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Abstract

Materials science is an interdisciplinary field
focused on studying and discovering materi-
als around us. However, due to the vast space
of materials, downstream datasets in this field
are typically scarce and have limited cover-
age. This inherent limitation poses challenges
when adapting pre-trained language models
(PLMs) to materials science, as existing meth-
ods rely heavily on frequency information from
these limited datasets. In this paper, we pro-
pose Semantic Knowledge Transfer (SEED), a
novel vocabulary expansion method designed
to adapt pre-trained language models (PLMs)
for materials science. The core strategy of
SEED is to transfer materials knowledge from
lightweight embeddings into PLMs. To achieve
this, we introduce knowledge bridge networks,
which learn to transfer the latent knowledge em-
bedded in materials-specific embeddings into
representations compatible with PLMs. By ex-
panding the embedding layer of PLMs with
these transformed embeddings, the models can
comprehensively understand the complex ter-
minology associated with materials science.
We conduct extensive experiments across a
broad range of materials-related benchmarks.
The comprehensive evaluation results convinc-
ingly demonstrate that SEED mitigates the lim-
itations of previous adaptation methods, show-
casing the efficacy of embedding knowledge
transfer into PLMs.1

1 Introduction

The pre-training and fine-tuning paradigm of lan-
guage models is widely adopted in natural language
processing (NLP). However, since pre-training
is typically performed on general-domain cor-
pora, such as Wikipedia, the adaptability of pre-
trained language models (PLMs) is limited when
the target domains differ significantly from the

1Our code is available at https://github.com/
yeachan-kr/seed
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Figure 1: Adaptation performance of the state-of-the-art
method (Hong et al., 2021) across different domains:
non-materials domains (Biology, Computer Science,
Politics) and materials domains. Detailed performance
results can be found in the Appendix.

pre-training domains. This limitation presents a
particular challenge in the field of materials sci-
ence, which encompasses a wide range of domain-
specific jargon and complex chemical formulas
(e.g., (La0.8Sr0.2)0.97MnO3).

One promising approach to enhance the adapt-
ability of PLMs is to expand the coverage of vocab-
ulary. For example, previous works have expanded
the vocabulary of PLMs by considering the fre-
quency information of downstream datasets (Hong
et al., 2021; Yao et al., 2021). However, such a
frequency-based approach can be suboptimal in
materials science, as downstream datasets in this
domain are typically scarce and limited in cover-
age (Song et al., 2023). Indeed, we experimentally
observe that a state-of-the-art optimization method
(i.e., AVocaDo (Hong et al., 2021)) rather degrades
the performance of the original model2. Figure
1 illustrates that AVocaDo yields poor adaptation
results in materials science, while significantly en-
hancing the performance of PLMs in other domains
(e.g., biomedical, computer science, politics), un-
derscoring the unique challenges of adaptation to
the materials science domain.

2We also show that other vocabulary expansion methods
fail in adapting PLMs to materials science (Section 4).
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In response, we propose Semantic Knowledge
Transfer (SEED), a novel method designed to opti-
mize the vocabulary and embedding layer of PLMs
for materials science. Specifically, unlike prior
works that rely on frequency information from
downstream datasets, SEED utilizes latent knowl-
edge within the materials science corpus to adapt
the PLM’s vocabulary. Given that pre-training mod-
els on a large corpus incurs significant adaptation
costs, SEED leverages Mat2vec (Tshitoyan et al.,
2019), lightweight word embeddings trained on
materials science journals. To bridge these two
distinct types of knowledge representations, we
introduce bridge networks that transfer the materi-
als knowledge from Mat2vec into PLMs. With the
transferred knowledge from Mat2vec, PLMs can be
effectively adapted to materials science domains.

To verify the efficacy of SEED, we conduct ex-
tensive experiments across diverse benchmarks in
materials science, including materials entity recog-
nition, slot filling, and glass classification, using
various PLM backbones. The evaluation results
demonstrate that SEED effectively mitigates the
inherent limitations in adapting PLMs for mate-
rials science. Additionally, we observe that the
transferred embeddings are closely aligned with
the original embeddings in PLMs, confirming the
successful knowledge transfer achieved by SEED .
In summary, the contributions of this paper include
the following:

• We discover that existing adaptation methods
fail in the field of materials science due to the
distinct challenges of materials science.

• We propose SEED, a novel vocabulary expan-
sion method by transferring the latent knowl-
edge of external materials embeddings.

• We demonstrate that SEED outperforms the
existing methods, underscoring the efficacy of
the knowledge transfer approach in adapting
PLMs for materials science.

2 Related Work

2.1 NLP for Materials Science

The growing number of textual datasets in materi-
als science, such as scientific papers and patents,
has facilitated the use of NLP-based approaches to
address materials-related downstream tasks, span-
ning relation classification (Mysore et al., 2019;
Mullick et al., 2024) and materials entity extraction

(Weston et al., 2019; Friedrich et al., 2020). For
instance, Weston et al. (2019) performed named
entity tagging for materials science tetrahedron by
learning a bidirectional LSTM tagger. In exploring
unsupervised approaches to materials science, Tshi-
toyan et al. (2019) demonstrated promising results
with a word2vec approach (Mikolov et al., 2013)
for understanding chemical properties and broader
chemistry knowledge. Trewartha et al. (2022) in-
troduced language models pre-trained on materials
science journals using the BERT framework (De-
vlin et al., 2019). Similarly, Gupta et al. (2022) and
Huang and Cole (2022) adapted SciBERT (Beltagy
et al., 2019) and BERT (Devlin et al., 2019), re-
spectively, for use in general materials science and
battery-focused downstream tasks.

2.2 Vocabulary Expansion of PLMs

Expanding the original vocabulary with domain-
specific words has been getting significant atten-
tion, as it enables the efficient adaptation of PLMs
without the non-trivial costs associated with pre-
training on domain-specific corpora (Tai et al.,
2020; Zhang et al., 2020; Yao et al., 2021). For
example, Tai et al. (2020) extended the vocabu-
lary of PLMs to biomedical domains by learning
a new WordPiece (Wu et al., 2016) on biomedical
corpus. Similarly, Hong et al. (2021) selected the
additional subwords from the downstream datasets
and fine-tuned the added embeddings with con-
trastive learning. Yao et al. (2021) and Kajiura et al.
(2023) also adopted the same approach to vocabu-
lary expansion, where the frequency information
in the downstream datasets is leveraged to expand
the vocabulary. However, given that downstream
datasets in materials science are typically limited
and scarce (Song et al., 2023), relying solely on
frequency information of these datasets can result
in sub-optimal adaptation of PLMs.

3 SEED: Semantic Knowledge Transfer

In this work, we elaborate on Semantic Knowledge
Transfer (SEED). The key strategy of SEED in-
volves transferring the knowledge from external
materials embeddings into PLMs. To achieve this,
we begin with the words shared between the vocab-
ularies of materials embeddings and PLMs (§3.1).
We then train bridge networks to ensure that the
semantic relations of the shared words are trans-
ferred to PLMs (§3.2). After training, we transfer
the materials knowledge only existed in the materi-
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Figure 2: Overall adaptation process of PLMs with SEED. Starting from the shared vocabulary (S) between PLMs
embeddings and materials ones, we train the bridge network to transform Mat2vec into compatible representations
with PLM’s embeddings. After converged, words in the unique vocabulary (U) are transformed through the bridge
networks. The transferred embeddings are then interleaved to the embedding layer of PLMs.

als embeddings into the PLMs through the learned
bridge network (§3.3). The overall procedures of
SEED are illustrated in the Figure 2.

3.1 Vocabulary Alignment between Materials
Embeddings and PLMs

Unlike the previous works that solely rely on fre-
quency information of the downstream datasets
(Yao et al., 2021; Hong et al., 2021), we lever-
age Mat2vec (Tshitoyan et al., 2019) to expand
the knowledge of the PLMs. Specifically, we use
the skip-gram version (Mikolov et al., 2013) of
Mat2vec trained on scientific papers, which in-
cludes 200-dimension vectors for 500k words3.

To transfer the knowledge of Mat2vec, we first
decompose the vocabulary of the materials embed-
dings into two disjoint sets: a shared set S and a
unique set U . The words in S appear in both the
materials embeddings and the PLMs’ vocabularies,
while the words in U only appear in the materials
embeddings. We target the transfer of unique ma-
terials knowledge without disrupting the existing
knowledge structure of the PLMs. Additionally,
to mitigate the negative impact of over-expansion,
we only consider target words that are originally
tokenized into more than four tokens.

3.2 Bridge Networks for Knowledge Transfer

Bridge Networks To transfer the knowledge of
the materials embeddings, we introduce bridge net-
works that learn to transform these embeddings
into ones compatible with the PLMs. Let the em-
beddings in Mat2vec and PLMs be denoted as EM

3Details for Mat2vec is described in the Appendix.

and EP, respectively, we first transform the EM as
follows:

EM→P(w) = α(EM(w)),∀w ∈ S (1)

where α represents the bridge networks, which
consists of two-layer feed-forward networks, and
EM→P indicates the transformed representations
from the materials embeddings. The input and out-
put dimensions of the bridge network α are aligned
with the materials embeddings and those in PLMs.

Optimizing Bridge Networks To optimize the
bridge network such that the transformed embed-
dings are compatible with the PLMs, we optimize
the bridge networks through the following recon-
struction loss as follows:

Lrecon = ∥EP(w)− EM→P(w)∥22,∀w ∈ S (2)

However, we empirically observe that optimizing
the parameters solely based on the aforementioned
reconstruction loss leads to sub-optimal transfor-
mation of materials embeddings. Inspired by re-
lational knowledge distillation (Park et al., 2019),
we also introduce additional objectives to consider
the relations with other words. Specifically, let the
distance function of the embeddings x and y be
denoted as ψ(x, y)4, the loss function to inject the
relations between words is as follows:

Lrel = δ(ψ(EP(wi), EP(wj)), (3)

ψ(EM→P(wi),EM→P(wj))),

4While we have a number of design choices, we used the l2
distance function in this work. Exploration on diverse distance
metrics and more relations can be a promising future work.
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Algorithm 1 Semantic Knowledge Transfer

Input: Materials Vocabulary VM and Embeddings
EM , PLMs’ Vocabulary VP and Embeddings EP ,
Bridge network α, L2 distance L2, Relational
distance LR

1: S ← JointVocab(VM , VP )
2: U ← DisjointVocab(VM , VP )
3: # Learning bridge networks
4: for word w in S do
5: EM→P (w)← α(EM (w))
6: Lrecon ← L2(EM→P (w), EP (w))
7: Lrel ← LR(EM→P (w), EP (w))
8: Optimize α based on Lrecon + Lrel
9: end for

10: # Transferring knowledge of VM to VP
11: for word w in U do
12: EM→P (w)← α(EM (w))
13: end for
14: return Transferred embeddings EM→P

where wi and wj are randomly selected materials
in batch, and δ(x, y) is Huber loss (Huber, 1992)
that is defined as follows:

δ(x, y) =

{
1
2(x− y)2 if |x− y| ≤ 1,

|x− y| − 1
2 , otherwise.

(4)

By combining the two loss functions (i.e., Lrecon,
Lrel), the bridge network learns the mapping func-
tion between the knowledge of materials embed-
dings and PLMs.

3.3 Adapting SEED to Downstream Tasks
Transfer Knowledge Selection After the opti-
mization of the bridge networks converges, we
transfer knowledge from the unique set U absent
in the PLMs by feeding their embeddings into the
bridge networks and placing them into the embed-
ding layer of PLMs. However, since the vocabu-
lary size of the materials’ embeddings is substan-
tially larger than that of the PLMs, transferring
all words would require significant memory over-
head in the PLMs. Following previous work (Hong
et al., 2021), we selectively transfer the knowledge
of the words in a task-specific manner. Specifically,
we extract all words from the training set and ex-
pand this list by searching for similar words using
the materials embeddings to identify these similar
terms.

U ← {TopK(w) | w ∈ D,w /∈ S} (5)

where TopK(w) indicates the function that returns
k words that are most similar to the given word w,
the similarity measure is the cosine similarity based
on the materials embeddings, andD is the word list
in the downstream dataset. After narrowing down
the unique set based on the downstream dataset, we
transfer the knowledge of materials embeddings
to the PLMs through the trained bridge network.
With the expanded embeddings and vocabulary, the
PLMs are adapted to downstream tasks through a
typical fine-tuning process.

Optimization Following the previous work by
(Hong et al., 2021), we introduce a contrastive reg-
ularization term that encourages representations
derived from expanded embeddings not to deviate
from the original embeddings. The overall algo-
rithm of SEED is described in Algorithm 1.

4 Experiments

In this section, we experimentally demonstrate the
efficacy of SEED in adapting PLMs to downstream
tasks. Specifically, we mainly focus on whether
SEED mitigates the limitations of vocabulary ex-
pansion methods in materials science.

4.1 Experimental Setups

Baselines The goal of SEED is to effectively
adapt the PLMs to the downstream tasks in mate-
rials science by optimizing vocabulary and its em-
beddings. To confirm the effectiveness, we mainly
compare ours with the three strong baselines with
the backbone: AdaLM (Yao et al., 2021), AVo-
caDo (Hong et al., 2021), Replace (Kajiura et al.,
2023). AdaLM adapts the PLMs to specific do-
mains by expanding the vocabulary based on the
frequency of the subwords. While this method in-
cludes the distillation phase to train the smaller
domain expert model, we only apply the vocab-
ulary expansion algorithm to fairly compare the
effectiveness of the vocabulary expansion. Simi-
larly, AVocaDo considers the frequency informa-
tion of subwords in the downstream datasets with
the contrastive learning designed to stabilize the
training. Replace selects frequent words in down-
stream datasets, and the less frequent words in vo-
cabulary are replaced with the new frequent words.
For the setups of SEED, we list the selected param-
eters and search space in the Appendix.

Downstream Tasks and Datasets To demon-
strate the diverse aspects, we evaluate each method
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Table 1: Evaluation results on four materials benchmarks based on BERT (Devlin et al., 2019). For SOFC and
MatScholar, the reported performances are Macro-F1 scores. For the Glass Science dataset, we report accuracy
scores for each baseline. The best and the second best results are highlighted in boldface and underline, respectively.

Method
SOFCSF SOFCNER MatScholar Glass Science

dev test dev test dev test dev test

BERT (Devlin et al., 2019) 0.652 0.569 0.808 0.787 0.848 0.844 0.932 0.938
AdaLM (Yao et al., 2021) 0.637 0.566 0.792 0.793 0.837 0.841 0.935 0.937
AVocaDo (Hong et al., 2021) 0.629 0.579 0.787 0.777 0.844 0.841 0.928 0.935
Replace (Kajiura et al., 2023) 0.656 0.576 0.810 0.790 0.846 0.839 0.935 0.936
SEED (ours) 0.661 0.594 0.811 0.807 0.859 0.853 0.944 0.937

Table 2: Vocabulary statistics of Mat2vec (Tshitoyan
et al., 2019) and two different PLMs (BERT (Devlin
et al., 2019) and SciBERT (Beltagy et al., 2019)).

Models # Words # Overlap to Mat2vec

Mat2vec (EM) 529,686 -
BERT (EP) 30,522 17,261 (56.5%)
SciBERT (EP) 31,090 15,123 (48.6%)

on the four different tasks in materials science.
These tasks include materials entity recognition,
paragraph classification, and slot filling.

For the materials entity recognition tasks, we
use two widely used datasets, MatScholar (Weston
et al., 2019) and SOFC (Friedrich et al., 2020), in
which the model is required to recognize entities
including materials, descriptors, materials proper-
ties, and applications from materials science text.
For the paragraph classification task, we use the
glass paragraph dataset (Venugopal et al., 2021)
which requires the model to determine whether a
given paragraph is related to glass science. The slot-
filling task is to extract slot fillers from particular
sentences based on a pre-defined set of semanti-
cally meaningful entities, and we use the SOFC
(Friedrich et al., 2020) dataset.

Backbones To verify the general applicability
of the proposed method, we apply our method to
two different backbone models which are SciB-
ERT (Beltagy et al., 2019) and BERT (Devlin
et al., 2019). SciBERT (Beltagy et al., 2019) is
the encoder-based model trained on 1.14M scien-
tific corpus, and BERT (Devlin et al., 2019) is the
encoder-based model trained on general English
corpus (Wikipedia and BookCorpus). The statistics
of each embedding are presented in Table 2.

4.2 Main Results

Results on BERT Table 1 presents the overall
performance results on the four materials bench-
marks using the BERT (Devlin et al., 2019) back-
bone. As mentioned earlier, the existing vocabulary
expansion baselines show limited performance im-
provements across various materials-domain tasks,
highlighting the unique challenges in the field of
materials science5. However, we find that the pro-
posed method, SEED, significantly enhances perfor-
mance in almost all settings. This improvement un-
derscores the efficacy of knowledge transfer from
the materials embeddings in the PLMs. One of
the key factors in this superior performance also
lies in embedding initialization, as existing meth-
ods focus primarily on tokenization and less on the
initialization of the added tokens. Overall results
confirm that SEED can effectively adapt the PLMs
to materials science and effectively mitigates the
limitations of the existing methods.

Results on SciBERT To verify the general appli-
cability of SEED and confirm whether the PLMs
pre-trained on the scientific corpus can achieve a
performance improvement, we apply SEED to a dif-
ferent backbone that is pre-trained on the scientific
corpus (i.e., SciBERT(Beltagy et al., 2019)). Table
3 shows the results on the four benchmark datasets.
The results show a consistent trend to the results
with BERT. While the performance improvement
from the existing vocabulary expansion methods is
limited, the adaptation performances are boosted
when adapting PLMs with the proposed method.
These results underscore the general applicability
of SEED and show that the PLMs pre-trained on

5To demonstrate the effectiveness of the existing baselines
in other domains, we adapted each baseline to the fields of
biomedical and computer science. Please refer to the Ap-
pendix for a more detailed analysis.
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Table 3: Evaluation results on four materials benchmarks based on the SciBERT (Beltagy et al., 2019). For SOFC
and MatScholar, the reported performances are Macro-F1 scores. For the Glass Science dataset, we report accuracy
scores for each baseline. The best and the second best results are highlighted in boldface and underline, respectively.

Method
SOFCSF SOFCNER MatScholar Glass Science

dev test dev test dev test dev test

SciBERT (Devlin et al., 2019) 0.683 0.602 0.824 0.810 0.875 0.856 0.937 0.938
AdaLM (Yao et al., 2021) 0.669 0.580 0.808 0.800 0.865 0.847 0.931 0.940
AVocaDo (Hong et al., 2021) 0.675 0.596 0.796 0.786 0.873 0.849 0.940 0.941
Replace (Kajiura et al., 2023) 0.682 0.597 0.818 0.806 0.869 0.838 0.937 0.937
SEED (ours) 0.673 0.586 0.839 0.818 0.886 0.861 0.947 0.943

Table 4: Ablation results of the training objectives for
the bridge network on the two representative datasets.
Here, we use the BERT (Devlin et al., 2019) backbone
and evaluation results on the test set for each dataset.

Method SOFCNER MatScholar

SEED (ours) 0.807 0.853

w/o Relation 0.801 0.844
w/o Reconstruction 0.798 0.840

scientific corpus achieve the benefit from the SEED.

4.3 Ablation Study

To confirm whether each component in SEED is in-
deed effective in adapting the pre-trained language
models to materials science, we perform the abla-
tion studies. Specifically, we evaluate the contribu-
tions of the training objectives in training the bridge
networks, i.e., reconstruction loss Lrecon and rela-
tion loss Lrel. Table 4 presents the ablation results
on the two representative datasets. We first observe
that omitting each component from the proposed
method consistently leads to performance degrada-
tion, demonstrating the effectiveness of each com-
ponent. In particular, we observe that relation loss
plays a significant role in effectively training the
bridge network. These results empirically justify
the contributions of each component in SEED.

4.4 Visualization of the Expanded Vocabulary

Lastly, we visualize the expanded vocabulary to
confirm whether the added words from SEED are in-
deed semantically related to original embeddings in
PLMs. Figure 3 shows the examples of the 2D pro-
jected embeddings by t-SNE (Van der Maaten and
Hinton, 2008). Interestingly, in the vicinity of elec-
trode, electron embeddings, semantically related
words are closely located. For example, nanocrys-

ions
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photoelectrons

nanocrystals

monocrystals

𝛼-Fe2O3

isomorphous

crystalline

oxide

LM Embeddings Expanded Embeddings (SEED)

Figure 3: t-SNE visualization of the examples about the
PLMs embeddings with the transferred ones.

tals and nanocrystalline, which are the neighboring
words of electrode and crystalline, play a crucial
role in advancing the performance and durability
of electrode materials used in various energy stor-
age and conversion technologies. Moreover, the
chemical formula α-Fe2O3, which has desirable
electrochemical properties for electrodes, is also
closely placed with electrode and oxide. This result
demonstrates that SEED can expand the knowledge
of PLMs by augmenting the original embeddings
with semantically related words.

5 Conclusion

In this work, we have proposed Semantic
Knowledge Transfer (SEED), a novel vocabulary
expansion method aimed at adapting PLMs to ma-
terials science. Specifically, we have leveraged
Mat2vec to expand the knowledge of the PLMs,
which are lightweight embeddings trained on large-
scale scientific papers. The knowledge in the mate-
rials embeddings is subsequently transferred to the
PLMs through the learned bridge networks which
serve as a mapping function between two different
knowledge representations. We have performed
extensive experiments to verify the efficacy of the
proposed method across diverse benchmarks and
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various architectures. Comprehensive results have
convincingly demonstrated that adapting the PLMs
with SEED leads to substantial improvements in
performance across diverse materials-related tasks
compared to existing vocabulary expansion meth-
ods, highlighting the broad value of SEED in mate-
rials science.
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Appendix
A Baselines on the non-materials domains

We replicate the state-of-the-art vocabulary expan-
sion method (Hong et al., 2021) to confirm whether
this method works well on domains that are widely
used in previous adaptation papers. Table 5 shows
that the expansion method significantly improves
the performance of the PLMs on almost all datasets
and domains. These results confirm the distinct
challenges of adaptation methods for materials sci-
ence, where each baseline shows degraded perfor-
mance even after adaptation.

Table 5: Evaluation results on three different datasets
with different domains. Macro-F1 score for ACL-ARC
(Computer Science) and Hyperpartisan News (News),
micro-F1 score for ChemProt (Biomedical).

Models ChemProt ACL-ARC
Hyperpartisan

News

BERT 0.797 0.568 0.834
AVocaDo 0.812 (+0.015) 0.688 (+0.120) 0.889 (+0.055)

B Hyper-parameter setups of SEED

We follow the fine-tuning strategy of previous
works (Hong et al., 2021). For the SEED method,
we optimize the bridge networks using a learning
rate of 1e-3 with the Adam optimizer and a batch
size of 32. To select the unique sets U from each
downstream datasets, we search for the best Top-k
values ranging from 10 to 100 (with the step size
of 10). We also apply several heuristics for the se-
lection. To use new embeddings only for complex
terms, we set a minimum number of split tokens. In
other words, we include words that are originally
split into more than four tokens. We conduct all
experiments on two NVIDIA RTX A6000 GPUs.

C Implementation details of Mat2vec

To obtain the materials embeddings (Mat2vec), we
trained skip-gram word embeddings on scientific
journals. We followed the overall procedures of the
original work (Tshitoyan et al., 2019), but increased
the number of journals to 4.5 million (the paper
utilized roughly 3 million scientific journals) to
cover recent publications and expand the scope
of materials. The overall training process takes 7
hours in the setup of Intel Xeon Gold 6230R CPUs.
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