teacher
teacherList: [Teacher]

}
```

COMMAND: “‘text Give me course name and
id of the all courses, also name and age of all teach-
ers.”’
API Request:

```
{

courseList {
course_id
course

}
teacherList {

name
age

}
}
```

Test Example:
CUSTOM SCHEMA:

```
type Accounts {

"Account Number"
account_no: ID
"Address of the client"
address: String
"City of the client"
city: String
"Status of the client"
client_status: String
"Sub Status of the client"
client_sub_status: String
"Company name of the client"
company: String
"Country of the client"
country: String
"The domestic revenue of the client.

It is included in the calculation
of total revenue for the client."

domestic_revenue: String
"Employee Count of the client"
employee_count: Float
"The Global Revenue of the client. It

is included in the calculation of
total revenue for the client."

global_revenue: String
"Industry of the client"
industry: String
"Sub Industry of the client"
sub_industry: String

}

1605



type Contacts {
"Street Address"
address: String
"City Name"
city: String
"Company Name"
company: String
"Street Address"
company_address: String
"City Name"
company_city: String
"Country Name"
company_country: String
"Country Name"
country: String
"The email address associated with the

contact."
email_address: String
"First Name"
first_name: String
"The unique code or identifier

associated with the job role."
job_code: String
"A brief description of the job role ,

providing additional context or
details about the position."

job_description: String
"The official title or designation of

the job role within the
organization."

job_title: String
"Last Name"
last_name: String
"The phone number associated with the

contact."
phone_number: String
"State Name"
state: String

}

input StringFilter {
like: String

}

input AccountsFilter {
industry: StringFilter
sub_industry: StringFilter
city: StringFilter

}

input ContactsFilter {
job_title: StringFilter
state: StringFilter
city: StringFilter

}

type Query {
" Queries for type 'Accounts ' "
accountsList: [Accounts]
accountsList_Filter(filter:

AccountsFilter): [Accounts]
contactsList: [Contacts]

}

“‘ COMMAND: “‘text Give me a list of Finan-
cial Markets accounts with their revenue.”’

API Request:

E Manual Schema Enrichment

The initial GraphQL schema corresponding to
the schema shown in Figure 1 was generated via
StepZen and it comprises of two disjoint GraphQL
schema shown below:

Schema 1

type Student {
student_id: Int!
name: String
weight: Float
height: Float

}
type Query {

studentList :[ Student]
}

Figure 12: GraphQL Schema for the Student Database

Schema 2

type Personal_Details {
student_id: Int!
address: String
contact: String

}

type Query {
personaldetails(student_id: Int!):[

Personal_Details]
}

Figure 13: GraphQL Schema for the Personal Details
REST Endpoint

Now, we perform the following manual steps:

1. Extract the ‘name‘ field from the student type
and create an interface to encapsulate it.

interface Person{
name: String

}

2. Connect the two disjoint schemas by adding
a virtual endpoint that fetches the personal
details from the secure API and combines it
with the student details

1606



type Student implements Person {
student_id: Int!
weight: Float
height: Float
personal_details :[

Personal_details]
}

3. Add a float filter capability in the schema that
allows users to apply less-than filter predi-
cates.

input FloatFilter {
lt: Float

}

4. Attach the float filter to the weight field of the
student

input sFilter {
weight: FloatFilter

}

5. Create a new endpoint to enable users to ac-
cess a filtered list of students based on their
weight.

type Query {
studentList :[ Student]
get_students(filter:sFilter):[

Student]
}

1607


