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Abstract

Financial documents are filled with special-
ized terminology, arcane jargon, and curious
acronyms that pose challenges for general-
purpose text embeddings. Yet, few text em-
beddings specialized for finance have been re-
ported in the literature, perhaps in part due to
a lack of public datasets and benchmarks. We
present BAM embeddings, a set of text em-
beddings finetuned on a carefully constructed
dataset of 14.3M query-passage pairs includ-
ing both public and proprietary financial docu-
ments. Demonstrating the benefits of domain-
specific training, BAM embeddings achieve Re-
call@1 of 62.8% on a held-out test set, vs. only
39.2% for the best general-purpose text embed-
ding from OpenAI. Further, BAM embeddings
increase question answering accuracy by 8%
on FinanceBench and show increased sensi-
tivity to the finance-specific elements that are
found in detailed, forward-looking and com-
pany and date-specific queries. To support fur-
ther research we describe our approach in de-
tail, quantify the importance of hard negative
mining and dataset scale, and publicly release
our embeddings1.

1 Introduction

Portfolio managers and analysts have access to mil-
lions of financial documents. Text embeddings
are a key component of the information retrieval
and retrieval-augmented generation (RAG) systems
(Lewis et al., 2020) that can help extract insights
from this mass of information. However, the finan-
cial domain poses unique challenges for text em-
beddings. Financial documents are filled with spe-
cialized terminology (‘par value’, ‘stagflation’), jar-
gon (‘Chinese wall’), curious acronyms (‘CAGR’,
‘DCF’, ‘VIX’), and technical terms and company
names that collide with ordinary words (‘short’,
‘forward’, ‘spread’, ‘Apple’, ‘Stripe’). Is a CDO

1https://huggingface.co/BalyasnyAI/multilingual-e5-base

similar to a CFO? And what is a Greenback bear2?
Despite their importance, few text embeddings

specialized for finance have been reported in the
literature. To address this gap, we present and pub-
licly release BAM embeddings, a set of text embed-
dings optimized for financial document retrieval.
BAM embeddings are based on Multilingual-E5
(Wang et al., 2024b), further finetuned on a care-
fully filtered, clean dataset of 14.3M query-passage
pairs (6B tokens) constructed from 2.8M public
and proprietary financial documents. While we
cannot release our dataset, we describe in detail
our data curation and query generation strategy,
finetuning process, and approach to deployment in
a high-priority application.

On a held-out set of 447K query-passage pairs,
BAM embeddings achieve Recall@1 of 62.8%,
far surpassing the Multilingual-E5 base model
(34.3%) as well as large closed-source models (e.g.,
OpenAI’s 3072-dim text-embedding-3-large model,
39.2%). Quantitatively, we show that hard nega-
tive mining (+5.3%) and data scale (+4.5%) are
critical to achieving this performance. Deploying
BAM embeddings in an application alongside tra-
ditional lexical search (Okapi BM25), we find that
BAM embeddings outperform lexical search over
all query lengths. Notably, vector search with BAM
embeddings improves as queries become longer
and more detailed, while lexical search degrades.

Finally, we evaluate BAM embeddings in a pub-
lic RAG benchmark using FinanceBench (Islam
et al., 2023). Replacing OpenAI’s ada-002 em-
beddings with ours increases question answering
correctness by 8%. Qualitatively, we observe that
after finetuning, embeddings are more sensitive
to company names, tickers and financial metrics,
leading to improved performance detailed, forward-
looking, and company or date-specific queries.

2A Greenback bear is an investor who believes the US dol-
lar will decline in value. A fiscal hawk argues for a reduction
in government spending.
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2 Related Work

Financial LLMs Much of the previous work in
Financial NLP has focused on adapting large lan-
guage models (LLMs) to finance. FinBERT (Yang
et al., 2020) was the first LLM to demonstrate the
benefits of pretraining on company reports, broker
research and earnings transcripts. When finetuned
for financial sentiment classification, FinBERT out-
performed the standard BERT model pretrained on
generic text (Devlin et al., 2019). FLANG (Shah
et al., 2022) demonstrated that the gains from pre-
training on financial documents extended to other
downstream tasks, including news headline classi-
fication, named entity recognition (NER), structure
boundary detection, and question answering in the
finance domain. Compared to these 100M param-
eter models, the 50B parameter BloombergGPT
model (Wu et al., 2023) facilitated evaluation via
few-shot prompting rather than finetuning, again
outperforming general-purpose LLMs. Continuing
the trend towards chat-based approaches, PIXIU
(Xie et al., 2023) developed a financial instruc-
tion dataset and benchmark generalizing 9 finan-
cial NLP tasks, and used it to finetune LLaMA
(Touvron et al., 2023).

Domain-Specific Text Embeddings Even with
pretraining or finetuning for finance, LLMs re-
quire up-to-date information, which is typically
retrieved using text embeddings (Lewis et al.,
2020). Domain-specific embeddings have been
well-studied in healthcare (Alsentzer et al., 2019;
Lee et al., 2019) and law (Chalkidis et al., 2020).
Surprisingly, no text embeddings specialized for
financial document retrieval have been reported
in the literature, perhaps in part due to a lack
of public datasets and benchmarks on which to
train and evaluate. Standard benchmarks such
as MTEB (Muennighoff et al., 2022) contain no
company reports, broker research or earnings tran-
scripts3, while finance-oriented benchmarks such
as FinanceBench (Islam et al., 2023) and PIXIU
(Xie et al., 2023) are designed to evaluate LLMs not
text embeddings. We address the lack of finance
text embeddings by releasing BAM embeddings.
Similar to Ma et al. (2021); Cho et al. (2022) and
others, our approach relies on synthetic query gen-
eration for training data.

3The most relevant MTEB datasets – FIQA 2018 (Maia
et al., 2018) and Financial PhraseBank (Malo et al., 2014) –
are based on financial news and blog posts.

3 Dataset

To finetune and evaluate BAM embeddings, we con-
struct a dataset of 15.2M query-passage pairs. Text
passages are drawn from public and proprietary
documents (refer Section 3.1). For each passage,
a matching query is generated using a few-shot
prompted LLM (refer Section 3.2).

3.1 Sampling Text Passages

Raw Documents Text passages are sourced from
2.8M documents published in the two-year period
ending 31 March 2024, comprising:

• Equity Research: 1.7M broker reports
• Macro Research: 430K broker reports
• Sales Commentary: 94K emails from broker

sales desks to buy-side clients
• Company Transcripts: 102K public transcripts

from earnings calls and investor days
• EDGAR Filings: 32K public Form 10-K and

Form 10-Q company filings
• Interview Transcripts: 102K interviews be-

tween investors and industry experts
• Notes and Previews: 377K proprietary notes

and earnings previews written by buy-side an-
alysts and portfolio managers

Parsing and Splitting Most documents are
stored in PDF format. We convert them to text
using an internal PDF-to-text conversion tool, then
split the text into passages. Our splitting strategy
recursively splits text based on a generic list of typ-
ical paragraph separators (‘\n\n’, ‘\n’, etc), while
attempting to avoiding splitting questions and re-
lated answers (which are common in Company
Transcripts and Interview Transcripts, and clearly
labelled). We choose a maximum passage length
of 512 tokens (350–400 words). This typically pro-
vides sufficient context to understand the text while
shorter passages can be difficult to interpret. We
use regular expressions and heuristics to remove
legal disclosures and most tables from the dataset
(we focus on text passage retrieval and leave infor-
mation extraction from tables to future work).

Document Context After splitting, text passages
are frequently missing crucial information such as
the name and stock ticker of the company refer-
enced in the text, and the date. We augment each
text passage by prepending one line of document
context. The content of this context line differs
by document type — for Company Transcripts it
contains the company name, ticker, and the event
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cotton corn production cost trends
wet wipes new products
sector rotation this week
Reliance CapEx
artificial intelligence at medtronicas
How has brexit affected supply chain operations and companies?
Chinese real estate new residential sales
beazley price
What is going on with pulpwood costs?
How is Teck Resources generating shareholder value through structured separation?

Table 1: Examples of the human-written queries used to
seed synthetic queries via few-shot prompting.

(e.g., ‘FY23 earnings call’); for Interview Tran-
scripts it contains the interviewee’s name and job
title and the title of the interview. We use the same
approach when finetuning the embeddings and in
deployment.

3.2 Query Generation
Rather than finetuning on user-generated queries,
we choose to synthetically generate all queries in
the dataset. Synthetic generation is highly scalable,
eliminates privacy concerns, ensures complete cov-
erage of all text passages in the corpus, and enables
finetuning and evaluating on queries that are longer
and more complex than user queries.

Few-Shot Examples To seed our query genera-
tion strategy, we randomly sample text passages
and ask a group of quantitative researchers, en-
gineers and product managers to write a query
for each passage. Annotators are instructed that
the passage should be a top result for that query
in a world-class document retrieval system (refer
Appendix). Using this approach, we collect 231
passage-query pairs to use for few-shot prompting
(see Table 1 for randomly selected examples).

LLM Query Generation We prompt an LLM to
generate a single matching query for every text pas-
sage in the corpus, or output ‘SKIP’ if a query can’t
be generated. To encourage quality and diversity,
two passages with human-written queries are ran-
domly selected and included as few-shot examples
(refer to the Appendix for the complete prompt).
Trading off computational cost and query quality,
we use the Mistral 7B Instruct model (Jiang et al.,
2023) for query generation. Even using vLLM
(Kwon et al., 2023) for high throughput, several
weeks of A100 gpu time are required to generate
queries for the entire dataset. In initial experiments
we also used a second LLM call to paraphrase the
generated queries for increased diversity and chal-

Document Type Query-Passage Pairs

Equity Research 4,512K
Macro Research 954K
Sales Commentary 596K
Company Transcripts 2,603K
EDGAR Filings 2,640K
Interview Transcripts 2,408K
Notes & Previews 1,447K

Total 15,159K

Table 2: Dataset composition by document type.

lenge, but found this refinement was less effective
than simply generating more queries.

Filtering Passages for which the LLM failed to
generate a valid query are identified by the pres-
ence of the special ‘SKIP’ token provided in the
prompt, or by responses that begin with identified
phrases that indicate failure such as ‘no query’, ‘no
question’ or ‘understood’. These are removed from
the dataset, along with all duplicate queries, which
arise when multiple text passages generate the same
query, e.g., ‘Apple 2024 EPS’. As illustrated in Ta-
ble 2, after filtering (including filtering performed
during hard negative mining, refer Section 4) the
final dataset consists of 15.2M query-passage pairs,
which are separated into train-val-test splits con-
taining 14.3M, 444K, and 447K examples, respec-
tively. All passages from the same document are
assigned to the same split. This avoids contaminat-
ing the val or test splits if documents are repetitive.

Query Realism We do not aim to replicate the
query distribution from our legacy document re-
trieval system, which are typically short, simple
keyword queries. These are shaped by user interac-
tions with a weaker BM25-based system. Instead,
we aim to support longer, more complex queries,
which we now encourage (refer Section 5.3).

4 BAM Embeddings

Baseline Model We finetune the Multilingual-E5
model (Wang et al., 2024b), which is pretrained on
1B multilingual text pairs and pre-finetuned on a
combination of general-purpose labeled datasets.
Multilingual-E5 embeddings are based on the
XLM-RoBERTa architecture (Conneau et al., 2019)
which has three sizes: small (118M model params,
384-dim embeddings), base (278M model params,
768-dim embeddings), and large (560M model
params, 1024-dim embeddings). We finetune small
and base models; in preliminary experiments we
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Figure 1: Passage retrieval results: Recall@1 on a held-out test split of 447K query-passage pairs. BAM embeddings
finetuned for financial document retrieval significantly outperform general-purpose embeddings.

found that the large model performed no better than
the base model so we discontinued finetuning.

We select Multilingual-E5 because the model
achieved competitive baseline retrieval perfor-
mance on our dataset, and because the embedding
is mean-pooled4. This enables us to calculate a con-
textualized embedding for any sentence within a
passage by simply mean-pooling over the relevant
subset of tokens. In our application, we exploit this
affordance to highlight the sentences in a document
that are most relevant to a user’s query, based on
the similarity between each sentence and the query.
Embedding models based on the output of the CLS
token, such as BGE (Xiao et al., 2023), do not offer
this capability.

Finetuning We use the standard InfoNCE con-
trastive loss (van den Oord et al., 2019) that re-
quires the model to identify the positive passage
for each query from a set of negative passages. Neg-
ative passages are comprised of in-batch negatives
(the other passages in the same minibatch) plus 3
hard negatives per query (see below).

We finetune for 3 epochs using a batchsize of
512 and initial learning rate {3, 2, 1} × 10−5 for
the {small, base, large} models. Following Wang
et al. (2024a), during finetuning, evaluation and
in deployment, we add the prefixes ‘query: ’ and
‘passage: ’ to queries and passages respectively,
allowing the model to better represent short queries
and long passages in the same embedding space.

4Mean-pooling is applied to the output of the final trans-
former layer across all tokens in the query or passage.

Hard Negative Mining Hard negative mining
improves the quality of learned embeddings by
introducing negative examples that are more chal-
lenging to detect than randomly-sampled negatives
(Gao et al., 2021; Karpukhin et al., 2020). For each
query, we identify 3 hard negative passages using
an early version of our model finetuned with 37%
of the full dataset and no hard negatives. Specif-
ically, we embed all 15.2M queries and passages
in the dataset, retrieve the top 1K passages for
each query, and label the passages ranked 200–202
places lower than the positive passage as hard neg-
atives. This hyperparameter was set after testing
several different options in initial experiments. If
the positive passage is not in the retrieved passages,
the query-passage pair is removed from the dataset,
as manual inspection indicates that these are typi-
cally low-quality pairs.

5 Results and Analysis

5.1 Retrieval

We evaluate the retrieval performance of BAM em-
beddings using the held-out test set of 447K query-
passage pairs. We benchmark against 12 other mod-
els, including the E5 (Wang et al., 2024a) and BGE
(Xiao et al., 2023) families of models, and text em-
beddings from OpenAI. Since each query has only
a single correct passage, we report Recall@K with
K = 1, 10, 50 rather than NDCG. Since the users
of our system (both human and LLM agent) have
limited attention, we focus on Recall@1 although
the same trends hold across other values of K.

As illustrated in Figure 1, finetuning the 768-dim
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Passage Retrieval Document Retrieval

Embedding Dim R@1 R@10 R@50 R@1 R@10 R@50

text-embedding-3-small 1536 34.1 68.3 84.4 61.1 85.0 90.1
text-embedding-ada-002 1536 38.4 71.6 85.7 64.3 86.2 91.3
text-embedding-3-large 3072 39.2 73.7 87.8 64.9 87.4 91.8

multilingual-e5-small 384 33.6 67.1 82.1 61.2 84.2 89.7
multilingual-e5-base 768 34.3 68.2 83.1 62.6 85.6 91.1

BAM-embedding-small 384 60.6 89.6 96.6 81.4 95.5 97.9
BAM-embedding-base 768 62.8 91.0 97.3 83.0 96.3 98.4
...1 hard negative, full training data 768 61.8 90.4 97.3 82.2 96.1 98.4
...No hard negatives, full training data 768 57.5 88.8 97.2 79.5 95.8 98.5
...No hard negatives, 37% training data 768 53.0 86.1 96.1 76.4 94.6 97.9

Table 3: Base-sized BAM embeddings outperform the much larger OpenAI embeddings (top panel) and the baseline
model (middle panel) on all recall metrics. Ablation studies (bottom 3 rows) highlight the importance of hard
negative mining and scaling the finetuning data.

Multilingual-E5 base model improves Recall@1
from 34.3% to 62.8% – surpassing an array of
open-source and close-source models including
OpenAI’s 3072-dim text-embedding-3-large model,
which achieves 39.2% Recall@1 (with a much
larger embedding). We observe similar gains with
the small model, which achieves 60.6% Recall@1.

Ablation Studies In Table 3 we report Recall@K
for both passage retrieval and document retrieval
(i.e., retrieving any passage from the document
containing the correct passage). We compare to
OpenAI embeddings (top panel) and the baseline
models (middle panel). We find that base-sized
BAM embeddings perform best on every metric,
and hard negative mining and data scale are crucial
to achieving this performance.

Without hard negative mining, passage Re-
call@1 for the base-sized model drops from 62.8%
to 57.5%, although 1 hard negative is sufficient to
capture most of the benefits (61.8% vs. 62.8% with
3 hard negatives). Reducing the amount of training
data to 37% of the full dataset (representing only
one year of data, and 4 document types instead of
7) further reduces Recall@1 from 57.5% to 53.0%,
demonstrating the value of scaling the dataset over
a large document corpus.

Qualitative Analysis In Table 4 we provide an
example of how query similarity changes before
and after finetuning. For more general insights, we
randomly select 100 queries with a large improve-
ment in recall under the finetuned model, and 100
queries with no improvement, and ask ChatGPT to
identify qualitative differences between the queries.

According to ChatGPT, the queries that im-
proved the most are company-specific (focused

on individual companies and particular quarters
or fiscal years), forward-looking (referencing fu-
ture projects and growth), searching for specific
financial metrics (such as PE ratios or adjusted
net income), and phrased as questions rather than
statements. Queries about general financial and
economic concepts, such as ‘capital issuance’, im-
proved the least.

5.2 Results on FinanceBench

Given the lack of public benchmarks for finan-
cial document retrieval, in this section we report
results on FinanceBench (Islam et al., 2023), a
benchmark for financial question answering. We
co-opt FinanceBench’s retrieval-augmented gener-
ation (RAG) setting to assess how retrieval with
different text embeddings affects answer accuracy.

We focus on the Shared Vector Store setting, in
which text passages from a collection of 368 10-
K and 10-Q reports are stored in a single vector
database, which is queried by an LLM to answer
150 questions derived from those documents. Islam
et al. (2023) report that GPT-4 correctly answers
only 19% of questions using OpenAI ada-002 text
embeddings. However, the original RAG pipeline
has several weaknesses. We improve it by:

1. Using an LLM to rewrite the question before
querying the vector store. This eliminates
distracting text containing formatting instruc-
tions

2. Prepending the filename of the parent docu-
ment to the beginning of each text passage,
which preserves document context including
the company name and the filing date

3. Prompting the LLM to generate concise an-
swers (which are more in keeping with the
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Query: ASMI’s price-to-earnings ratio

Nearest Neighbors Before Finetuning: Nearest Neighbors After Finetuning:
1. ASMI - earnings report analysis 1. ASMI - earnings report analysis
2. ASMedia’s share price 2. ASMI outlook
3. ASMI revenue goals 3. What is the current market outlook for ASMI?
4. Alcoa’s price to earnings ratio 4. What is the rating and PE ratio of ASMI?
5. Aviva’s cost-to-income ratio 5. What is ASMI’s revenue growth forecast for 2024?
6. Axis Bank’s cost-to-income ratio 6. Interesting read on ASMI stock.

Table 4: Nearest neighbor queries before and after finetuning Multilingual-E5. Before finetuning, embeddings
capture too much lexical similarity, e.g. ASMI is similar to ASMedia; price-to-earnings is similar to cost-to-income.
After finetuning, embeddings are more sensitive to tickers and stock names.

Figure 2: FinanceBench results under the Shared Vector
Store setting. Replacing OpenAI ada-002 embeddings
with BAM embeddings increases accuracy by 8%.

gold answers and easier to evaluate)
4. Replacing GPT-4 with GPT-4o

Based on human evaluation, our improved RAG
pipeline achieves 47% accuracy vs. 19% reported
by Islam et al. (2023). As illustrated in Figure 2,
replacing the 1536-dim ada-002 embeddings with
768-dim BAM embeddings improves accuracy fur-
ther to 55% – even though most FinanceBench
questions are table-based, and BAM embeddings
were optimized for text passage retrieval. The re-
maining errors are mostly attributable to the LLM
(extracting numbers from tables and calculating
derived metrics such as operating margin).

5.3 Real-world Deployment

Application We have deployed BAM embed-
dings in a RAG service that indexes 5.7M finan-
cial documents (1.3TB of raw data), providing a
backend API for 3 different frontend applications
(two market intelligence and search platforms and
a chatbot). We use OpenSearch because it supports
approximate nearest neighbor vector search in con-
junction with traditional filtering operations. Filters
are used to restrict search results based on docu-
ment date ranges, company tickers, and tags such
as document type, event name, data vendor, etc.
In addition to OpenSearch, we maintain a NoSQL
database to store document fields and metadata that
would add excessive overhead to OpenSearch.

Figure 3: Comparison of vector search using BAM
embeddings with lexical search (BM25). Vector search
is superior to lexical search, and improves on longer and
more detailed queries (while lexical search degrades).

Weight Averaging Before deploying BAM em-
beddings, we average the parameters of 5 fine-
tuned checkpoints (trained for between 2.5 and
3 epochs) with the baseline model, with a 50%
weighting on the baseline model and 10% weight-
ing on each checkpoint. We are motivated by
(Wortsman et al., 2022b,a) who show that averag-
ing the weights of zero-shot and finetuned models
improves accuracy and robustness to out of distri-
bution queries. Robustness is an important consid-
eration because we expect the distribution of user
queries to drift over time (and may not perfectly
match our generated queries to start with). Weight
averaging sacrifices 1.1% Recall@1 on our dataset,
but improves NDCG@10 on a representative out-
of-domain dataset (FiQA 2018) by 2.2% compared
to the final checkpoint.

Comparison to Lexical Search Our production
document retrieval service provides an ideal op-
portunity to benchmark the performance of vec-
tor search (using BAM embeddings) against tradi-
tional lexical search (using OpenSearch’s Okapi
BM25 implementation). To quantify the impact of
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query length, we benchmark queries containing 2–
6 words, in each case using 1K randomly-selected
company transcript queries from our test split. Date
ranges are restricted to a one year period that con-
tains the positive passage. We evaluate both with
and without filtering on the correct stock ticker.

As illustrated in Figure 3, vector search outper-
forms lexical search in both settings, regardless
of query length. While two-word queries are of-
ten ambiguous, vector search recall improves as
queries become longer and more specific. In con-
trast, lexical search degrades on longer queries.
This is consistent with our observation that users
conditioned to using lexical search tools often limit
their queries to 2 or 3 words. To encourage users to
write longer queries, in our frontend application we
implement query completion/autocomplete using
high-quality examples from our dataset.

6 Conclusion

We release text embeddings specialized for finance,
trained on a dataset of 14.3M synthetic queries
constructed from public and proprietary financial
documents. On a held-out test set, BAM embed-
dings achieve 62.8% Recall@1 vs. 39.2% for the
best general-purpose text embeddings. On the Fi-
nanceBench benchmark, replacing general-purpose
embeddings with ours improves question answer-
ing accuracy by 8%, demonstrating our dataset
and model’s ability to generalize to out-of-domain
settings. Finally, we show that in a production
document retrieval service, BAM embeddings out-
perform BM25 over all query lengths, and (unlike
BM25) retrieval improves on longer and more de-
tailed queries.
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A Appendix

A.1 Instructions to Query Annotators

Your task is to read a text chunk and then write a
query, such that the text chunk should be a top hit
in a world-class retrieval system. Tips for writing
queries:

1. The query should be closely related to some
part of the text (but not necessarily the entire
passage).

2. Queries can be from 1 to 15 words.
3. Queries can be a list of keywords, a full sen-

tence, a question - whatever an analyst might
search. Anything goes as long as the text
chunk would be a very good search result for
that query.

4. Diversity is important, don’t make your
queries all the same.

5. Broad queries about entire industries, sectors,
regions, or macro trends are fine, as long as
the text snippet contains specific information
that is highly relevant to the query.

6. The query can mention a stock name or ticker.
It doesn’t have to.

7. Don’t copy too many words and phrases
directly from the text passage. Use para-
phrasing, synonyms, summarization, and
your knowledge of appropriate abbreviations,
acronyms and specialized terminology to con-
struct queries. E.g., if the text mentions ’SBC’,
the query might mention ‘stock based comp’.

A.2 LLM Prompt for Query Generation

You are a highly trained investment analyst, and an
expert in business and financial markets. You are
helping construct a dataset to train a world class
financial search engine. You will be given a text
snippet from <DOCUMENT_TYPE>. Your task is
to generate a query derived from the provided text
snippet.
Detailed Instructions:

1. The query should be a question, or a set of
keywords or phrases, such that the text snippet
should be returned as a top search result for
that query.

2. A good query is closely related to at least
some, but not necessarily all, of the content
in the text snippet. Do not create queries con-
taining many unrelated concepts.

3. Broad queries about entire industries, sectors,
regions, or macro trends are okay, as long as
the text snippet contains specific information

that is relevant to the query.
4. You will be penalized if your query contains

too many words and phrases copied directly
from the text snippet. Use paraphrasing, syn-
onyms, summarization, and your knowledge
of appropriate abbreviations, acronyms and
specialized terminology to construct queries.
For example, if the text snippet contains the
phrase "earnings per share", the query could
instead include the acronym "EPS". If the
text snippet mentions "earnings guidance for
2020-2024", the query could be for "long-term
profit outlook".

5. Do not include 10k or 10q references in your
queries.

Formatting Instructions:
1. Always reply with the query only, on a single

line. Do not provide any additional context,
note, or explanation of any kind. Do not put
the query in quotation marks (",’). Do not
include html tags in the query.

2. Queries can contain a maximum of 10 words.
3. If the text snippet is very short, difficult to

understand, not written in English, or if it
contains only boilerplate investment risk dis-
closures or disclaimers, you must begin your
response with the special output "SKIP".

Text Snippet: <EXAMPLE_PASSAGE_1>
Query: <EXAMPLE_QUERY_1>
Text Snippet: <EXAMPLE_PASSAGE_2>
Query: <EXAMPLE_QUERY_2>
Text Snippet: <SAMPLED_PASSAGE>
Query:
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