
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 267–278
November 12-16, 2024 ©2024 Association for Computational Linguistics

Code Representation Pre-training with Complements from
Program Executions

Jiabo Huang1, Jianyu Zhao1, Yuyang Rong2, Yiwen Guo*3, Yifeng He2, Hao Chen2

1Tencent Security Big Data Lab, 2UC Davis, 3Independent Researcher
{jiabohuang, yjjyzhao}@tencent.com, {PeterRong96, guoyiwen89}@gmail.com, {yfhe, chen}@ucdavis.edu

Abstract

Language models for natural language pro-
cessing have been grafted onto programming
language modeling for advancing code intelli-
gence. Although it can be represented in the
text format, code is syntactically more rigorous,
as it is designed to be properly compiled or in-
terpreted to perform a set of behaviors given
any inputs. In this case, existing works bene-
fit from syntactic representations to learn from
code less ambiguously in forms of abstract syn-
tax tree, control-flow graph, etc. However, pro-
grams with the same purpose can be imple-
mented in various ways showing different syn-
tactic representations, while the ones with simi-
lar implementations can have distinct behaviors.
Though trivially demonstrated during execu-
tions, such semantics about functionality are
challenging to be learned directly from code, es-
pecially in an unsupervised manner. Hence, in
this paper, we propose FuzzPretrain to explore
the dynamic information of programs revealed
by their test cases and embed it into the feature
representations of code as complements. The
test cases are obtained with the assistance of a
customized fuzzer and are only required during
pre-training. FuzzPretrain yielded more than
6%/19% mAP improvements on code search
over its masked language modeling counter-
parts trained with only source code and source
code coupled with abstract syntax trees (ASTs),
respectively. Our experiments show the bene-
fits of learning discriminative code representa-
tions from FuzzPretrain.

1 Introduction

Code representation learning is drawing growing
attention across the community of artificial intelli-
gence (AI) and software engineering (SE) (Husain
et al., 2019; Deng et al., 2023; Liu et al., 2023a;
Xiong et al., 2023; Lin et al., 2024; He et al., 2024).
The pre-training recipes (Devlin et al., 2019; Liu

* Corresponding author

et al., 2019) for natural languages have been shown
effective in code representation learning (Feng
et al., 2020; Radford et al., 2019). These methods
leverage source code and code structures, such as
abstract syntax tree (AST) (Guo et al., 2022; Tipir-
neni et al., 2022) and control-flow graph (CFG) (Al-
lamanis et al., 2018), to learn code representation.
However, these structures are not sufficient for code
representation, as they neglect the dynamic behav-
ior of code, which is reflected in program execu-
tion (Liu et al., 2023a). Therefore, some works
(Wang and Su, 2020; Zhao et al., 2023; Wang
et al., 2024) proposed to learn program embedding
from the combination of symbolic and concrete
execution behaviors. Specially, Zhao et al. (2023)
proposed FuzzTuning that utilized fuzzing (Zeller
et al., 2019) to generate input-output pairs of pro-
grams for code-related downstream tasks through
fine-tuning with these test cases. The underlying
motivation is that the relationship between inputs
and their corresponding outputs essentially repre-
sents the functions or subroutines, and ultimately,
the entire program. Although effective, these meth-
ods necessitate the use of input-output pairs during
the inference process. Yet, obtaining high-quality
input-output pairs during inference can be time-
consuming and requires intricate engineering, thus
posing challenges for practical implementation.

In this work, we aim to embed the input-output
relationships (represented by test cases) of code
into its feature representations pre-training instead
of fine-tuning, to address the dependency on real-
time fuzzing during inference. To accomplish this
goal, we follow Zhao et al. (2023) to take advan-
tage of fuzzing to produce test cases that cover the
logic paths of code as comprehensively as possible.
However, in this paper, these test cases are used in
pre-training instead of fine-tuning. We propose a
novel method called FuzzPretrain for joint static

Project page: https://github.com/Raymond-sci/
FuzzPretrain.

267

https://github.com/Raymond-sci/FuzzPretrain
https://github.com/Raymond-sci/FuzzPretrain

and dynamic information modeling. Particularly, in
addition to exploring code structure by masked lan-
guage modeling (Devlin et al., 2021), it formulates
a dynamic information matching (DIM) pretext
task to tell test cases of different programs apart ac-
cording to their correspondence to code. By doing
so, the model learns holistic feature representations
of code and its test cases, encoding both the struc-
ture and functionality. FuzzPretrain also involves a
self-distillation objective to accomplish a dynamic
information distillation (DID) objective. Thereby,
the dynamic information is not only properly mod-
elled but distilled from the holistic representations
to code features, so to benefit in practice where the
test cases are not available.

We make three contributions in this paper: (1)
We propose to leverage the test cases of programs
obtained with the help of fuzzing as explicit indi-
cations of functionality to complement their code
and syntactic representations. To the best of our
knowledge, this is the first attempt to unveil the ben-
efits of fuzzing to code representation pre-training.
(2) We introduce a novel code pre-training method
named FuzzPretrain. It simultaneously models the
structure and functionality of code while distilling
from such holistic information to represent code in
its feature space. It is ready to benefit downstream
tasks without extra cost on test case generations. (3)
Extensive experiments on four code understanding
downstream tasks demonstrate the effectiveness of
FuzzPretrain on complementing both source code
and its syntactic representations, e.g. AST, by test
cases for learning discriminative feature represen-
tations.

2 Related Work

Code representation learning. Language mod-
els (Raffel et al., 2020; Liu et al., 2019; Devlin
et al., 2021) have achieved unprecedented break-
throughs in natural language processing in recent
years (Vaswani et al., 2017; Devlin et al., 2021;
Radford et al., 2019). Such successes of language
models have been consistently transferred to code
representation learning and advance code intelli-
gence. These works leverage plain code (Feng
et al., 2020; Chen et al., 2021a; Lu et al., 2021)
and code structures, such as abstract syntax tree
(AST) (Guo et al., 2022; Tipirneni et al., 2022) and
control-flow graph (CFG) (Allamanis et al., 2018)
for code representation learning.

However, as illustrated by Wang and Christodor-

escu (2019), due to the inherent gap between
program syntax and runtime semantics, models
learned from source code and code structure (i.e.,
the static models) can be imprecise and not deep
at capturing semantic properties. More recent ap-
proaches (Wang et al., 2024; Zhao et al., 2023; Liu
et al., 2023a) attempted to use dynamic execution
traces to learn program representation. By con-
sidering dynamic execution paths, symbolic traces
provide precise information about dynamic pro-
gram behavior and reduce false-positive rates in
code related tasks.
Language models meet software testing. There
are recent efforts on automated bugs mining by
language models (Schäfer et al., 2023; Kang et al.,
2023), which hold an opposite objective to ours
on benefiting software testing by code generation.
On the other hand, harnessing program execution
traces for comprehensive code representation learn-
ing has been widely studied (Wang et al., 2017;
Wang and Su, 2020; Henkel et al., 2018; Liu et al.,
2023a; Ding et al., 2023). As execution traces are
challenging for the end user to specify, they are
more difficult to obtain than more basic forms of
specification such as input/output pairs (Shin et al.,
2018). Fuzzing is supported out-of-the-box for
most mainstream programming languages to gen-
erate the test cases (Serebryany, 2017; Ding and
Le Goues, 2021), which is crucial for constructing
multilingual code understanding models. Whilst
Shin et al. (2018); Chen et al. (2021b) explores the
benefits of test cases to program synthesis, Zhao
et al. (2023) share the same insight with us to lever-
age auto-generated test cases for discriminative
code representation learning. Zhao et al. (2023)
assume the availability of test cases on every down-
stream task, however, collecting additional infor-
mation about the structure or functionality of code
requires sufficient expertise in SE and this undoubt-
edly hampers the model’s applicability. By con-
trast, we aim to explore program executions only in
pre-training to preserve the benefits of dynamic in-
formation to code understanding in practice where
test cases are not mandatory.

3 Code Representation Pre-training

Given a piece of source code S and a sequence
encoder fθ parameterized by θ, our objective is
to explore the underlying semantics of the code
and encode them in a latent representational space
Xs = fθ(S) = {xs

1,x
s
2, · · · ,xs

|S|} ∈ Rk×|S| in

268

(b) Static Info Modeling(a) Model architecture

[Prefix] Code <SEP> <EOS>Test cases

···

···

···

···

Attention+FFAttention+FF

···

def fibonacci(<mask>):
 n1, n2, arr = 0,<mask>[]
 for _ in range(n):
 arr.<mask>(n1)
 n1, n2 = n2, n1<mask>n2
 return arr

def fibonacci(n):
 n1, n2, arr = 0, 1, []
 for _ in range(n):
 arr.append(n1)
 n1, n2 = n2, n1 + n2
 return arr

def fibonacci(n):

 return arr

Input: 1; Output: [0]
Input: 3; Output: [0,1,1]

MLM
Distill

Input: 1; Output: [0]
Input: 3; Output: [0,1,1]

Input: 1; Output: 2
Input: 2; Output: 4

Match

(c) Dynamic Info Matching

(d) Dynamic Info Distillation

Test cases Only required when pre-trainingCodeSpecial tokens

Figure 1: An overview of FuzzPretrain. (a) The input(code and test cases) is encoded by a transformer. FuzzPretrain
learns code feature representations by (b) static information modeling (SIM) through masked tokens predictions, (c)
dynamic information matching (DIM) to match test cases to code, and (d) dynamic information distillation (DID) to
summarize the holistic information about code structure and functionality.

k-dimensions. This is to provide a general un-
derstanding of code, which enables efficient fine-
tuning on downstream tasks.

In this paper, we propose to explore the dynamic
information obtained from fuzzing process, to com-
plement the static information learned from code
structure, such that we can embed both in fea-
ture representations of code. We present FuzzPre-
train whose overview is depicted in Fig. 1. We
first collect a large-scale code corpus based on Co-
deNet (Puri et al., 2021) and pair each code snippet
with multiple test cases synthesized with the assis-
tance of the same fuzzer as in Zhao et al. (2023)’s
work. We denote the test cases corresponding to S
as D and concatenate it with the code as its joint
static and dynamic representation H = S ⊕D. By
feeding S (or H) into fθ, the features Xs (or Xh)
are trained by masked tokens predictions (Fig. 1
(b)) and test cases to code matching (Fig. 1 (c)).
Besides, FuzzPretrain distills from the holistic fea-
tures Xh of code and test cases and embed it into
Xs, in order to adapt to downstream tasks where
test cases D are not available.

3.1 Fuzzing Code Corpus
Fuzzing is a software verification technique that
plays an important role in identifying vulnerabil-
ities and enhancing software reliability. A fuzzer
verifies the software by repeatedly generating in-
puts for the software to execute. For each execu-
tion, the fuzzer monitors the internal state of the
software to determine if the input triggers any new
behaviors, and a new behavior is deemed triggered
if an input explores at least one new edge of the pro-
gram. These inputs will be stored for future input
generation. Input generation and behavior monitor-

ing together allow the fuzzer to effectively focus on
exploring new program behaviors. By running pro-
grams with these inputs, we obtain test cases (i.e.,
program inputs and the corresponding outputs) of
each program. The test cases embed runtime in-
formation that cannot be easily inferred by static
analysis or learned by language models that solely
learn from static information. Therefore, using
them should supply extra dynamic information to
the language models. In practice, we employed
exactly the same methods as outlined in FuzzTun-
ing (Zhao et al., 2023) to carry out preprocessing,
compilation, and fuzzing of the code. Details can
be found in Zhao et al. (2023)’s paper.

3.2 Static and Dynamic Information Modeling
Taking CodeBERT as a base model, we show how
to derive FuzzCodeBERT, a more powerful code
representation model obtained following the spirit
of our FuzzPretrain in this section. The design with
other base models should be similar.
Input/Output representations. As illustrated in
Fig. 1 (a), we follow Feng et al. (2020) to concate-
nate different parts of inputs together with an <SEP>
token and put an end-of-sentence <EOS> token to
the end of the concatenation. For the code part,
we follow Feng et al. (2020) to obtain S. For the
test cases, we follow Zhao et al. (2023) to decode
them from a series of bytes to Unicode strings and
then prompt them in the form of natural language:
“Input is: INPUT; Output is: OUTPUT”, and we con-
catenate multiple test cases of a program also with
the <SEP> token. CodeBERT adopts the output
feature of the <BOS> token as its sequence-level
representation, thus our FuzzCodeBERT feeds the
concatenation H = S ⊕D into the encoder fθ and

269

use the output feature of <BOS> as the sequence-
level representation xh. The representation xs can
be similarly obtained when only S is used as the
input.
Static information modeling. To learn from the
structure of code S, we adopt the conventional
masked language modeling (MLM) which has been
shown simple yet effective on context understand-
ing (Devlin et al., 2021). We follow the common
practices to randomly choose 15% of the tokens in
S and replace 80% of the selections with a special
<MASK> token, 10% with random tokens and the
remaining are left unchanged. Formally, given the
code S, a subset M ⊂ S of it is masked out and
leaving a sequence S̃ with replaced tokens. Then,
the learning objective is:

LSIM(S) = −
∑

m∈M
log p(m|X̃s), (1)

where m is one of the masked tokens and X̃s is the
features of S̃ produced by fθ. The term p(m|X̃s)
denotes the probability that m is correctly recon-
structed given the incomplete context X̃s.
Dynamic information modeling. To learn from
the dynamic program information, we propose to
match the input-output mappings derived from test
cases. Given a code sequence S, we randomly
sample an unmatched list of test cases D− and de-
cide whether to concatenate S with its own test
cases D or the negative one D− to form an input
sequence H at each training step. We then pair H
with a binary label y ∈ {0, 1} indicating whether
the mapping relationships embedded in it are con-
sistent. After that, H is encoded by fθ to compute
its sequence-level representation xh, which is fur-
ther fed into an additional linear projection layer
FC followed by a binary classifier fϕ:

LDIM(S,D) = BCE(y, fϕ(FC(xh))). (2)

In Eq. (2), the feature xh of H is linearly trans-
formed the fed into the classifier fϕ to predict how
likely the code and test cases in H are matched.
Dynamic information distillation. Eq. (1) and
Eq. (2) require distinct model inputs. Furthermore,
it remains uncertain whether extracting dynamic
information from H in Eq. (2) can enhance the rep-
resentation of S. which is crucial considering that
test cases are not available in many downstream
tasks. Therefore, we further devise a dynamic in-
formation distillation (DID) objective to simultane-
ously learn the holistic information from both code

and test cases H = S ⊕D and enforce encoding
such information in the features of code S. Inspired
by Tian et al. (2020), we formulate DID in the con-
trastive learning paradigm to identify the holistic
representation H from a list of random samples
H− according to the corresponding source code S.
To be concrete, we follow He et al. (2020) to main-
tain a stale copy fθ̂ of the backbone encoder, which
shares the identical architecture with fθ and is up-
dated accordingly by exponential moving average
(EMA) (Lucas and Saccucci, 1990). We then com-
pute the sequence-level feature representation xs

of S and x̂h of H by fθ and fθ̂, respectively. Given
the holistic features X− of a set of random samples
H− computed by fθ̂, which are likely with differ-
ent semantics from H , we train fθ to optimize:

LDID(S, S ⊕D) =

− log
g(x̂h,xs)

g(x̂h,xs) +
∑

x−∈X− g(x−,xs)
.

(3)

The function g(x, y) = exp(cos(x, y)/τ) in Eq. (3)
computes the exponential cosine similarity between
two vectors where τ is a temperature hyperparame-
ter controlling the concentration degree of the simi-
larity distribution. In contrast to LDIM, we always
compute the holistic feature x̂h of code and its own
(matching) test cases to avoid the distractions from
inconsistent structure and functionality.

3.3 Model Training and Inference
The FuzzCodeBERT model is optimized alterna-
tively according to the above three objectives on
each mini-batch of data following (Lample and
Conneau, 2019; Guo et al., 2022). At each training
step, the stale encoder fθ̂ is updated according to fθ
by EMA: θ̂ = λθ̂+(1−λ)θ with a momentum fac-
tor λ, and the holistic representations x̂h obtained
from code and its corresponding test cases will be
fed into the queue X− with the oldest ones inside
being removed in a first-in-first-out manner. After
pre-training, we keep only the transformer encoder
fθ which is able to yield discriminative feature rep-
resentations of code Xs = fθ(S) when only it is
available but not the test cases D at inference or on
downstream tasks.

4 Experiments

We adopted the benchmark datasets introduced by
Puri et al. (2021) to be fuzzed as the training data
of our experiments, which are composed of 1.2M
code snippets implemented in C++/Python/Java.

270

We want to emphasize that our FuzzPretrain is
a generic method that can be integrated into many
other static-based models more than CodeBERT.
To verify this, we perform experiments with one
more base model called UniXcoder (Guo et al.,
2022), which was trained with code and AST. Cor-
respondingly, we denote the variant of FuzzPretrain
built upon UniXcoder as FuzzUniXcoder. We fol-
lowed the base models, i.e., CodeBERT (Feng et al.,
2020) and UniXcoder (Guo et al., 2022) to take a
12-layer transformer with 125M learnable param-
eters for sequence encoding. We trained FuzzPre-
train for 10K steps by the Adam optimizer (Kingma
and Ba, 2014), which took around 12/20 hours on
8 Nvidia V100 GPUs for code and AST, respec-
tively. For hyperparameter selections, we carefully
aligned with our base models as well as He et al.
(2020) regarding LDID (Eq. (3)). We evaluated
FuzzPretrain on four standard code understanding
benchmarks adopted by Guo et al. (2022) including
code-to-code search (abbreviated as code search)
on CodeNet, clone detection on POJ-104 (Mou
et al., 2016), defect detection on Devign (Zhou
et al., 2019) and text-to-code search (abbreviated
as text search) on CosQA (Huang et al., 2021). We
adopted mean average precision (mAP) as the eval-
uation metric for code search and clone detection,
accuracy for defect detection and mean reciprocal
rank (MRR) for text search. More details about
our implementation and evaluation protocols can
be found in Appendix A. Note that test cases are
only used in our unsupervised pre-training phase
and never used in any downstream tasks in experi-
ments.

4.1 Code Representation Learning

Learning with modality discrepancy. To study
whether the inconsistency between pre-training and
deployment will refrain FuzzPretrain from benefit-
ing general code understanding, we first adopted
the code search task to identify equivalent functions
without fine-tuning. Considering that FuzzPretrain
was trained on different data from its base mod-
els (CodeBERT and UniXcoder), to derive reliable
conclusions from fair comparisons, we built several
fairer baselines. The baselines were trained under
the exact same settings as FuzzPretrain but learning
from only code or AST without test cases. We pre-
sented CodeBERT-MLM/UniXcoder-MLM to train
by MLM solely as our baselines following Liu et al.
(2023b), and CodeBERT-MLM+RTD/UniXcoder-
MLM+Contrast to adopt all the losses dedicated to

code understanding in their papers for comprehen-
sive exploration on static information modeling.

As shown in Table 1, the superior performances
attained by FuzzCodeBERT and FuzzUniXcoder
over their static baselines demonstrate that Fuz-
zPretrain is able to yield discriminative code repre-
sentations that are beneficial to downstream tasks
where test cases are not given. We attribute the
performance superiority obtained by FuzzPretrain
to the designs of not only modeling the dynamic
information jointly from code and test cases but
also distilling such knowledge to be encoded into
the feature representations of code. This is evident
by the degradation of FuzzPretrain when training
without either of the proposed components. Such
performance drops further verify the effectiveness
of our delicate designs and demonstrate that it is
non-trivial to benefit code representation learning
by dynamic program information. We further make
qualitative studies to show the superiority of Fuz-
zPretrain in Appendix B.
Code understanding in novel domains. We in-
vestigated whether our learned code features are
transferable and beneficial to downstream tasks in
unseen data domains (Lu et al., 2021) in Table 2.
We see non-negligible performance advantages
obtained by FuzzPretrain over CodeBERT-MLM
and UniXcoder-MLM. Although introducing con-
trastive learning by feeding the same code inputs to
the encoder twice (Gao et al., 2021) (i.e., “Contrast”
in Table 2) is helpful to UniXcoder-MLM on defect
detection, it leads to subtle performance degrada-
tion on the other two tasks. In fact, FuzzPretrain
can obtain a similar improvement (from 64.5% to
65.6%) by integrating such a code-to-code contrast
into our FuzzUniXcoder reported in Table 2. This
also implies the potential of our dynamic informa-
tion modeling on more advanced base models.
Comparisons with more state-of-the-arts. Al-
though FuzzPretrain adopted different pre-training
data from the popular bi-modal dataset (Husain
et al., 2019) to enable compilation and fuzzing,
we compared it with the state-of-the-art mod-
els regardless to demonstrate its competitiveness
on code understanding. Specifically, we com-
pared FuzzPretrain with three types of methods.
RoBERTa (Liu et al., 2019) learns at the natu-
ral language conventions. DISCO (Ding et al.,
2022), CodeRetriever (Li et al., 2022a), and Contra-
BERT (Liu et al., 2023b) benefit from contrastive
learning as in our solution. GraphCodeBERT (Guo
et al., 2021), CodeExecutor (Liu et al., 2023a) and

271

Ruby Python Java
Model DYN Ruby Python Java Ruby Python Java Ruby Python Java Overall

CodeBERT ✗ 13.55 3.18 0.71 3.12 14.39 0.96 0.55 0.42 7.62 4.94
CodeBERT-MLM ✗ 22.45 5.67 1.95 6.74 25.70 5.01 3.61 5.84 13.45 10.05
CodeBERT-MLM+RTD ✗ 13.22 1.00 0.10 1.24 14.35 1.20 0.20 0.18 6.34 4.20
FuzzCodeBERT ✓ 27.92 14.88 7.92 15.39 30.47 10.26 9.94 10.65 17.75 16.13
FuzzCodeBERT w/o DIM ✓ 24.05 14.08 6.96 16.32 27.51 9.54 8.66 9.76 13.49 14.49
FuzzCodeBERT w/o DID ✓ 18.21 2.92 0.72 2.88 25.67 3.13 0.80 1.98 17.98 8.25

UniXcoder ✗ 29.05 26.36 15.16 23.96 30.15 15.07 13.61 14.53 16.12 20.45
UniXcoder-MLM ✗ 20.49 13.54 3.25 10.40 19.49 3.69 4.13 5.14 12.29 10.27
UniXcoder-MLM+Contrast ✗ 30.83 25.73 16.46 25.44 30.50 16.80 16.01 17.26 18.86 21.99
FuzzUniXcoder ✓ 42.84 29.83 17.70 33.73 47.77 21.94 20.83 23.52 33.78 30.22
FuzzUniXcoder w/o DIM ✓ 22.50 13.52 6.66 15.31 22.99 6.81 7.54 6.84 12.94 12.79
FuzzUniXcoder w/o DID ✓ 12.92 5.10 1.36 5.56 14.86 0.87 0.96 0.50 6.81 5.44

Table 1: Evaluations on code search. Results of our base models (CodeBERT and UniXcoder) are from Guo et al.
(2022)’s paper, which are marked in grey because of different training data. The first and second rows in the header
indicate the programming language of the query and the target code snippets, respectively. The column “DYN”
indicates whether a model was trained using the test cases or not. mAP scores (%) are reported.

Model DYN Clone Defect Text

CodeBERT ✗ 82.7 62.1 65.7
CodeBERT-MLM ✗ 88.7 63.5 67.4
CodeBERT-MLM+RTD ✗ 84.7 62.0 66.3
FuzzCodeBERT ✓ 93.0 64.1 69.1

UniXcoder ✗ 90.5 64.5∗ 70.1
UniXcoder-MLM ✗ 91.2 63.8 69.8
UniXcoder-MLM+Contrast ✗ 91.1 65.2 69.7
FuzzUniXcoder ✓ 92.2 64.5 70.7

Table 2: Evaluations in novel data domains. Results
of the base models are marked in grey as training on
different data from ours. Results marked with ∗ are
reproduced using the checkpoints from the authors.

TRACED (Ding et al., 2023) explore program func-
tionality from DFG or execution traces. Note that,
we evaluated CodeExecutor without re-ranking by
execution traces to be more practical. As shown in
Table 3, the performance advantages of FuzzPre-
train over GraphCodeBERT implies that mining the
functionality of programs from the intricate depen-
dencies among variables is more challenging than
modeling from the concrete input-output behav-
ior represented by test cases. Besides, TRACED is
good at code understanding in finer granularity (e.g.
defect detection) by learning from the detailed inter-
nal status of programs in execution traces while our
FuzzPretrain is superior on global understanding
of code snippets (e.g. clone detection) as the test
cases we adopted is invariant to implementation
variations that are agnostic to functionality. Whilst
the methods that are based on contrastive learning
of source code yielded promising results, FuzzPre-
train’s competitiveness shows the effectiveness of
pre-training with complements from dynamic infor-

Model (Year) Clone Defect Text

RoBERTa (2019) 76.7 61.0 60.3
GraphCodeBERT (2021) 85.2 62.9 68.4
DISCO (2022) 82.8 63.8 -
CodeRetriever (2022a) 88.8 - 69.7
ContraBERT (2023b) 90.5 64.2 66.7∗

CodeExecutor (2023a) 70.5∗ 59.0∗ 13.1∗

TRACED (2023) 91.2 65.9 -
FuzzCodeBERT 93.0 64.1 69.1
FuzzUniXcoder 92.2 64.5 70.7

Table 3: Comparisons with the state-of-the-art that adopt
the same backbone network as ours with 125M param-
eters. Results marked with ∗ are reproduced using the
checkpoints from the authors.

mation and fuzzing test cases. More importantly,
FuzzPretrain can be integrated into those methods
to further benefit from more advanced modeling of
static information.

4.2 Ablation study
Effects of dynamic information modeling. To
study the independent contributions of DIM
(Eq. (2)) and DID (Eq. (3)) to dynamic informa-
tion modeling, we constructed and compared three
variants of FuzzPretrain by removing either or both
of them. As shown in Fig. 2, the variant of Fuz-
zPretrain trained with only DID (w/o DIM) often
out-performed the baselines (MLM) trained with
neither DIM nor DID. This indicates that the test
cases concatenated after the source code or its syn-
tactic representations potentially play the roles of
data augmentation to perturb the distributions of
code by supplementing the dynamic information
from test cases. Although adopting either DIM or
DID is slightly better than FuzzPretrain occasion-

272

82

84

86
88

90

92
94

60

61

62

63

64

65
CodeBERT UniXcoder

CodeBERT UniXcoder

MLM - w/o DIM - w/o DID

Clone

Defect

m
A
P@

𝑅
/A
cc
(%
)

Clone

Defect

FuzzPretrain

Figure 2: Effects of different compo-
nents for dynamic information mod-
eling. We constructed three variants
of FuzzPretrain with either DIM or
DID or both being removed to be
compared.

82

84

86
88

90

92

94

60

61

62

63

64

65
CodeBERT UniXcoder

m
A
P@

𝑅/
A
cc
(%
)

Mask Match

CodeBERT UniXcoder

Clone

Defect

Clone

Defect

Both

Figure 3: Dynamic information mod-
eling by MLM. The “Mask” variant
replaces DIM by MLM for both code
and test cases while “Match” is the
design we adopted and “Both” is the
combination of the two.

90

91

92

93

94

95

60

61

62

63

64

65
CodeBERT UniXcoder

CodeBERT UniXcoder

m
A
P@

𝑅
/A
cc
(%
)

Execution Holistic

Clone

Defect

Clone

Defect

Figure 4: Positive pairs in DID. The
“Execution” variant constructs the
positive pairs in DID using code T s

and its test cases T d, and our “Holis-
tic” design contrasts code to its con-
catenation with test cases T s ⊕ T d.

ally, the consistent improvements we brought to
different base models on both the retrieval (clone
detection) and classification (defect detection) tasks
demonstrate the generality of combining the two
designs, which is critical for a pre-training method.
Dynamic information modeling using MLM. To
justify our DIM’s effectiveness on dynamic mod-
eling over the conventional MLM, we replace or
combine it with MLM on both code and test cases
to form two variants of FuzzPretrain as “Mask” and
“Both” in Fig. 3, respectively. The performance su-
periority of “Match” to the two variants indicates
that applying MLM in test cases is sub-optimal.
From our training logs, we observe that the encoder
could accurately reconstruct the masked tokens in
test cases (or code) regardless of whether the code
(or the test cases) is available in the model input.
This implies that syntactic and functional represen-
tations are both very informative and can be well
reconstructed independently, which makes it less
straightforward to associate them by MLM. On the
contrary, the labels for our DIM is defined only
by the relationships between code and test cases,
hence, it is infeasible to predict such labels with-
out learning their correlations. Besides, the “Both“
alternative tends to associate code with arbitrary
patterns in test cases, which are explored by MLM.
The resulted correlations can be distracting to code
understanding considering the randomness in test
cases introduced by fuzzing.
Positive pairs in DID. To justify our design of DID,
we built a variant of FuzzPretrain which formulates
the LDID to identify test cases D according to their
corresponding code S or AST by constructing the

positive pairs in Eq. (3) to be (S,D) instead of
(S, S ⊕D) in FuzzPretrain. We denote this variant
as “Execution” and FuzzPretrain as “Holistic” to
be compared in Fig. 4. Although the performances
of the “Execution” variant on clone detection are
on par with that of the “Holistic” counterpart, its in-
feriority on defect detection is non-negligible. We
believe that this is due to the distribution discrepan-
cies between code and test cases (e.g. test cases are
likely to involve an exhaustive list of random num-
bers as inputs which are barely seen in code). It
is more reasonable to jointly learn from test cases
and source code to simultaneously benefit from
dynamic information and mitigate the negative im-
pacts from distribution discrepancies.

5 Conclusion

In this paper, we have made the first attempt to
use (fuzzing) test cases to facilitate effective code
representation pre-training. To benefit from such a
“new modality” of data that is often not available in
downstream tasks, we have proposed FuzzPretrain
for joint static and dynamic information model-
ing. Specifically, FuzzPretrain is trained not only
to accomplish the conventional masked tokens pre-
dictions objective but also to learn the input-output
relationships from test cases encoding the program-
specific runtime behaviors, as well as enforcing the
model to infer such dynamic knowledge from code
structures solely. We have shown how FuzzPretrain
can be used to enhance CodeBERT and UniXocder.
Extensive experiments on various code understand-
ing downstream tasks demonstrate the benefits of
our FuzzPretrain.

273

References
Miltiadis Allamanis, Marc Brockschmidt, and Mah-

moud Khademi. 2018. Learning to represent pro-
grams with graphs. In The International Conference
on Learning Representations.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021a. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Xinyun Chen, Dawn Song, and Yuandong Tian. 2021b.
Latent execution for neural program synthesis be-
yond domain-specific languages. Advances in Neural
Information Processing Systems, 34:22196–22208.

Yinlin Deng, Chunqiu Steven Xia, Haoran Peng,
Chenyuan Yang, and Lingming Zhang. 2023. Large
language models are zero-shot fuzzers: Fuzzing deep-
learning libraries via large language models.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2021. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Association for Computational Linguistics.

Yangruibo Ding, Luca Buratti, Saurabh Pujar, Alessan-
dro Morari, Baishakhi Ray, and Saikat Chakraborty.
2022. Towards learning (dis)-similarity of source
code from program contrasts. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
6300–6312, Dublin, Ireland. Association for Compu-
tational Linguistics.

Yangruibo Ding, Ben Steenhoek, Kexin Pei, Gail Kaiser,
Wei Le, and Baishakhi Ray. 2023. Traced: Execution-
aware pre-training for source code. In International
Conference on Software Engineering.

Zhen Yu Ding and Claire Le Goues. 2021. An em-
pirical study of oss-fuzz bugs. In 2021 IEEE/ACM
18th International Conference on Mining Software
Repositories (MSR), pages 131–142. IEEE.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A pre-trained model for programming and
natural languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1536–1547, Online. Association for Computational
Linguistics.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence
embeddings. In Conference on Empirical Methods
in Natural Language Processing, pages 6894–6910,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross-
modal pre-training for code representation. In Asso-
ciation for Computational Linguistics.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svy-
atkovskiy, Shengyu Fu, et al. 2021. Graphcodebert:
Pre-training code representations with data flow. In
The International Conference on Learning Represen-
tations.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. 2020. Momentum contrast for unsu-
pervised visual representation learning. In The IEEE
conference on computer vision and pattern recogni-
tion, pages 9729–9738.

Yifeng He, Jiabo Huang, Yuyang Rong, Yiwen Guo,
Ethan Wang, and Hao Chen. 2024. Unitsyn: A large-
scale dataset capable of enhancing the prowess of
large language models for program testing. In Pro-
ceedings of the 33rd ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages
1061–1072.

Jordan Henkel, Shuvendu K Lahiri, Ben Liblit, and
Thomas Reps. 2018. Code vectors: Understand-
ing programs through embedded abstracted symbolic
traces. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software
Engineering, pages 163–174.

Junjie Huang, Duyu Tang, Linjun Shou, Ming Gong,
Ke Xu, Daxin Jiang, Ming Zhou, and Nan Duan.
2021. Cosqa: 20,000+ web queries for code search
and question answering. In Association for Compu-
tational Linguistics.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436.

274

http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2022.acl-long.436
https://doi.org/10.18653/v1/2022.acl-long.436
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552

Sungmin Kang, Juyeon Yoon, and Shin Yoo. 2023.
Large language models are few-shot testers: Explor-
ing llm-based general bug reproduction.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. The Interna-
tional Conference on Learning Representations.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. arXiv preprint
arXiv:1901.07291.

Xiaonan Li, Yeyun Gong, Yelong Shen, Xipeng Qiu,
Hang Zhang, Bolun Yao, Weizhen Qi, Daxin Jiang,
Weizhu Chen, and Nan Duan. 2022a. Coderetriever:
Unimodal and bimodal contrastive learning. In Con-
ference on Empirical Methods in Natural Language
Processing.

Xiaonan Li, Daya Guo, Yeyun Gong, Yun Lin, Ye-
long Shen, Xipeng Qiu, Daxin Jiang, Weizhu Chen,
and Nan Duan. 2022b. Soft-labeled contrastive pre-
training for function-level code representation. arXiv
preprint arXiv:2210.09597.

Jiongliang Lin, Yiwen Guo, and Hao Chen. 2024. In-
trusion detection at scale with the assistance of
a command-line language model. arXiv preprint
arXiv:2404.13402.

Chenxiao Liu, Shuai Lu, Weizhu Chen, Daxin Jiang,
Alexey Svyatkovskiy, Shengyu Fu, Neel Sundaresan,
and Nan Duan. 2023a. Code execution with pre-
trained language models. ACL.

Shangqing Liu, Bozhi Wu, Xiaofei Xie, Guozhu Meng,
and Yang Liu. 2023b. Contrabert: Enhancing code
pre-trained models via contrastive learning. In Inter-
national Conference on Software Engineering.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.
Codexglue: A machine learning benchmark dataset
for code understanding and generation. arXiv
preprint arXiv:2102.04664.

James M Lucas and Michael S Saccucci. 1990.
Exponentially weighted moving average control
schemes: properties and enhancements. Technomet-
rics, 32(1):1–12.

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016.
Convolutional neural networks over tree structures
for programming language processing. In Proceed-
ings of the AAAI conference on artificial intelligence,
volume 30.

Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang,
Giacomo Domeniconi, Vladimir Zolotov, Julian
Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker,
et al. 2021. Codenet: A large-scale ai for code
dataset for learning a diversity of coding tasks. arXiv
preprint arXiv:2105.12655.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank
Tip. 2023. Adaptive test generation using a large
language model. arXiv preprint arXiv:2302.06527.

Kostya Serebryany. 2017. OSS-Fuzz - google’s contin-
uous fuzzing service for open source software. Van-
couver, BC. USENIX Association.

Eui Chul Shin, Illia Polosukhin, and Dawn Song. 2018.
Improving neural program synthesis with inferred
execution traces. Advances in Neural Information
Processing Systems, 31.

Jeffrey Svajlenko, Judith F Islam, Iman Keivanloo,
Chanchal K Roy, and Mohammad Mamun Mia. 2014.
Towards a big data curated benchmark of inter-project
code clones. In 2014 IEEE International Conference
on Software Maintenance and Evolution, pages 476–
480. IEEE.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. 2020.
Contrastive representation distillation. ICLR.

Sindhu Tipirneni, Ming Zhu, and Chandan K Reddy.
2022. Structcoder: Structure-aware transformer for
code generation. arXiv preprint arXiv:2206.05239.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Huanting Wang, Zhanyong Tang, Shin Hwei Tan, Jie
Wang, Yuzhe Liu, Hejun Fang, Chunwei Xia, and
Zheng Wang. 2024. Combining structured static
code information and dynamic symbolic traces for
software vulnerability prediction. In Proceedings
of the IEEE/ACM 46th International Conference on
Software Engineering, pages 1–13.

Ke Wang and Mihai Christodorescu. 2019. Coset: A
benchmark for evaluating neural program embed-
dings. arXiv preprint arXiv:1905.11445.

275

Ke Wang, Rishabh Singh, and Zhendong Su. 2017. Dy-
namic neural program embedding for program repair.
arXiv preprint arXiv:1711.07163.

Ke Wang and Zhendong Su. 2020. Blended, precise
semantic program embeddings. In Proceedings of the
41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 121–
134.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi
D. Q. Bui, Junnan Li, and Steven C. H. Hoi. 2023.
Codet5+: Open code large language models for code
understanding and generation.

Weimin Xiong, Yiwen Guo, and Hao Chen. 2023. The
program testing ability of large language models for
code. arXiv preprint arXiv:2310.05727.

Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gor-
don Fraser, and Christian Holler. 2019. The fuzzing
book.

Jianyu Zhao, Yuyang Rong, Yiwen Guo, Yifeng He,
and Hao Chen. 2023. Understanding programs by
exploiting (fuzzing) test cases. ACL.

Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du,
and Yang Liu. 2019. Devign: Effective vulnerability
identification by learning comprehensive program
semantics via graph neural networks. Advances in
neural information processing systems, 32.

A Implementation, Datasets and
Evaluation protocols

Datasets. Puri et al. (2021) proposed a large-
scale dataset CodeNet, consisting of over 14 mil-
lion code samples and about 500 million lines of
code, which is intended for training and evaluating
code models. We adopted the C++1000, C++1400,
Python800, Java250 benchmark datasets of Co-
deNet to be fuzzed as the training data of FuzzPre-
train. We then evaluated FuzzPretrain extensively
on four code understanding benchmark datasets
of CodeXGLUE (Lu et al., 2021): (1) another
subset of CodeNet (Puri et al., 2021) collected
by Guo et al. (2022) consisting of 50K functions
implemented in Python, Java, and Ruby for solving
one of 4, 053 online coding problems; (2) POJ-
104 (Mou et al., 2016) which contains 104 C/C++
coding problems with 500 code submissions to
each; (3) Devign (Zhou et al., 2019) which is com-
posed of vulnerable functions from four large and
popular C-language open-source projects with man-
ual labels; (4) CosQA which contains 20,604 pairs
of code and real-world web queries (Huang et al.,

Licensed under the Apache License, Version 2.0
Licensed under Creative Commons Zero v1.0 Universal

2021) with annotations from human experts indi-
cating whether the questions raised by the queries
can be properly addressed by the code. All the
data used for fine-tuning and testing are carefully
aligned with previous studies (Feng et al., 2020;
Guo et al., 2022).
Evaluation protocols. We first investigated the
discrimination ability of the learned code repre-
sentations by code-to-code search (abbreviated as
code search in the paper) on the subset of CodeNet
collected by Guo et al. (2022). In this task, sub-
missions of the same coding problems are assumed
to share the same semantics regardless of their im-
plementations. The feature distances between code
pairs were adopted to measure their semantic simi-
larity and the mean average precision (mAP) was
reported to quantify the quality of the retrieval re-
sults. We then studied the effects of FuzzPretrain
to several downstream tasks in unseen domains,
including clone detection, defect detection and text-
to-code search (abbreviated as text search). The ob-
jective of clone detection is similar to that of code
search but with fine-tuning in target domains. We
followed the same protocol of Feng et al. (2020)’s
work to test on POJ-104 and use mAP@R to assess
the results, with only the top-R (R = 499) most
similar samples were considered in retrieval. In the
task of text search, which requires retrieving code
snippets according to textual queries, the mean
reciprocal rank (MRR) is adopted as the metric fol-
lowing Guo et al. (2022)’s work. This evaluation
was conducted on CosQA. Defect detection was
carried out on Devign and the accuracy (Acc) of bi-
nary classification is adopted with a fixed threshold
of 0.5.
Implementation details. Both our base models,
i.e. CodeBERT (Feng et al., 2020) and UniX-
coder (Guo et al., 2022), followed Liu et al. (2019)
to take a 12-layer transformer with 125M learnable
parameters for sequence encoding. We followed
their designs to set the batch size to 2048 and 1024
while the maximum sequence length to 512 and
1024 for CodeBERT and UniXcoder, respectively.
In inputs, 400 and 800 tokens are reserved for code
and AST, respectively, and the rest are for test cases.
The test cases of each program were concatenated
with the code or the AST by the separation token
until reaching the length limits, while the rest was
dropped. The FuzzPretrain model was updated by
the Adam optimizer (Kingma and Ba, 2014) dur-
ing training with a learning rate of 2e− 5 for 10K
steps. For dynamic information distillation LDID

276

http://arxiv.org/abs/2305.07922
http://arxiv.org/abs/2305.07922

C++† C++‡ Python Java Overall

CodeBERT 13.95 13.22 31.23 26.72 21.28
CodeBERT-MLM 26.34 24.08 48.71 34.94 33.52
CodeBERT-MLM+RTD 11.61 11.51 25.41 10.23 14.69
FuzzCodeBERT 69.98 68.65 78.13 69.98 71.69

UniXcoder 17.57 15.89 55.28 45.49 33.56
UniXcoder-MLM 32.84 30.28 46.79 46.90 39.20
UniXcoder-MLM+Contrast 47.47 43.99 60.65 51.54 50.91
FuzzUniXcoder 71.72 68.40 80.27 77.43 74.45

Table 4: Evaluations on inductive code search. To guar-
antee that no test data is seen by any models even in the
unsupervised pre-training, the mAP scores (%) are re-
ported on the test splits of C++1000 (“C++†”), C++1400
(“C++‡”), Python800 (“Python”), and Java250 (“Java”)
that are all completely disjoint from the pre-training
code data. Here, “Overall” indicates the average mAP
performance overall.

(Eq. (3)), we followed He et al. (2020) to set the
momentum coefficient m = 0.999, the tempera-
ture τ = 0.07, and the number of random samples
|H−| = 216. The overall pre-training process took
around 12/20 hours on 8 Nvidia V100 GPUs for
training with code and AST, respectively.

B Additional experiments and analysis

Inductive zero-shot code search. We adopted the
testing split provided by UniXcoder (Guo et al.,
2022) for evaluation of code search, it is likely to
overlap with our training data in CodeNet by shar-
ing over 70% of the coding problems. Therefore,
we consider the searching of those overlapping
samples as transductive inference problems. This
is also a practical scenario given that the training
data of the latest code models covers a large pro-
portion of open-source projects in Github and is
likely to involve the code-of-interests to users. We
have also evaluated in an inductive setup where
the query and the candidate code snippets are sub-
missions to 50 coding problems of each program-
ming language that have never been seen during
pre-training. As shown in Table 4, the superiority
of our FuzzPretrain over both the base models and
our baselines still holds. That is, these results show
that our model is effective not only in the trans-
ductive inference setup for code search, but also in
an inductive setup where no training/test overlap
exists.
Qualitative studies. We further showed an exam-
ple of code search in Fig. 5 (a) to exhibit the nearest
neighbors of a reference code snippet decided by
either UniXcoder or its FuzzPretrain counterpart.
Together with the t-SNE (Van der Maaten and Hin-
ton, 2008) visualization of the python code submis-

sions to 50 randomly selected problems (classes)
encoded by either of the two models in Fig. 5 (b)
and (c) respectively, it is obvious that our FuzzPre-
train is sensitive to the functionality of programs re-
gardless of their implementation variations, which
results in more compact clusters to be consistent
with the underlying semantics of code.

(a) A case study

def iroha():
 a, b, c = input().split()
 shead = a[0].upper()
 sshead = b[0].upper()
 ssshead = c[0].upper()
 print(shead + sshead + ssshead)
if __name__ == "__main__":
 iroha()

def iroha():
 a, b, c = input().split()
 s = a[len(a)-1]
 sshead = b[0]
 sstail = b[len(b)-1]
 sss = c[0]
 if s == sshead and sstail == sss:
 print("YES")
 else:
 print("NO")
if __name__ == "__main__":
 iroha()

a,b,c = input().split()
if a[len(a)-1] == b[0] and b[len(b)-1] == c[0]:
 print("YES")
else:
 print("NO")

Reference NN from UniXcoder

NN from FuzzPretrain

False positive

Anchor

True positive

(b) Features from UniXcoder (c) Features from FuzzPretrain

Figure 5: Qualitative studies for code search. The func-
tional equivalence of code snippets are marked by their
shared colors. Only a few classes are highlighted with
bright colors to be visually distinguishable.

Comparisons to commercial language models.
Commercial language models have recently shown
remarkable zero-shot capability to various code
understanding and generation downstream tasks.
Whilst our proposed ideas are generic and in-
tegrable into any static-based models regardless
of their scale, we further conducted a prelimi-
nary comparison to the "text-embedding-ada-002"
model from OpenAI to demonstrate our special-
ization on the task of semantic code search. To
be concrete, we followed OpenAI’s instruction of
getting code embeddings to evaluate their model
for python-to-python code search in CodeNet (Puri
et al., 2021). The OpenAI’s model yielded 35.91%
mAP while ours are 30.47% and 47.77% when
adopting either CodeBERT or UniXcoder as the
base model, respectively. Given that CodeNet care-
fully removed near-duplicated submissions to the
same coding problems with over-high syntactic
similarity, such initial evaluation results indicate

https://platform.openai.com/docs/guides/embeddings/use-
cases

277

that semantic code search is fundamentally chal-
lenging and the test cases we adopted are strong
indicators of program’s functionality, which ensure
our competitiveness to the larger and more complex
models.

C Future works and Limitations

Fuzzing code corpus. Our current pre-training
data is restricted to OJ-like code corpus (i.e., Co-
deNet) (Puri et al., 2021), which refrains us from
ablating affecting factors in the data distribution
in making fair comparison to existing methods.
To be more specific, most commonly adopted
code corpus (Husain et al., 2019) are composed
of standalone functions spread over various soft-
ware projects (e.g., CodeSearchNet), whose test
cases cannot be easily obtained. Whilst OJ data is
showing some unique characteristics to benefit our
FuzzPretrain model on understanding similar code
snippets as indicated by our remarkable perfor-
mance advantages on POJ-104 (Mou et al., 2016)
(Table 3), this also limits our model’s generaliza-
tion ability to other type of code corpus, e.g. the F1-
score of clone detection on BigCloneBench (Sva-
jlenko et al., 2014) yielded by our FuzzUniXcoder
was 1% lower than that by UniXcoder pre-trained
on CodeSearchNet. Yet, when both pre-trained
on the same selected subset of CodeNet, our Fuz-
zPretrain leads to +0.9% F1 gain in comparison to
existing pre-training strategies using, for example,
the MLM loss on CodeBERT. Exploring fuzzing
on more diverse code corpus help address this limi-
tation.
Text-code tasks. Following the discussion about
fuzzing code corpus in the previous paragraph, we
would like to mention that, since CodeNet does
not contain text description of each code, pre-
training on it may not fully unleash the power of
pre-training on text-code downstream tasks. That is
to say, although we have shown the effectiveness of
our FuzzPretrain on the text code search task in Ta-
bles 2 and 3, even better results can be obtained if
we can pair the CodeNet data with text descriptions
or if we can pre-train on a dataset with not only
texts and code but also test cases. This also with-
holds FuzzCodeBERT and FuzzUniXcoder from
surpassing every state-of-the-art methods on text-
code tasks. In addition to exploiting datasets, exten-
sive experiments presented in this paper also ver-
ifies complementary effects of dynamic program
modeling to these methods, which implies that com-

bining more advanced methods (Wang et al., 2023;
Li et al., 2022b) with our FuzzPretrain also leads to
superior performance than that of FuzzCodeBERT
and FuzzUniXcoder.
Code generation. Our designs for dynamic infor-
mation modeling are all about the holistic compre-
hensions of code in a global picture, while how
to benefit token-wise code understanding by us-
ing it is not straightforward. We tested UniXcoder
with and without our FuzzPretrain on the python
dev split of the line-level code completion task
in the CodeXGLUE benchmark (Lu et al., 2021),
our FuzzUniXcoder yielded 42.73%/72.03% Ex-
act Match/Edit Sim vs. 42.68%/71.88% by UniX-
coder. We did not observe clear improvements
brought by FuzzPretrain on code generation tasks
which are usually conducted at token-level, leaving
an interesting problem to be studied in the future.

D Ethical Consideration

Our approach leverages fuzzing test cases to en-
hance program understanding. The improved se-
mantic comprehension of programs can be fur-
ther employed to patch vulnerabilities or address
defects in software and systems. However, we
strongly encourage careful consideration in ad-
vance when applying this method to these appli-
cations. Additionally, as fuzz testing is utilized, a
notable number of crashes and hangs have been
observed in the adopted datasets. We refrain from
presenting test cases that lead to these issues to
prevent any potential misuse.

278

