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Abstract

Large Language Models (LLMs) have demon-
strated proficiency in addressing tasks that ne-
cessitate a combination of task planning and
the usage of external tools, such as weather
and calculator APIs. However, real-world in-
dustrial systems present prevalent challenges in
task planning and tool usage: numerous APIs
in the real system make it intricate to invoke the
appropriate one, while the inherent limitations
of LLMs pose challenges in orchestrating an ac-
curate sub-task sequence and API-calling order.
This paper introduces a comprehensive frame-
work aimed at enhancing the Task Planning
and Tool Usage (TPTU) abilities of LLM-based
agents in industry. Our framework comprises
three key components designed to address these
challenges: (1) the API Retriever selects the
most pertinent APIs among the extensive API
set; (2) the Demo Selector retrieves task-level
demonstrations, which is further used for in-
context learning to aid LLMs in accurately de-
composing subtasks and effectively invoking
hard-to-distinguish APIs; (3) LLM Finetuner
tunes a base LLM to enhance its capability for
task planning and API calling . We validate our
methods using a real-world industry system and
an open-sourced academic dataset, demonstrat-
ing the efficacy of each individual component
as well as the integrated framework. The code
is available at here.

1 Introduction

Large language models (LLMs) have exhibited re-
markable prowess in various domains of natural
language processing (NLP) (Brown et al., 2020;
Ouyang et al., 2022; OpenAI, 2023b), encompass-
ing language understanding (Devlin et al., 2018;
Radford et al., 2023), reasoning (Wei et al., 2022;
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Kojima et al., 2022), and program synthesis (Liu
et al., 2023; Liang et al., 2023a).

However, leveraging LLMs for complex tasks
presents formidable challenges. On the one hand,
LLMs inherently exhibit limitations in their capa-
bilities, struggling with logical problem-solving,
such as mathematics, and facing the risk of stored
knowledge quickly becoming outdated as the world
evolves. Instructing LLMs to utilize external tools
including calculators, calendars, or search engines
can prevent them from generating inaccurate in-
formation and aid them in effectively addressing
problems. On the other hand, integrating these
tools into complex systems transcends mere task
understanding. It demands the ability to break
down intricate tasks, manipulate various tools, and
engage with users in effective interactions. Sev-
eral research endeavors, known as LLM-based AI
Agents (Wang et al., 2023c; Cheng et al., 2024;
Hua et al., 2024), such as AutoGPT (Significant
Gravitas, 2023), BabyAGI (yoheinakajima, 2023),
and ChatGPT-plugins (OpenAI, 2023a), have made
advancements by employing LLMs as central con-
trollers. These endeavors automatically decompose
user queries into sub-tasks, execute low-level tool
(i.e., API) calls for these sub-tasks, and ultimately
resolve the overarching problem.

Despite these advances, LLM-based agents still
grapple with pressing challenges in real-world in-
dustry applications. Firstly, real-world systems
usually have a vast number of APIs, making it im-
practical to input descriptions of all APIs into the
prompt of LLMs due to the token length limita-
tions. Secondly, the real system is designed for
handling complex tasks, and the base LLMs (i.e.,
general LLMs without finetuning on these tasks)
often struggle to correctly plan sub-task orders and
API-calling sequences for such tasks. Thirdly, be-
yond the sheer quantity of APIs, a more substan-
tial challenge is that real systems are primarily de-
signed around a core purpose, resulting in the fact
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Figure 1: The proposed framework: Once receiving user’s instruction, the API Retriever and Demo Selector will get
the relevant APIs and Demos first, which will be inserted as the crucial segment in the prompt. The LLM Finetuner
processes the prompt, decomposes the task into several subtasks and their corresponding APIs, and iteratively
executes the API for each subtask. Specifically, (1) API Retriever is based on contrastive learning; (2) Demo
Selector is based on a self-established industrial-specific knowledge database; (3) LLM Finetuner is fine-tuning the
LLMs with the dataset from real-world, structure-prompted, and diversity.

that certain APIs may overlap and exhibit simi-
lar semantics and functionality, while different in
usage. For instance, variations in required input
parameters create difficulties in distinguishing and
invoking these APIs for LLMs and even humans.
How to address these issues could be the critical
step for LLM-based agents towards omniscience
and omnipotence and being implemented in real-
world industry scenarios.

In this paper, we propose a framework to im-
prove the Task Planning and Tool Usage (TPTU)
abilities of LLM-based agents in the real-world
systems, which is composed of three key compo-
nents to address the above three challenges: (1)
API Retriever that is based on contrastive learn-
ing, to accurately recall the APIs that are most rele-
vant to the user’s task from all APIs. The descrip-
tions of these filtered APIs can then be input into
LLM as prompts, allowing the LLM to understand
and make accurate choices within the filtered API
set. (2) Demo Selector that is based on our self-
established knowledge base using the logs when
performing tasks, it adaptively retrieves different
demonstrations related to hard-to-distinguish APIs,

which is further used for in-context learning so that
LLM can distinguish the subtle differences in the
functions and usages of different APIs. (3) LLM
Finetuner tunes a base LLM with a dataset of
three essential criteria, i.e., real-world, structured
prompt, and diversity, so that the finetuned LLM
can be more capable of task planning and API calls,
especially for domain-specific tasks. Our main con-
tributions can be summarized as follows:

• We identify three practical challenges LLM-
based agents face in task planning and tool
usage within real-world industry scenarios.

• Facing the three challenges, we propose an
advanced framework composed of three key
components: API Retriever, LLM Finetuner,
and Demo Selector. In each component, key
technical designs are equipped to further en-
hance its performance: contrastive learning to
boost API retrieval, self-knowledge based to
get better-adapting few-shot demos for your
industrial domain, and a real-world-based,
structured-prompted, and diverse data to fine-
tune the base LLM for better TPTU.
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• Extensive experiments in real-world indus-
trial systems demonstrate the effectiveness
our framework. We also validate our meth-
ods with open-sourced academic datasets.

2 Methodology

In response to the typical challenges of deploy-
ing LLMs within intricate real-world systems, we
propose a comprehensive framework that funda-
mentally bolsters the capabilities of LLMs in Task
Planning and Tool Usage (TPTU), which are the
cornerstone of the agent’s abilities. In this paper,
Task Planning entails generating a step-by-step sub-
task sequences for the complex task, while Tool
Usage requires the agent to select appropriate APIs
and execute them correctly to obtain the answer.

2.1 Framework Overview

Our comprehensive framework is engineered to en-
hance the capabilities of LLMs in TPTU within
complex real-world systems, facilitating synergis-
tic collaboration between these two abilities. It has
three pivotal components, as in Figure 1. When
receiving user instructions, it initiates the process
by acquiring pertinent APIs and demonstrations
through the API Retriever and Demo Selector.
These API descriptions and demos constitute a cru-
cial segment of the prompt, which is then input into
the fine-tuned LLM. The LLM processes the in-
struction, leveraging the obtained APIs and demon-
strations to derive subtasks and their corresponding
API calls. Subsequently, it iteratively executes the
API for each subtask, obtaining sub-results and ul-
timately achieving the complete result, satisfying
the strict requirements for API call order in real
industrial scenarios. Details of input prompt and
output format are in Figure 2 and Appendix B.1.

2.2 API Retriever

In real-world systems, the massive number of APIs
poses severe challenges for LLMs. The token
length limitations inherent to LLMs hinder the
inclusion of all API descriptions in the model’s
prompt, while excessive task-irrelevant API infor-
mation impedes planning and answer generation.

To surmount these challenges, we develop an
API Retriever trained to select APIs most relevant
to the overall task. These selected APIs are not
only necessary for solving the overall task, but also
contribute to enhancing the LLM’s comprehension
of the task at hand. This, in turn, facilitates more

precise segmentation of sub-tasks and the accurate
execution of API calls.

The module is a dual-stream architecture em-
ploying two Sentence-BERT models (Reimers and
Gurevych, 2019) to obtain semantic embeddings of
the instruction and API descriptions, separately. It
selects the API description closest to the instruction
in our trained semantic space. We use the Multi-
ple Negatives Ranking Loss (MNR Loss) (Hender-
son et al., 2017) to explicitly contrast the positive
pair (an instruction with the relevant API) against
multiple negative pairs (with irrelevant API), min-
imizing the distance between the embeddings of
correct instruction-API pairs while maximizing the
distance between the embeddings of incorrect pairs,
which can be formulated as follows:

L = − 1

K

K∑

i=1

log
esim(si,s

+
i )

esim(si,s
+
i ) +

∑
j ̸=i e

sim(si,s
−
j )

,

K denotes the batch size, si indicates the sentence
embedding of instruction i, while s+i and s−j rep-
resent the embeddings of API descriptions which
form the positive and negative pairs corresponding
to si, respectively. sim(·) is the cosine similarity.

The effectiveness of the API Retriever is also
grounded in a meticulous data collection process.
We compile a comprehensive set of APIs from di-
verse external tool services. To ensure our system
grasps the relevance of different APIs to various
user instructions, we implement a annotation pro-
cess. Human experts and LLMs analyze complex
user instructions to identify and annotate the APIs
necessary for resolving these instructions, which
forms a robust foundation for the API Retriever.

2.3 Demo Selector

The Demo Selector, serving as an in-context learn-
ing method to provide few-shot demonstrations,
plays a crucial role in instructing LLMs to distin-
guish between potentially confusing APIs 1, ex-
ecute APIs accurately and disassemble complex
tasks. We establish a knowledge database from real-
world industry scenarios. This knowledge database
can be easily compiled, as the routine operations of
industry systems naturally generate numerous op-
erationally correct records derived from real-world
situations. These records, closely aligned with user

1The APIs may have similar semantics and functionality
because (1) the real system is primarily designed around a core
purpose, so some APIs are relevant; (2) when API Retriever is
used, the retrieved APIs could be more semantically similar.
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instructions, constitute the foundation of our knowl-
edge database. Thus, the knowledge database is
highly industrial-specific.

The Demo Selector consists of a pre-trained
Sentence-BERT and uses an embedding search
mechanism to select appropriate demonstrations
from the knowledge database. In contrast to the
API Retriever, this module does not require fine-
tuning with new training data, as the API Retriever
matches user instructions with API descriptions,
while the Demo Selector matches user instructions
with task instructions, which inherently share the
same semantic space. The detailed processes are:

1. Embedding Generation. Initially, the user’s
query Q and demonstrations di from the
knowledge database D are transformed into
semantic embeddings emb(Q) and emb(di).

2. Top-k Task-Level Demos. In candidates with
similarity exceeding a pre-defined threshold
sim(emb(Q), emb(di)) > ∆, we select the
top-k demonstrations based on their similar-
ity scores. These are regarded as task-level
demonstrations as they are closely related to
the specific task at hand.

3. Fallback to API-Level Demos. If there only
exists n demonstrations with similarity ex-
ceeding the threshold, where n < k, the pro-
cess degrades to selecting API-level demon-
strations from the API collection. The module
chooses k − n API-level demonstrations (i.e.,
application examples of a specific API) based
on the order of API description.

2.4 LLM Finetuner
While open-sourced LLMs possess strong capabili-
ties, they often encounter limitations due to a lack
of specificity and adaptability within complex, spe-
cialized, real-world domains. Fine-tuning LLMs on
downstream tasks is a prevailing practice to refine
their proficiency in addressing specific challenges
in these domains. Since the ubiquity and satisfac-
tory performance of existing fine-tuning methods,
such as SFT (Ouyang et al., 2022) and LoRA (Hu
et al., 2021), we shift our approach from pioneer-
ing new fine-tuning methods to concentrating on
the development of a dataset, expressly curated
to enhance the fine-tuning process for real-world
systems. Compared to sophisticated fine-tuning
methods, even non-technical personnel can help
construct appropriate training data, making it more
suitable for industrial applications.

Specifically, we employ SFT to fine-tune our
model and meticulously construct a well-designed
dataset with the following characterics: (1) Real-
world Data: To accurately mirror real-world sce-
narios, the dataset is constructed by carefully se-
lecting genuine cases, so that the fine-tuned LLMs
can align with the real data distribution in prac-
tical use. (2) Structured Prompt: The prompts
in the dataset are augmented with several key ele-
ments, including the system descriptions, API de-
scriptions and demonstrations, which enables the
model to generate responses that not only semanti-
cally match the input query but also closely align
with the functional scope of the available APIs. (3)
Diversity: To further capture real-world situations,
we expand the diversity of the dataset, including
prompt diversity, user instruction diversity, and out-
put diversity. Both prompt and instruction diversity
are crucial for enabling the LLM to navigate the
API space with greater precision, particularly when
haddling complex, multi-faceted user requests. For
output diversity, the incorporation of various single-
step and multi-step API interactions serves to not
only solidify the foundational understanding of API
functionalities, but also expose the LLM to more
complex sequences of operations commonly en-
countered in practice. More details of our dataset’s
features can be seen in Appendix B.2.

3 Experiments

We present comprehensive experiments to rigor-
ously evaluate the efficacy of our proposed frame-
work. Experiments are structured to assess the
framework’s performance in both a real-world sce-
nario and an open-source academic challenge to
analysis our framework’s generalization.

3.1 Datasets

Anonymous Real-world Scenario. Diverging
from the current scholarly focus on studying the
ability to choose the right APIs from a plethora
of APIs encompassing various functionalities, in
real-world systems, more common and challenging
problems often revolve around a few core purposes
and require multiple tool invocations. It entails
choosing the most suitable API from a few dozen
APIs, which are closely related in semantics but dif-
fer in usage, and orchestrating the correct order for
these API calls, enabling bootstrapping solutions
for complex problems. Therefore, we construct
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Table 1: Comparison between our real-world industrial
dataset and notable open-source datasets. Our method
focuses on real industrial datasets where the semantics
or usage of APIs are relatively similar. Each problem
requires more APIs to be solved, and the order of API
sequential execution is strictly constrained. Addition-
ally, we also focus on the method’s generalizability on
open-source academic datasets.

Resource
ToolBench

(Qin et al., 2023b)
APIBench

(Patil et al., 2023)
API-Bank

(Li et al., 2023b)
Ours

Real-world API ! % ! !

Real-world Query % % % !

Multi-tool Scenario ! % % !

Multi-step Reasoning ! % ! !

Manual Construction % % % !
# APIs 16464 1645 53 45
# Instances 12657 17002 274 760
Avg. # API Calls 2.94 1 2.76 3.50

a specialized dataset comprising 45 core APIs 2

utilized in industry application, based on a real
system. To align with real-world scenarios, the
dataset includes 390 single-call samples and 370
multi-call samples. The multi-call samples involve
up to 9 API calls, with an average of 3.5 API calls
across the entire dataset, which is larger than many
open-source datasets. We meticulously selected
real-world instructions, incorporating simple ques-
tions with fewer than 10 words and challenging
questions with more than 100 words. 760 instances
are used for training, while for testing, we employ
additional problems that are collected from the in-
dustrial system in real-time, which are completely
distinct from those in the dataset. The detailed
statistics are shown in Table 1, and the examples of
simple and challenging real-world industry ques-
tions are provided in Appendix C.1.

Open-source Scenario. To ensure the generaliz-
ability of our approach across a broader spectrum
of tasks and its capability to select appropriate APIs
from a myriad of options, we also perform experi-
ments on an open-source dataset, ToolBench (Qin
et al., 2023b), which also closely resembles real-
world applications. It contains 16000+ real-world
APIs spanning 49 application categories.

3.2 Baselines

In the real-world scenario, we select both closed-
source and open-source LLMs as baselines, includ-
ing GPT-3.5, Claude (Anthropic, 2023), and In-

2During testing, we combine the 45 core APIs with thou-
sands of irrelevant APIs, and our API Retriever can easily
filter out these unrelated APIs, which shows that real-world
challenges may not align with the academic notion that the in-
creasing number of APIs makes the problem more challenging.
Thus, we only collect the core APIs in our dataset.

Table 2: Performance comparison on real-world sce-
nario, where GTA and AR denote using ground truth
APIs and APIs selected by API Retriever respectively,
and DS represents utilizing Demo Selector for in-
context learning.

Approaches Accuracy
GPT-3.5 + GTA 70.0%
Claude + GTA 86.7%
InternLM-ft + AR + DS (ours) 96.67%
InternLM 16.70%
InternLM + GTA 38.89%
InternLM + AR 43.33%
InternLM-ft + GTA 80.48%
InternLM-ft + AR 80.34%
InternLM + GTA + DS 95.55%
InternLM-ft + GTA + DS 100%

ternLM (Team, 2023). In the open-source scenario,
our baselines include GPT-3.5 and ToolLLaMA,
which tailors for ToolBench. More related works
can be found in Appendix A.

3.3 Main Experiment on Real-world Scenario

In our real-world dataset, we conduct experiments
to assess the efficacy of all proposed modules in
our framework. We employ the LLM Finetuner
on the open-source InternLM to underscore the
importance of fine-tuning in the TPTU framework.

Main Results As shown at the top of Table 2,
our method significantly outperforms the baselines
for TPTU. The remarkable performance is attained
through the integration of the finetuned InternLM
(InternLM-ft) with both the API Retriever and
Demo Selector, achieving an impressive accuracy
of 96.67%, a level sufficient for practical applica-
tion in real-world commercial scenarios.

API Retriever We utilize the top-5 APIs recom-
mended by the API Retriever. The results show that:
(1) Employing API Retriever can achieve great
performance. Utilizing API Retriever yields com-
parable or better results than using ground-truth
APIs, and significantly improves the performance
over not containing API in the prompt (i.e., 43.33%
v.s. 16.70%). (2) When the model is strong (w.
finetuning), API Retriever can deliver compara-
ble accuracy (i.e., 80.34% v.s. 80.48% and 96.67%
v.s. 100%). The finetuned LLM has the ability to
better understand the prompt and decompose tasks,
using ground-truth APIs can avoid the slight errors
introduced by the API Retriever. (3) When the
model is weak (w/o finetuning), API Retriever
can yield better results (i.e., 43.33% v.s. 38.89%)
by reordering the API sequence and enriching
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the API’s diversity in the prompt. As the diver-
sity and relative position of APIs within the prompt
can affect the LLM’s interpretation of the context
and the relationships between different APIs, ul-
timately influencing its output (Lu et al., 2021).
Thus, this module might be a promising approach
to automatically retrieve the appropriate APIs as
our methods demonstrated.

Demo Selector We directly compare the differ-
ence between simply using the API usage examples
and utilizing the top-5 demonstrations acquired
through Demo Selector as in-context demonstra-
tions. During selecting demonstrations, we set the
similarity threshold as 0.8. The results show that
Demo Selector also has a substantial impact in
each set of ablation experiments (i.e., 95.55% v.s.
38.89% and 100% v.s. 80.48%), due to its ability to
provide context-rich examples that guide the LLM
in making more informed decisions.

LLM Finetuner Regarding the benefits of fine-
tuning, the results clearly demonstrate its advan-
tages. In all experimental configurations, the
accuracy of the InternLM-ft is significantly
higher than that of the base one. Specifically,
in the two experimental setups without DS, fine-
tuning achieves significant performance gains (i.e.,
80.48% v.s. 38.89%, 80.34% v.s. 43.33%), al-
lowing the model to plan and execute API calls
without contextual demonstrations. In experiments
with DS, where the base model can solve problems
using demonstrations, fine-tuning also further en-
hanced its performance (100% v.s. 95.55%). The
fine-tuning process tailors the LLM more closely
to the specifics of the real-world industry task. It
enhances the model’s understanding of the context,
leading to more accurate and contextually appro-
priate API calls.

In conclusion, our experiments in a real-world
setting validate the efficacy of our proposed frame-
work, highlighting the importance of each compo-
nent and demonstrating our approach is applicable
in practical applications. Cases of our method’s
input and output sequences on real-world industry
datasets are presented in Appendix C.4.

3.4 Experiments on API Retriever
To further elucidate the factors contributing to the
effectiveness of the API Retriever, this section fo-
cuses specifically on its ability to select correct
APIs as well as the characteristics of the training
dataset for API Retriever.

One key factor for the strong performance of API

Table 3: The performance, based on GTA, of InternLM
fine-tuned on datasets with different feature ablations.
RD denotes Real-world Data.

Training Dataset Accuracy
w/o finetuning 20.0%
w. finetuning
+ Real-world Data (RD) 0%
+ RD + Structured Prompt 26.7%
+ RD + Structured Prompt + Diversity 80.5%

Retriever in the entire framework is its high preci-
sion in recalling the correct APIs, which ensures
minimal deviation between the retrieved APIs and
the ground truth. Moreover, the ranked order of re-
trieved APIs, based on similarity, further enhances
the overall performance. In particular, this module
achieves a Recall@5 precision of 84.64% and Re-
call@10 precision of 98.47% in the combination of
core and irrelevant APIs. After subsequent experi-
ments, we ultimately adopt the strategy of recalling
the top-5 APIs.

To safeguard the API Retriever from overfitting
to the real-world dataset and enhance its general-
izability, we employ both the real-world dataset
and ToolBench for training. This comprehensive
training set encompasses a total of 8330 data points,
ensuring a more robust and adaptable performance.

3.5 Experiments on LLM Finetuner

As shown in Section 2.4, we focus on develop-
ing a meticulous dataset to enhance the finetuning
process in real-world TPTU. In this section, we
conduct ablation experiments on the dataset’s char-
acteristics separately to demonstrate the crucial role
of our designed features. The results, presented in
Table 3, indicate that dataset with all the char-
acteristics significantly improves the effect of
fine-tuning, achieving an accuracy of 80.5%. The
lack of diversity in the dataset results in a notable
decline in model performance, with a fine-tuning
accuracy of only 26.7%. This is because the model
may tend to rotely memorize the API call solutions
for different instructions. Fine-tuning solely on
raw real-world data can backfire, for the model
may overfit to specific issues within the training
set due to the constraints imposed by the limited
quantity of genuine data.

We also compared the performance of SFT and
LoRA, which is shown in Appendix C.2. Results
show that using SFT achieves better performance
than LoRA.
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3.6 Main Experiment on Open-source Dataset
Due to the length limitation, the main results on the
open-source dataset are shown in Appendix C.3.
To highlight, our approach achieves an accuracy
of 87.6%, outperforming two strong baselines, i.e.,
GPT-3.5 and ToolLLaMa. Both API Retriever and
fine-tuning significantly contribute to the overall
performance. The main reason for the performance
decline compared to the industry dataset is that we
do not construct a dedicate knowledge database nor
introduce the Demo Selector, thus lacking demon-
strations of the overall task.

4 Conclusion

In this paper, we present a comprehensive frame-
work to augment the capabilities of LLMs in real-
world scenarios, with a specific focus on Task
Planning and Tool Usage (TPTU). Our approach,
which integrates API Retriever, LLM Finetuner,
and Demo Selector, has been validated in both
a real-world scenario and an open-source setting.
The results demonstrate that fine-tuning LLMs with
a curated dataset can significantly improve their
effectiveness in executing real-world tasks. The
API Retriever and Demo Selector also prove in-
dispensable, particularly in improving the model’s
decision-making accuracy and adaptability. This
research not only highlights the potential of LLMs
in practical applications but also establishes a foun-
dation for future advancements in this field.

5 Ethics Statement

The examples provided in this paper, including
the surveillance and relationship analysis scenarios,
are based on a simulated detective game from the
real-world, i.e., "The Mystery Solver", designed
to evaluate the technical capabilities of the AI sys-
tem in a fictional context. This test environment
mimics investigative tasks in a controlled, gamified
scenario where no real individuals or personal data
are involved. The purpose is purely academic and
aimed at improving AI’s ability to process struc-
tured queries within a safe and ethical framework.

No real-world surveillance or relationship analy-
sis was conducted. Furthermore, should any real-
world applications of this technology be consid-
ered, they would be subject to strict ethical guide-
lines, legal regulations, and the protection of pri-
vacy through informed consent.

Last but not the least, we recognize the potential
societal impacts of AI technologies, particularly

those involving sensitive tasks such as surveillance
or personal data analysis. Our work is guided by
a commitment to ensuring that AI is developed
and applied ethically, with a focus on transparency,
fairness, and respect for individual rights.
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A Related Works

The remarkable capacity for using tools has facili-
tated the transcendence of human innate physical
and cognitive limitations, enhancing our ability to
comprehend, plan, and address complex tasks. In
turn, the human aptitude for understanding and
planning tasks contributes to the judicious selec-
tion and usage of appropriate tools. Recently, the
swift evolution of LLM has rendered it viable to
employ specialized tools and decompose intricate
tasks like humans, which inspired significant po-
tential in addressing real-world tasks(Kong et al.,
2024; Zhang et al., 2024a,b; Li et al., 2024). Sub-
stantial research has been proposed to investigate
task planning and tool usage based on LLM sepa-
rately, however, research that combines these abil-
ities to mutually enhance each other is relatively
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scarce. TPTU(Ruan et al., 2023) proposes a com-
plete framework that enhances the agent’s ability
in task planning and tool utilization for addressing
complex tasks. AgentTuning(Zeng et al., 2023)
comprehensively considers various capabilities of
LLM, not only task planning and tool usage, en-
hancing the generalized agent capabilities of open-
source LLMs themselves while ensuring their gen-
eral capabilities are not compromised. Some excel-
lent reviews also systematically discuss various as-
pects of LLM-based AI Agents (Wang et al., 2023c;
Xi et al., 2023).

A.1 Task Planning
LLMs are pre-trained on huge text corpora and
present significant common sense reasoning and
multi-task generalization abilities. Prompting is a
highly effective method for further harnessing the
intrinsic capabilities of LLMs to address various
problems(Wei et al., 2022; Kojima et al., 2022).
For task planning, prompting facilitates LLMs to
break down high-level tasks into sub-tasks(Huang
et al., 2022a) and formulate grounded plans(Ahn
et al., 2022; Huang et al., 2022b). ReAct(Yao et al.,
2022) proposes an enhanced integration of reason-
ing and action, enabling LLMs to provide a valid
justification for action and integrating environmen-
tal feedback into the reasoning process. BabyAGI,
AgentGPT, and AutoGPT also adopt step-by-step
thinking, which iteratively generates the next task
by using LLMs, providing some solutions for task
automation. However, these methods become prob-
lematic as an initial error can propagate along an
action sequence, leading to a cascade of subsequent
errors. Reflexion(Shinn et al., 2023) incorporates a
mechanism for decision retraction, asking LLMs to
reflect on previous failures to correct their decision-
making. HuggingGPT(Shen et al., 2023) adopts a
global planning strategy to obtain the entire sub-
task queue within one user query. It is difficult to
judge whether iterative or global planning is bet-
ter since each one has its deficiencies and both of
them heavily rely on the ability of LLMs, despite
these models not being specifically tailored for task
planning. Besides the above LLM-based studies,
previous hierarchical agents, such as SEIHAI (Mao
et al., 2022), Juewu-MC (Lin et al., 2021), GITM
(Zhu et al., 2023) often resemble the spirit of task
planning.

However, in real-world systems, the high-level
tasks are more intricate, and the prompting method
without enhancing the intrinsic task-planning abil-

ity of LLMs can hardly achieve good performance.
Thus, in our work, we adopt a fine-tuning mech-
anism to the planning dataset, along with well-
designed prompts, to maximize the ability of task
planning.

A.2 Tool Usage
The initial research in tool learning is limited by the
capabilities of traditional deep learning approaches
because of their weaknesses in comprehension of
tool functionality and user intentions, as well as
common sense reasoning abilities. Recently, the
advancement of LLM has marked a pivotal juncture
in the realm of tool learning. The great abilities of
LLMs in common sense cognition and natural lan-
guage processing attributes furnish indispensable
prerequisites for LLMs to comprehend user inten-
tions and effectively employ tools in tackling intri-
cate tasks(Qin et al., 2023a). Additionally, tool us-
age can alleviate the inherent limitations of LLMs,
encompassing the acquisition of up-to-date infor-
mation from real-world events, enhanced mathe-
matical computational abilities, and the mitigation
of potential hallucinatory phenomena(Mialon et al.,
2023).

In the domain of embodied intelligence(Duan
et al., 2022), LLMs directly interact with tangible
tools, such as robots, to augment their cognitive
abilities, optimize work productivity, and broaden
functional capacities.LLM possesses the capability
to automatically devise action steps according to
user intentions, facilitating the guidance of robots
in task completion(Zhang et al., 2023b; Shah et al.,
2023; Brohan et al., 2023; Huang et al., 2022b;
Chen et al., 2023b; Driess et al., 2023; Wake et al.,
2023; Rana et al., 2023; Song et al., 2022), or al-
ternatively, to directly generate underlying code
that can be executed by robots(Brohan et al., 2022;
Stone et al., 2023; Reed et al., 2022; Vemprala
et al., 2023; Liang et al., 2023a).

In addition to directly influencing the physical
real world through interactions with tools, LLM
can also utilize software tools such as search en-
gines (Guu et al., 2020; Borgeaud et al., 2022),
mobile(Wang et al., 2023a; Zhang et al., 2023a),
Microsoft Office (Li et al., 2023a; Zha et al., 2023),
calculators(Chen et al., 2023d; Parisi et al., 2022;
Cobbe et al., 2021), deep models(Gupta and Kem-
bhavi, 2023; Chen et al., 2023c) and other versatile
APIs(Lu et al., 2023; Gou et al., 2023; Liang et al.,
2023b) to improve model performance or complete
complex workflows through flexible control of the
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{"tool_list":[

{"description": "query weather 

conditions.",

"function_name": "get_weather",

"input": [{"location": "location name"}],

"output": [{"temperature": 

"temperature"}]},

{"description": "convert latitude and 

longitude coordinates into IDS codes.",

"function_name": "get_uuid",

"input": [{"coordination": "latitude and 

longitude coordinates"}],

"output": [{"uuid": "IDS geographic 

location registration codes"}]}

]}

{tools} {demos} {output_format}

relevant APIs  in 

Prompt

question_01: How is the weather in Beijing ?

action_01: weather_01 = get_weather (location

= ‘Beijing’)

question_01: Query the IDS geographic

location registration codes

with coordinates 113.909670, 22.512450.

action_01: uuid_01 = get_uuid (coordinate =

‘113.909670, 22.512450’)

question_01: Query the latitude and longitude

of location A

action_01: coordinate_01 = get_coordinate

(address = ‘location A’)

question: Original question

question_01: The first sub-question

action_01: The tools and parameters for the

first sub-question

observation_01: The execution results of the

tools for the first question

question_02: The second sub-question

action_02: The tools and parameters for the

second sub-question

observation_02: The execution results of the

tools for the second question

summary: The overall result organized by the

results of each sub-questions

relevant Demos  in 

Prompt

output format in 

Prompt

{system description}

You are a strategic model. I will provide you with a toolkit and a question, and you need to comprehend the meaning of the question and choose the appropriate

tool for execution.

Note, you should first determine whether the question is a complex one. If it is, you need to break it down into multiple sub-questions for answering. Do not

provide a comprehensive answer all at once. If the provided tools cannot solve the problem or you are unable to select the appropriate tool, please return "null."

Prompt

Figure 2: Demonstrations of the specific formats of each component in the input prompt and output solutions.

software.

However, most of the aforementioned works fo-
cus only on specific scenarios, addressing how to
choose or use the appropriate tools from a limited
set, while agents in real-world scenarios usually
have to face various and complex situations, requir-
ing precise selection and usage of the correct tools
from an API cloud with massive APIs. Gorilla(Patil
et al., 2023) connects LLMs with massive APIs,
which are, nonetheless, not real-world APIs and
with poor diversity. ToolAlpaca(Tang et al., 2023)
builds a tool-using corpus containing 3938 tool-use
instances from more than 400 real-world tool APIs
spanning 50 distinct categories, but this method fo-
cuses on smaller language models. ToolLLM(Qin
et al., 2023b) provides a novel and high-quality
prompt-tuning dataset, ToolBench, which collects
16464 real-world APIs spanning 49 categories from
RapidAPI Hub, covering both single-tool and multi-
tool scenarios. TaskMatrix.AI(Liang et al., 2023b)
uses LLM as a core system and connects with mil-
lions of APIs to execute both digital and physical
tasks. The methods above are of great assistance to
the tool-learning research community.

To augment LLMs with external tools, most re-
cent methods rely on few-shot prompting with the
off-the-shelf LLMs(Patil et al., 2023; Tang et al.,
2023; Yao et al., 2023; Wang et al., 2023b; Li
et al., 2023b; Xu et al., 2023) , but the existing
LLMs are not developed for agentic use cases. Fire-

Act(Chen et al., 2023a) proposes a novel approach
to fine-tune LLMs with trajectories from multi-
ple tasks and prompting methods and find LLM-
based agents are consistently improved after fine-
tuning their backbone. ToolLLM(Qin et al., 2023b)
uses SFT based on the proposed ToolBench, to
transform LLaMa(Touvron et al., 2023) into ToolL-
LaMa, which demonstrates a remarkable ability to
execute complex instructions and generalize to un-
seen APIs, and exhibits comparable performance
to ChatGPT. Inspired by these, we not only de-
sign an API Retriever and Demo Selector to serve
as an auto-prompter but also employ fine-tuning
techniques to further enhance the performance of
our framework so that it can address much more
complex tasks in real-world scenarios.

B More details of the method

B.1 Specific components in the prompt

To better understand the problems that our frame-
work addresses, we display the prompt constructed
from the input query and the framework’s output
format in Figure 2. These components form the
complete prompt shown in Figure 1, which is then
input into the fine-tuned LLM to obtain the output
solutions shown in Figure 2.
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Real-world Data Structured Prompt Diversity

"Input": "There is a... icon in the 

Person File Search — File Details —

Personnel File Details interface. Click 

to pop up the [Historical Modification 

Record] entrance."

"Output": "Holographic Profile —

Personal Profile Details."

"System description" : " You are a 

system decision-making expert. Below 

I will provide a complex issue about 

public security... "

……

"Input": "There is a... icon in the 

Person File Search — File Details —

Personnel File Details interface. Click 

to pop up the [Historical Modification 

Record] entrance."

"Output": "Holographic Profile —

Personal Profile Details."

"System description": "You are an 

expert in system decision-making. I 

will now present a complex matter 

related to public security... "

……

"Input": "How to create a new portrait 

library and then upload face photos?"

"Output": "1. Library Management —

Creation; 2. Library Assistant —

Upload."

Figure 3: Demonstrations for the features in our dataset.

B.2 Demonstrations of LLM Finetuner
dataset

To ensure readers can clearly understand each char-
acteristics in the dataset, we provide a demonstra-
tion for each one, as shown in Figure 3. Each
design of the features is intended to incrementally
refine the LLM’s ability to parse user inputs, under-
stand the context, and generate precise API calls.
Finetuning LLMs on these datasets can enhance the
ability of LLMs to solve specific real-world tasks.
By systematically evaluating the model’s output
against these varied fine-tuning paradigms, we en-
hance its competency in delivering high-quality,
contextually appropriate responses in the domain
of API interaction. The insights obtained from the
iterative development of these datasets demonstrate
the critical importance of dataset quality and con-
struction in the fine-tuning process.

In the details of diversity features, for the prompt
diversity, we randomly shuffle API orders and add
irrelevant APIs to decrease the risk of over-fitting;
for instruction diversity, we replace the original
user instruction with similar-meaning instructions
by means like rewriting-by-LLMs, synonym sub-
stitution, and loop-back translation to make LLMs
more robust to different user instructions during
inference. For output diversity, besides simple
single-step API interactions, which solidify the
foundational understanding of API functionalities,
we meticulously select and construct multi-step
API calls, which introduce the LLM to more com-
plex sequences of operations that are commonly
encountered in practice.

C Supplemental experiment details

C.1 Examples of the questions in our
real-world dataset

The examples provided in this paper, including
the surveillance and relationship analysis scenarios,
are based on a simulated detective game from the
real-world, i.e., "The Mystery Solver", designed
to evaluate the technical capabilities of the AI sys-
tem in a fictional context. This test environment
mimics investigative tasks in a controlled, gami-
fied scenario where no real individuals or personal
data are involved. In order to facilitate a better
understanding of the real-world instructions in our
dataset, and without compromising the confiden-
tiality of proprietary datasets, we present a simple
question and a complex question for illustration.

The following is the simple questions in our
dataset:

• Implementing surveillance on a group of indi-
viduals.

While in real-world industry scenarios, there are
numerous complex problems, with lengths poten-
tially exceeding 100 and comprising multiple sub-
problems. To enhance our framework’s ability to
address these issues, we have carefully selected a
variety of challenging problems. The following
serves as example of these challenging problems:

• In the routine investigation work of crimi-
nal detectives, they typically conduct prelim-
inary analysis to identify a category of sus-
pects. Subsequently, they need to track, in-
spect, and control the identified targets. Dur-
ing this phase, they analyze associated clues
and information related to the suspects, ul-
timately formulating a comprehensive arrest
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Table 4: Performance comparison between SFT and
LoRA.

Methods Accuracy
SFT 80.5%
LoRA 26.7%
LoRA (Convergence) 40%

plan. What modules do you think I would be
involved in, and could you list the modules in
order?

C.2 Comparison experiments between SFT
and LoRA

We further discuss the performance of specific fine-
tuning methods. We compare the performance of
SFT and LoRA, with results displayed in Table 4.
It can be seen that when LoRA and SFT are trained
for the same number of epochs, LoRA’s perfor-
mance is significantly lower. Even when increas-
ing the number of training epochs for LoRA until
the loss converges to the same level as SFT, its
performance still lags behind the SFT model. Ad-
ditionally, analysis of the outputs of models from
different training methods reveals that the LoRA
fine-tuned LLM struggles to overcome the base
LLM’s tendency to generate repetitive responses
and perform redundant result analysis, while the
SFT model is capable of producing concise outputs
as required by the prompt. Therefore, under condi-
tions where computational resources are sufficient,
using SFT achieves better performance.

C.3 Main Experiment on Open-source
Scenario

In the open-source scenario, we tailor our evalua-
tion to focus primarily on the impact of fine-tuning
and the API Retriever, considering that building
knowledge database for this context do not con-
tribute to addressing real-world industry problems.
Therefore, the assessment of the Demo Selector
is omitted in this scenario and we simply use the
API-level demonstrations as in-context examples.

Initially, we have trained the API Retriever on
the integration of our dataset and ToolBench, en-
abling it to generalize in the open-source scenario.
In particular, this module achieves a Recall@5
precision of 77.92% and Recall@10 precision of
87.54%, which fall short compared with the results
in the industry scenario, posing a challenge for
subsequent performance evaluations.

Table 5: Performance comparison on Open-source sce-
nario, where "ft" denotes fine-tuned, "GTA" denotes
using ground truth API set, "AR" denotes using API
Retriever to select APIs.

Approaches Accuracy
ToolLLaMA + GTA 74.3%
ChatGPT + GTA 83.6%
InternLM + GTA 76.67%
InternLM + AR 53.3%
InternLM-ft + AR (ours) 87.6%

Main Results As shown in Table 5, our frame-
work (InternLM-ft + AR) outperforms two baseline
algorithms, achieving an accuracy of 87.6%. This
is attributed to the contributions of the API Re-
triever and fine-tuning. It is worth noting that Chat-
GPT, utilizing ground truth APIs, already achieves
satisfactory results, while ToolLLaMA performs
slightly worse due to limitations imposed by model
size.

API Retriever For the base InternLM without
fine-tuning, the introduction of the API Retriever
results in decreased performance, dropping from
76.67% to 53.3%, which can be attributed to sev-
eral factors. Firstly, the lower recall precision in-
troduces cumulative errors in the decision-making
process. Secondly, in the ToolBench dataset, there
are numerous APIs in ground truth API set that can
be replaced by semantically similar but function-
ally different APIs. While API Retriever may select
many such APIs, the lack of Demo Selector results
in a reduced score due to a limited understanding
of the overall API call flow.

LLM Finetuner Upon implementing fine-
tuning in this scenario, an enhancement in perfor-
mance is observed, with the finetuned LLM com-
bined with the API Retriever reaching an execu-
tion accuracy of 86.7%. This improvement under-
scores the effectiveness of fine-tuning in adapting
the LLM to the specific characteristics and chal-
lenges of the open-source environment. The fine-
tuning process likely helps the model better under-
stand the nuances of the available APIs and how
they correlate with different tasks, resulting in more
accurate API calls and decision-making.

In summary, the open-source scenario highlights
the nuanced impacts of our framework’s compo-
nents. It reveals the importance of aligning the
capabilities of tools like the API Retriever with the
specific demands of the environment and demon-
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strates the substantial benefits that fine-tuning
brings in enhancing model performance in a less
complex API ecosystem.

C.4 Cases of Real-World Scenario
To make the concept of our framework clearer, we
present some real test examples, including the input
and output sequences, in Table 6.

Table 6: Real examples of our framework.

User Query: Implementing surveillance on target person A.

LLM Output:
question: Implementing surveillance on target person A.
question_01: I need to know who is person A.
action_01: Lib_manage.Create(’person A’)
observation_01: ["Lib_manage(’person A’)"]
question_02: I need to implement surveillance on person A.
action_02: Surveillance.Task_manage(Lib_manage(’person
A’))
observation_02: ["New surveillance has been added."]
question_03: I need to surveil person A.
action_03: Alert_center.Surveillance_alert()
observation_03:["No warnings"]
summary: ["New surveillance has been added on person A,
no warnings!"]

Agent Output:
New surveillance has been added on person A, no warnings!

User Query: I want to analyze suspect A’s associates. Tell
me about his relationships.

LLM Output:
question: I want to analyze suspect A’s associates. Tell me
about his relationships.
question_01: I need to know who is A.
action_01: Lib_manage.Search(’A’)
observation_01: ["Lib_manage(’A’)"]
question_02: I need to know the profile of A.
action_02: Holographic_profile.Person_profile_search(Lib_
manage(’A’))
observation_02: ["Holographic_profile.Person_profile(’A’)"]
question_03: I need to know the relationship of A.
action_03: Holographic_profile.Person_profile(’A’).Relation-
ship_graph()
observation_03:["Person B is his ...", "Person C used to ...."]
summary: ["Person B is his ...", "Person C used to ...."]

Agent Output:
Person B is his .... Person C used to ....
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