
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 463–476
November 12-16, 2024 ©2024 Association for Computational Linguistics

Prompt-Tuned Muti-Task Taxonomic Transformer (PTMTTaxoFormer)

Rajashekar Vasantha
Amazon Web Services
rajasvas@amazon.com

Nhan Nguyen
Amazon Web Services
ntrnguye@amazon.com

Yue Zhang
Amazon Web Services
zhangany@amazon.com

Abstract

Hierarchical Text Classification (HTC) is a sub-
class of multi-label classification, it is challeng-
ing because the hierarchy typically has a large
number of diverse topics. Existing methods
for HTC fall within two categories, local meth-
ods (a classifier for each level, node, or par-
ent) or global methods (a single classifier for
everything). Local methods are computation-
ally expensive, whereas global methods often
require complex explicit injection of the hier-
archy, verbalizers, and/or prompt engineering.
In this work, we propose Prompt Tuned Multi
Task Taxonomic Transformer, a single classi-
fier that uses a multi-task objective to predict
one or more topics. The approach is capable
of understanding the hierarchy during training
without explicit injection, complex heads, ver-
balizers, or prompt engineering. PTMTTaxo-
Former is a novel model architecture and train-
ing paradigm using differentiable prompts and
labels that are learnt through backpropagation.
PTMTTaxoFormer achieves state of the art re-
sults on several HTC benchmarks that span a
range of topics consistently. Compared to most
other HTC models, it has a simpler yet effec-
tive architecture, making it more production-
friendly in terms of latency requirements (a
factor of 2-5 lower latency). It is also robust
and label-efficient, outperforming other models
with 15%-50% less training data.

1 Introduction

Hierarchical text classification (HTC) is a special-
ized form of text classification that involves cate-
gorizing text documents into a hierarchical struc-
ture of labels or categories. In HTC, the labels
are organized in a tree-like structure or a directed
acyclic graph (DAG) (Wang et al. (2022a); Peng
et al. (2018)), where parent-child relationships exist
between categories at different levels. HTC allows
for more nuanced and detailed classification of text
compared to flat classification systems.

HTC is used in various applications where or-
ganizing and categorizing large amounts of tex-
tual information is necessary (Zangari et al., 2024).
Common use cases include document organiza-
tion, content management, e-commerce product
categorization, knowledge management and scien-
tific literature classification (Sadat and Caragea,
2022). These applications benefit from the hierar-
chy, which allows for more precise and granular
categorization, particularly in domains with com-
plex, multi-level category structures. HTC models
aim to capture both the content of the text and the
relationships between different levels of categories,
making them effective for organizing and retrieving
information in hierarchical systems.

HTC approaches are generally divided into two
groups – local and global approaches. Local ap-
proaches tend to partially or fully ignore the hier-
archical structure in the training paradigm, which
lead to information loss (Punera and Ghosh (2008);
Cerri et al. (2011)). Local models also have mas-
sive trainable parameters as they consist of multiple
models. Global methods overcome the limitations
above by taking into consideration the hierarchy
and using the hierarchy information either explic-
itly or implicitly (Silla and Freitas (2011)). We
refer the readers to Zangari et al. (2024) for an
in-depth review of these approaches.

Prompt-based learning methods are a subset
of the global methods. Recent advancements in
prompt-based learning (Liu et al. (2023), Zhang
et al. (2021), Wang et al. (2022b), Liu et al. (2023))
have shown that prompt-based approaches produce
better results than vanilla finetuning of the encoded
text representation. Various prompt-based learn-
ing techniques have been explored, including In-
Context Learning (Brown et al. (2020)), Prompt
Based Few Shot Learning (Jian et al. (2022)),
Multi-prompt learning (Schick and Schütze (2020),
Gao et al. (2020)) and Prompt Based Training (Li
and Liang (2021)). One of the main drawbacks

463

to these methods is that the performance is sensi-
tive to the prompts chosen. To mitigate this issue,
we adopted differentiable prompts that are learnt
through backpropagation during training, similar
to Zhang et al. (2021). Another key aspect in the
aforementioned approach is the treatment of labels
in the hierarchy, where most earlier approaches
leveraged verbalizers chosen ad-hoc (Schick and
Schütze, 2020; Ji et al., 2023). However, in a com-
plex hierarchy, especially for a highly-specialized
domain, labels could have nuanced semantic differ-
ences that are difficult to capture by the verbalizer.
In the meantime, it is not viable to come up with
and maintain the mapping. To this end, we rep-
resent each label in the hierarchy with a new, dif-
ferentiable token and these tokens are also learned
through backpropagation during training.

Our method uses text input appended with
prompt tokens and [MASK] tokens (one for each
level of hierarchy). The model is then trained to
unmask the [MASK] tokens to output the correct
label tokens (again, one / more for each level of hi-
erarchy). The prompt tokens, the label tokens and
the model parameters are jointly optimized during
the training process. We describe the process in
further detail in subsection 2.1. The objective func-
tion we use to optimize the above parameters is
a combination of Weighted Asymmetric Loss, L1
Loss and MLM loss, as described in subsection 2.2.

We summarize our contributions as follows:

• We proposed Prompt-Tuned Multi-Task Taxo-
nomic Transformer – a prompt tuning method
for multi-label hierarchical text classification
that does not require complex prompt engi-
neering, verbalizers or explicit hierarchy in-
jection during the training process.

• We implemented Weighted Asymmetric Focal
Loss (WASL), a new loss function that is ca-
pable of handling the class imbalance in the
hierarchical setting.

• Our method achieved state-of-the-art results
on several benchmark datasets, and is appli-
cable to any text domains. The approch is
simpler compared to other methods, leading
to a factor of 2 to 5 lower latency requirements
in production.

• Our method is label-efficient and robust in low
resource settings, outperforming other models
with around 15% to 50% less training data.

This is critical for many industrial applica-
tions, as getting training data is expensive.

2 Methodology

The problem of hierarchical multi-label prediction
consists of two components: Hierarchical Predic-
tion and Multi-Label Prediction. This section de-
scribes our approach in solving both components.

2.1 Hierarchical Prediction through
Hierarchical Differentiable Prompt
Tuning

We attempt the hierarchical prediction by prompt-
ing a language model to predict the labels at dif-
ferent levels of the hierarchy. Choosing a prompt
through prompt engineering is a tedious process
with infinitely many possibilities. Hence, we use
differentiable prompts that are optimized through
backpropagation as proposed by Zhang et al. (2021)
and extend it to hierarchical prediction. The fol-
lowing section explains this method in more detail.

Figure 1 shows the architecture of our approach
during training. Our experiments were performed
with BERT (Devlin et al. (2018a)) as the backbone.
The approach can, however, be extended to almost
all large language models including RoBERTa (Liu
et al. (2019)), ALBERT (Lan et al. (2019)) and
DeBERTa (He et al. (2020)) that are encoder-based,
T-5 (Raffel et al. (2020)) and BART (Lewis et al.
(2019)) that are encoder-decoder-based and GPT-
like (Radford et al. (2019)) models that are decoder-
based with minor modifications to the architecture.

We follow the prompting scheme proposed by
Zhang et al. (2021) and set some of the unused
tokens in the vocabulary as prompt tokens. To ex-
tend our approach to use backbones like RoBERTa
(Liu et al. (2019)) and ALBERT (Lan et al. (2019))
that do not have unused tokens, we simply have to
add new tokens to the vocabulary and use them as
prompt tokens. The embeddings corresponding to
these tokens are learnt during the training process.
We tokenize the input text using the regular tok-
enizer corresponding to the chosen backbone and
append to it the following tokens:

• Prompt Tokens

• [MASK] Tokens

The number of prompt tokens(m) is a hyperparame-
ter to tune. The number of [MASK] tokens added
is equal to the number of levels in the hierarchy.

464

Figure 1: The architecture of Prompt-Tuned Muti-Task Taxonomic Transformer during training. PTMTTaxo-
Former transforms hierarchical multi label classification into [MASK] token prediction problem. The input text
is tokenized, appended with differentiable prompt tokens and [MASK] tokens. The number of [MASK] tokens is
equal to the number of levels in the hierarchy. The model learns to unmask these tokens and predict the correct
label-tokens (also differentiable). We use a linear combination of Weighted Asymmetric Focal Loss (Equation 1),
Mean Absolute Error and Masked Language Modeling Loss as the final loss function. The diagram above shows an
example scenario with a taxonomy of four levels (d = 4)

After appending these tokens, the processed input
token sequence looks like this:

[CLS], [T1], . . . , [Tn], [SEP], [P1], . . . , [Pm],

[MASK], . . . [MASK]︸ ︷︷ ︸
No. of levels in hierarchy

, [SEP]

where [CLS] is a special token used in BERT (De-
vlin et al. (2018a)), [T1], . . . , [Tn] represent the to-
kens of the input sentence and [P1], . . . , [Pm] rep-
resent the learnable prompt tokens.

The model learns to fill the [MASK] tokens
with labels corresponding to different levels of the
hierarchy - the first [MASK] token corresponding
to the label in the first level of the hierarchy, the
second [MASK] token corresponding to the label
of the second level and so on. We flatten labels at
each level of the hierarchy and train the model to
make predictions in this space. The flattened labels
are mapped to tokens in the vocabulary (can be
unused tokens or newly added tokens as described
above for the prompt tokens) and the training pro-
cedure optimizes the model to predict the correct
tokens from this set of tokens. This procedure is
repeated for each level in the hierarchy.

For example, consider a hierarchy with depth
d and each level having n1, . . . nd number of flat-

tened nodes, respectively. The label-tokens for
each level can be represented as follows:

Level 1: [L11], . . . [L1n1]

Level 2: [L21], . . . [L2n2]

...

Level d: [Ld1], . . . [Ldnd
]

[Lij] here refers to a token in the vocabulary. If
we consider a hierarchy with four levels and an in-
put sentence with l12, l25, l31, l44 as the true labels
corresponding to the four levels in its hierarchy,
the model learns to predict the above four tokens
in place of the four [MASK] tokens during in-
ference. Note that there is no explicit hierarchy
injection during training. During inference, we
prune the paths predicted by the above method to
include only valid paths present in the hierarchy.
The architecture at inference is shown in Figure 3.

During training, the input tokens are masked
with a small probability (Table 4). This ensures
association between the prompt, the label and the
input tokens while retaining the language under-
standing ability of the pretrained model. All the
parameters are jointly optimized using the objec-
tives described in the following section.

465

2.2 Training Objectives
As our task is to predict multiple labels, we reduce
it to a series of binary classification tasks as com-
monly done in multi-label classification. We train
the model using a combination of three objective
functions - Asymmetric Focal Loss, L1 Loss, and
Masked Language Modeling Loss. Each of them is
described below.

• Weighted Asymmetric Focal Loss: We fol-
low Ben-Baruch et al. (2020) and extend their
Asymmetric Loss to what we call Weighted
Asymmetric focal Loss (WASL) and use it in-
dependently for each level in the hierarchy.
A typical hierarchy in the datasets we experi-
ment with consists of several hundred nodes.
Out of these, for a datapoint, only a few
will be correct (positive) and the rest incor-
rect (negative) resulting in a severe positive-
negative imbalance. This leads to under em-
phasis (Lin et al. (2017)) of gradients from
positive labels during the training process. We
use the focal loss to focus more on positive
labels to mitigate this problem.

As the hierarchy branches out, there are fewer
training examples at lower levels compared
to higher levels. To overcome this imbalance,
we additionally add an increased weight on
the positive class. This weight increases as we
go down the hierarchy levels.

The logits corresponding to the label-tokens
are first independently computed using the
sigmoid function. Then, the WASL is applied
to the logits and labels corresponding to each
level in the hierarchy. The different losses at
each level are then summed up.

We define WASL for each logit as follows.
Here, i refers to the level and j refers to one
flattened label in that level:

LWASLi,j =

{
L+ = w(1− p)γ+ log(p)

L− = (pm)γ− log(1− pm)
(1)

where, p is the probability after sigmoid,
γ+ and γ− are the positive and negative fo-
cusing parameters respectively and pm =
max(p−m, 0). pm is the shifted probability
and m > 0 is the probability margin. More
information about the values of these hyperpa-
rameters is given in subsection A.4. w is the
weight assigned to the positive class. WASL

for a level is the sum of the WASL for each
logit. WASL for each level is then summed
across all levels to get the total loss.

The total WASL is given by the below equation.
d is the number of levels in the hierarchy and
ni is the number of labels in the ith level.

LWASL =

d∑

i=1

ni∑

j=1

LWASLi,j (2)

• L1-Loss: The problem of multi-label hierar-
chical prediction presents a challenge where
we do not know the number of correct labels
for a given example in advance. We want to
explicitly penalize too few predictions as well
as too many predictions. To do this, we regu-
larize the number of predictions using L1-loss
between the sum of logits after sigmoid and
the true number of labels.

• Masked Language Modeling Loss: During
training, we mask each non-label-token with
a probability of pmlm and we mask each label-
token with a probabilty of plabel. Allowing
some of the label-tokens to be unmasked dur-
ing training is more effective compared to
masking all of them as shown in Zhang et al.
(2021). We use the regular cross-entropy loss
on the logits corresponding to the masked to-
kens. The masking strategy used is the same
as described in Devlin et al. (2018b).

The total loss optimized is computed as below:

L = αLmlm + (1− α)(LWASL + αl1Ll1) (3)

An illustration of the methodology using a toy
example has been provided in subsection A.7.

The above method can also be reduced to sin-
gle label prediction either by using the WASL for
single label prediction or the regular cross-entropy
loss over the logits of the label-tokens. We will
have to compute one loss for each level of the hier-
archy in this case too.

2.3 Hierarchy Injection

The hierarchy is implicitly injected during train-
ing and explicitly used during inference. During
training, the [MASK] tokens corresponding to the
label positions attend to each other in addition to at-
tending to the prompt and input tokens. We hypoth-
esize that the bidirectional attention mechanism

466

implicitly injects hierarchical information during
training. During inference, we explicitly use the hi-
erarchical label structure to eliminate the predicted
paths that are not a part of the hierarchy, if any.

3 Experiment Setup

3.1 Datasets

Our methods are evaluated on four HTC datasets
that cover a diverse array of topics and difficulties
(Zangari et al. (2024)): Web of Science (Kowsari
(2018)), Blurb Genre Collection (Aly et al. (2019)),
Linux Bugs Dataset (Lyubinets et al. (2018)), and
Amazon 5 × 5 (Zangari et al. (2024); Ni et al.
(2019)). The diversity of the selected datasets
serves as a rigorous test for our proposed approach
to assess its robustness and scalability in handling
intricate hierarchical structures. More details about
the datasets are presented in subsection A.2.

3.2 Implementation Details

We use the off-the-shelf BERT (bert-base-uncased)
model (Devlin et al. (2018a)) as the backbone in
our architecture (Figure 1) to ensure a fair com-
parison with other reported metrics. The AdamW
(Loshchilov and Hutter (2017)) optimizer is used
in training, and we perform hyperparameter opti-
mization as described in subsection A.4. We train
the model with train set and evaluate on develop-
ment set after every epoch and stop training if the
macro-h-F1 does not increase for 20 epochs.

3.3 Evaluation metrics

A number of evaluation metrics for HTC have been
proposed in the literature (Zhang and Zhou (2014);
Zangari et al. (2024)). We provide a brief summary
below and explain the reason for our choice.

Many researchers evaluate their HTC models
by flattening the hierarchical labels to apply the
standard classification scores (e.g., accuracy, preci-
sion, recall and F1 scores. The standard classifica-
tion scores, however, disregard the label hierarchy
and treat each of the flattened labels independently.
Yet in practical applications, correctly classifying
higher level nodes is typically more consequential
than the lower level ones. In enterprise customer
support, for example, the higher level nodes de-
cide the ticket delegation (routing), while lower
level nodes aim to provide more context for trig-
gering the right automation. An incorrect predic-
tion on higher level nodes may result in routing to
the wrong expert and should receive more penalty.

Kiritchenko et al. (2006) introduced hierarchical
metrics to calculate the metrics on predicted and
true labels both augmented with all ancestors to
mitigate the issues discussed above.

For reasons discussed above, we focus only on
the hierarchical metrics in the current study. To
calculate an overall metrics for all categories, we
implemented the macro-average and reported the
macro-h-F1 score. See subsection A.5 for details.
Suffice it to note that a model trained to achieve
high scores on hierarchical metrics does not guar-
antee the best performance on other metrics. Thus,
it is critical to determining an appropriate evalua-
tion metrics based on business needs and adjust the
training script accordingly.

4 Results

4.1 Performance Benchmark

Table 1 compares our results on the datasets we
experiment with, to the state-of-the-art results. We
obtained the state-of-the-art results from Zangari
et al. (2024) and compare our approach to the top
3 HTC models listed – HBGL (Jiang et al. (2022)),
GACaps (Bang et al. (2023)) and BERT + ML (Zan-
gari et al. (2024)). Interestingly, it was observed
that the best reported model HBGL outperformed
GACaps and BERT + ML on three of the four
datasets (Bugs, WOS and BGC), but the perfor-
mance degraded notably on the Amazon dataset
(4.2% lower than BERT + ML). In contrast, our ap-
proach exhibited more consistent performance: it
outperformed all models on Bugs, BGC and Ama-
zon datasets and achieved comparable results to
HBGL on WOS dataset (only 0.2% lower).

4.2 Performance on Low Resource Setting

Further, we conducted experiments to see how our
approach performance against low resource train-
ing settings. For both BGC and Amazon 5 × 5,
we fixed the validation and test set for all runs, and
sampled a subset of training data randomly. As can
be seen in Fig. 2, the performance increases rapidly
in the low-data regime (below 20% of the full train-
ing data volume) and saturates after around 50% of
the training volume. This observation shows that
our approach is still effective with fewer training
labels. Such label efficiency is critical in practical
applications as training data is rather expensive to
collect. To further illustrate this, we also marked
the performance of other three models trained with
the full training set. It was found that our approach

467

Table 1: Results on common HTC benchmarks. We compare our approach to the top 3 HTC models Zangari et al.
(2024) name – HBGL (Jiang et al. (2022)), GACaps (Bang et al. (2023)) and BERT + ML (Zangari et al. (2024)).
We report macro-h-F1 (higher the better) in the table below. We achieve state-of-the-art results on Bugs, BGC and
Amazon 5 × 5 datasets while achieving near state-of-the-art results on WOS dataset.

Model Bugs WOS BGC Amazon

PTMTTaxoFormer (Ours) 0.5727 0.8201 0.6903 0.9327
HBGL (Jiang et al. (2022)) 0.5710 0.8221 0.6779 0.8796
GACaps (Bang et al. (2023)) 0.5445 0.8067 0.6446 0.9057
BERT + ML (Zangari et al. (2024)) 0.5172 0.7974 0.6119 0.9214

could outperform other models even with a sub-
set of the training data, further showing that our
approach is robust and label efficient.

Figure 2: Performance of PTMTTaxoFormer (•—•)
as training data volume decreases , compared with the
performance of other models trained with full training
data. Top panel: Blurb Genre Collection (BGC); Bottom
panel: Amazon 5 × 5 dataset. HBGL (- - - - -); GACaps
(· · · · · ·); BERT + ML (–·–·–)

4.3 Complexity and Inference Time

In many industrial applications, real-time predic-
tions are needed, and thus the model architecture
could not be overly complicated. In a recent re-
view, Zangari et al. (2024) compared the com-
plexity and performance trade-off of several HTC
model architectures. The reported best-performing
HBGL model has high complexity and latency (e.g.,
HBGL and GACaps has latency 73.8 ms and 26.7
ms on Bugs dataset using NVIDIA RTX 2080Ti
GPU, while BERT only requires 11.3 ms). The
latency gaps between BERT and HBGL could be
explained by the model architecture. For HBGL,

BERT has to be used to generate contextualized em-
bedding, while the BERT model is used as a multi-
class, multi-label classifier. In addition, HBGL
make predictions in an auto-regressive manner, in-
dicating that the number of BERT encoding scales
with the number of levels in the hierarchy. Our
PTMTTaxoFormer model achieves performance
better than or comparable to HBGL with BERT-
like inference time and complexity irrespective of
number of levels in hierarchy, thus rendering it
more friendly for real-time industry applications.

5 Discussion and Future Work

This paper presents PTMTTaxoFormer - a simple
framework that can be extended to any hierarchi-
cal text prediction task using any pretraining lan-
guage model available. Our method does not re-
quire any complex heads or modules for hierarchy
injections, verbalizers or engineering of prompts.
While retaining simplicity, our framework also at-
tains state-of-the-art performance. We attribute the
improvement in performance to the fact that the
classification task is made to resemble the pretrain-
ing task (MLM in case of BERT) and it utilizes the
ability of the model to perform pretraining tasks
well. During training, attention between the label
tokens allows the model to learn the hierarchy im-
plicitly – the bi-directional self attention proves to
be a powerful architecture to implicitly learn hier-
archies. As a part of the future work, we’d like to
extend our approach to use a decoder or encoder-
decoder-based approach as we expect next token
prediction problem to also be a good proxy for ex-
plicit hierarchy injection. The prompts used in our
method are the same for all samples. A path worth
exploring would be to have a small language model
to predict the prompt tokens making the prompts
customized to each sample.

468

References
Rami Aly, Steffen Remus, and Chris Biemann. 2019.

Hierarchical multi-label classification of text with
capsule networks. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics: Student Research Workshop, pages 323–
330.

Jinhyun Bang, Jonghun Park, and Jonghyuk Park. 2023.
Gacaps-htc: graph attention capsule network for hi-
erarchical text classification. Applied Intelligence,
53(17):20577–20594.

Emanuel Ben-Baruch, Tal Ridnik, Nadav Zamir,
Asaf Noy, Itamar Friedman, Matan Protter, and
Lihi Zelnik-Manor. 2020. Asymmetric loss
for multi-label classification. arXiv preprint
arXiv:2009.14119.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Ricardo Cerri, Rodrigo C Barros, and André CPLF
de Carvalho. 2011. Hierarchical multi-label clas-
sification for protein function prediction: A local
approach based on neural networks. In 2011 11th In-
ternational Conference on Intelligent Systems Design
and Applications, pages 337–343. IEEE.

Huiyao Chen, Yu Zhao, Zulong Chen, Mengjia Wang,
Liangyue Li, Meishan Zhang, and Min Zhang. 2024.
Retrieval-style in-context learning for few-shot hi-
erarchical text classification. Transactions of the
Association for Computational Linguistics, 12:1214–
1231.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018a. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina N. Toutanova. 2018b. Bert: Pre-training
of deep bidirectional transformers for language un-
derstanding.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2020.
Making pre-trained language models better few-shot
learners. arXiv preprint arXiv:2012.15723.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint
arXiv:2006.03654.

Ke Ji, Yixin Lian, Jingsheng Gao, and Baoyuan
Wang. 2023. Hierarchical verbalizer for few-shot
hierarchical text classification. arXiv preprint
arXiv:2305.16885.

Yiren Jian, Chongyang Gao, and Soroush Vosoughi.
2022. Contrastive learning for prompt-based
few-shot language learners. arXiv preprint
arXiv:2205.01308.

Ting Jiang, Deqing Wang, Leilei Sun, Zhongzhi Chen,
Fuzhen Zhuang, and Qinghong Yang. 2022. Exploit-
ing global and local hierarchies for hierarchical text
classification. arXiv preprint arXiv:2205.02613.

Svetlana Kiritchenko, Stan Matwin, Richard Nock, and
A Fazel Famili. 2006. Learning and evaluation in
the presence of class hierarchies: Application to text
categorization. In Advances in Artificial Intelligence:
19th Conference of the Canadian Society for Compu-
tational Studies of Intelligence, Canadian AI 2006,
Québec City, Québec, Canada, June 7-9, 2006. Pro-
ceedings 19, pages 395–406. Springer.

Kamran Kowsari. 2018. Web of science dataset.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He,
and Piotr Dollár. 2017. Focal loss for dense object
detection. In Proceedings of the IEEE international
conference on computer vision, pages 2980–2988.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Computing Surveys, 55(9):1–35.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Volodymyr Lyubinets, Taras Boiko, and Deon Nicholas.
2018. Automated labeling of bugs and tickets using
attention-based mechanisms in recurrent neural net-
works. In 2018 IEEE Second International Confer-
ence on Data Stream Mining & Processing (DSMP),
pages 271–275. IEEE.

469

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.17632/9RW3VKCFY4.6

Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019. Jus-
tifying recommendations using distantly-labeled re-
views and fine-grained aspects. In Proceedings of
the 2019 conference on empirical methods in natural
language processing and the 9th international joint
conference on natural language processing (EMNLP-
IJCNLP), pages 188–197.

Hao Peng, Jianxin Li, Yu He, Yaopeng Liu, Mengjiao
Bao, Lihong Wang, Yangqiu Song, and Qiang Yang.
2018. Large-scale hierarchical text classification
with recursively regularized deep graph-cnn. In Pro-
ceedings of the 2018 world wide web conference,
pages 1063–1072.

Kunal Punera and Joydeep Ghosh. 2008. Enhanced
hierarchical classification via isotonic smoothing. In
Proceedings of the 17th international conference on
World Wide Web, pages 151–160.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Mobashir Sadat and Cornelia Caragea. 2022. Hierarchi-
cal multi-label classification of scientific documents.
arXiv preprint arXiv:2211.02810.

David Salinas, Matthias Seeger, Aaron Klein, Valerio
Perrone, Martin Wistuba, and Cedric Archambeau.
2022. Syne tune: A library for large scale hyperpa-
rameter tuning and reproducible research. In Interna-
tional Conference on Automated Machine Learning,
pages 16–1. PMLR.

Timo Schick and Hinrich Schütze. 2020. Exploit-
ing cloze questions for few shot text classification
and natural language inference. arXiv preprint
arXiv:2001.07676.

Carlos N Silla and Alex A Freitas. 2011. A survey of
hierarchical classification across different application
domains. Data mining and knowledge discovery,
22:31–72.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams.
2012. Practical bayesian optimization of machine
learning algorithms. Advances in neural information
processing systems, 25.

Zihan Wang, Peiyi Wang, Lianzhe Huang, Xin Sun,
and Houfeng Wang. 2022a. Incorporating hierarchy
into text encoder: a contrastive learning approach
for hierarchical text classification. arXiv preprint
arXiv:2203.03825.

Zihan Wang, Peiyi Wang, Tianyu Liu, Yunbo Cao, Zhi-
fang Sui, and Houfeng Wang. 2022b. Hpt: Hierarchy-
aware prompt tuning for hierarchical text classifica-
tion. arXiv preprint arXiv:2204.13413.

Alessandro Zangari, Matteo Marcuzzo, Matteo Rizzo,
Lorenzo Giudice, Andrea Albarelli, and Andrea Gas-
paretto. 2024. Hierarchical text classification and its
foundations: A review of current research. Electron-
ics, 13(7):1199.

Min-Ling Zhang and Zhi-Hua Zhou. 2014. A review on
multi-label learning algorithms. IEEE Transactions
on Knowledge and Data Engineering, 26(8):1819–
1837.

Ningyu Zhang, Luoqiu Li, Xiang Chen, Shumin Deng,
Zhen Bi, Chuanqi Tan, Fei Huang, and Huajun
Chen. 2021. Differentiable prompt makes pre-trained
language models better few-shot learners. arXiv
preprint arXiv:2108.13161.

470

https://doi.org/10.1109/TKDE.2013.39
https://doi.org/10.1109/TKDE.2013.39

A Appendix

A.1 Architecture during inference
Figure 3 illustrates the architecture for inference.

A.2 Dataset details
In the current work, we considered four public
datasets commonly used in HTC. These datasets
are decribed and summarized in detail in a recent re-
view paper (Zangari et al. (2024)). In what follows,
we provide a brief description for each dataset and
provide the statistics of the each dataset in Table 2.

• Web of Science (WOS): The Web of Sci-
ence (WOS) dataset, was introduced by
Kowsari (2018) and consists of abstracts
from scholarly papers published on the
Web of Science platform (https://www.
webofscience.com). We use the WOS-
46985 version of the dataset. This consists
of text from 46985 abstracts. They are clas-
sified into 7 domains that are further divided
into 134 subdomains.

• Blurb Genre Collection (BGC): The Blurb
Genre Collection (BGC) (Aly et al. (2019)) is
a dataset consisting of advertising descriptions
of books - so called blurbs - for the English
language. Each blurb is categorized into one
or multiple categories. This dataset was ob-
tained from Penguin Random House webpage
that contains both the blurb and the genre or
category for each book. This dataset contains
91,892 samples with the genre hierarchy con-
sisting of 146 classes.

• Linux Bugs Dataset (Bugs): The Linux Bugs
dataset (Bugs) was introduced by Aly et al.
(2019) and comprises bugs scraped from the
Linux kernel bugtracker (https://bugzilla.
kernel.org). The text is derived from the
support tickets and are classified into "Prod-
uct" at the parent level and "Component" at
the child level. Zangari et al. (2024) extend
this dataset to increase its size. We utilize
the extended dataset in our experiments. This
dataset contains very noisy text, grammatical
errors, technical jargon and strongly unbal-
anced labels which makes it a good candidate
to test our methodology.

• Amazon 5 × 5 (Amazon): This dataset was
introduced by Ni et al. (2019) and subse-
quently utilized by Zangari et al. (2024). From

the original dataset, they curated product re-
views spanning five categories: "Arts, Crafts
and Sewing", "Electronics", "Grocery and
Gourmet Food", "Musical Instruments", and
"Video Games". For each of these overar-
ching categories, they further extracted five
subcategories. Notably, this dataset exhibits
a balanced label distribution, enabling us to
test the hypothesis that our proposed model
will also achieve superior performance on bal-
anced data.

A.3 Ablation Studies

We perform ablation studies by removing sev-
eral modules / loss functions from our training
paradigm. Table 3 shows the results of these stud-
ies. We choose BGC dataset for ablation studies.
r.m means that this module or loss function was
removed and r.p means that the modules were re-
plced with an alternative. Whenever we remove or
replace a module, we train the model with the same
hyperparameter optimization scheme used when
the module was not removed or replaced. We see
that removing MLM loss leads to the maximum
drop in macro-h-F1. MLM objective ensures as-
sociation among all the tokens (along with newly
added label and prompt tokens), helps maintain
the ability of language understanding and also acts
as a regularizer preventing overfitting. Removing
MAE loss resulted in a minimal drop of macro-
h-F1 but adding this prevented an initial training
collapse where we observed all the labels were
predicted as true. We also replace WASL with the
standard binary cross-entropy loss. Although the
drop in macro-h-F1 for this dataset was minimal,
we observed a significant improvement of the met-
ric when this was repeated on internal datasets.

A.4 Hyperparameters

We use Syne Tune (Salinas et al. (2022)) to tune
hyperparameters for our methodology and archi-
tecture. Table 4 lists all the hyperparameters con-
sidered and their respective values / ranges used
during training. In the table, Range of Values gives
the lower and upper bounds if the parameter is in-
cluded in hyperparameter optimization. If it is a
single number, then this hyperparameter was not
tuned. For all runs, we used Bayesian Optimiza-
tion (Snoek et al. (2012)) as the hyperparameter
optimization algorithm.

471

https://www.webofscience.com
https://www.webofscience.com
https://bugzilla.kernel.org
https://bugzilla.kernel.org

Figure 3: The architecture of Prompt Tuned Muti Task Taxonomic Transformer during inference. During
inference, the input text is tokenized, appended with differentiable prompt tokens and [MASK] tokens. The number
of [MASK] tokens is equal to the number of levels in the hierarchy. The model unmasks these tokens to predict the
correct label-tokens. We take the inner product of representation corresponding to the [MASK] token with all the
label-tokens at the corresponding level, followed by sigmoid. The resulting scores are thresholded to determine a set
of possible labels at each level. These labels are then pruned using the true taxonomy to eliminate incorrect paths.

Table 2: Dataset Statistics

Bugs WOS BGC Amazon

Size 35,050 46,960 91,894 500,000
Depth 2 2 4 2
Labels overall 102 145 146 30
Labels per level 17-85 7-138 7-46-77-16 5-25
Average # characters 2026 1376 996 2194
Train 18,692 31,306 58,715 266,666
Validation 4674 6262 14,785 66,667
Test 11,684 15,654 18,394 166,667

A.5 Equations for evaluation metrics
The equations below define the evaluation metrics
used in the current work. Ŷaug and Yaug are the
predicted labels and ground truth labels, respec-
tively. Both sets are augmented by the ancestors to
account for the hierarchy.

h-Pr =

∑
i |Ŷaug ∩ Yaug|∑

i |Ŷaug|
(4)

h-Re =

∑
i |Ŷaug ∩ Yaug|∑

i |Yaug|
(5)

To derive an overall statistics, we considered macro-
average of precision and recall for each label and

report the macro-h-F1 score for model evaluation.

h-Prmacro =

∑m
i=1 h-Pri
m

(6)

h-Remacro =

∑m
i=1 h-Rei
m

(7)

h-F1 = 2 · h-Pr · h-Re

h-Pr + h-Re
(8)

A.6 Performance under low-resource settings

Table 5 shows the performance of PTMTTaxo-
Former architecture under low training data regime.
We studied two selected datasets (BGC and Ama-
zon). For each run, the validation and test sets are

472

Table 3: Ablation Studies for BGC dataset

Ablation Description macro-h-F1

PTMT TaxoFormer 0.6903
r.m. MLM Loss 0.6712
r.m. MAE Loss 0.6878
r.p. WASL with Weighted Binary Cross-Entropy Loss 0.6870

Table 4: Hyperparameter Settings

Hyperparameter Range of Values Sampling Method

α [0.7, 1] Uniform
γ+ [1, 10] Random Integer
γ− [1, 10] Random Integer
m [0.02, 0.1] Uniform
Learning Rate [1e− 6, 1e− 2] Log Uniform
Number of Prompt Tokens [2, 10] Random Integer
Batch Size [2, 32] Random Integer
Input Token Mask Probability 0.15 N/A
Early Stopping Epochs 10 N/A
αl1 1 N/A
Warm Up Ratio 0.05 N/A
Weight Decay 0.01 N/A
Maximum Gradient Norm 5 N/A

fixed and training data were sub-sampled with the
volume ratio specified in the first columns (from
around 3% to 100%). Sub-samples are chosen ran-
domly. For amazon dataset, we focused more on
smaller training volume ratios due to the larger size
of the full Amazon training set.

Table 5: Performance of training PTMT TaxoFormer
on BGC and Amazon on random subset of training
data. Note that for all runs the validation set and test sets
are fixed, while training data is sub-sampled randomly.

Training volume ratio BGC Amazon

1/32 (3.125%) 0.4910 0.8744
2/32 (6.25%) 0.5566 0.8867

3/32 (9.375%) 0.5874 0.8963
4/32 (12.5%) 0.6017 0.9007

12/32 (37.5%) 0.6477 0.9171
20/32 (62.5%) 0.6654 -
24/32 (75%) 0.6710 -

28/32 (87.5%) 0.6795 -
32/32 (100%) 0.6903 0.9327

A.7 Illustration of the model architecture,
training and inference process with a toy
example

Consider a hierarchy with a maximum of 3 levels
as shown in Figure 4. Consider a toy BERT model
with vocabulary given in Table 6.

Assume the dataset we are training on has two
items:

1. MNO with labels A -> AA -> AAA
2. XYZ with labels C

The first item has a label that goes to the third
level of the hierarchy and the second item has a
label that ends at the first level of the hierarchy.

During training, the input text is appended with
prompt tokens and mask tokens. The transformed
output looks like below:

1. MNO[SEP][P_1][P_2][P_3][SEP][MASK]
[MASK][MASK]
2. XYZ[SEP][P_1][P_2][P_3][SEP][MASK]
[MASK][MASK]

These are then converted into embedding

473

vectors which look like the below:
1. e13, e14, e15, e51, e53, e54, e55, e52, e52, e52
2. e24, e25, e26, e51, e53, e54, e55, e52, e52, e52

After the forward pass through the encoder, we
end up with logit vectors for each of these tokens
which are then passed through a sigmoid layer. Let
us call the output vectors after sigmoid as activation
vectors. We are particularly interested in the activa-
tion vectors corresponding to the [MASK] tokens.
These activation vectors have the same dimension
as the vocubulary of the model.

For the first example, consider a11, a21, a31 to
be the activation vectors corresponding to the
[MASK] tokens. We want the model to learn to pre-
dict [LABEL_A],[LABEL_AA],[LABEL_AAA]
in place of the [MASK],[MASK],[MASK] to-
kens. Post training, we want the model to have
the following elements of the activation vectors:
a11,103, a21,106, a31,109 to be close to 1 and all the
other elements of the activation vectors to be close
to zero.

Similarly, for the second example, consider
a12, a22, a32 to be the activation vectors corre-
sponding to the [MASK] tokens. We want the
model to learn to predict [LABEL_C],[], [] in place
of the [MASK],[MASK],[MASK] tokens. [] means
that the model does not predict anything. Post train-
ing, we want the model to have a12,105 to be close
to 1 and all the other elements of the activation
vectors to be close to zero.

We minimize the loss in Equation 3 to achieve
this.

During inference, we take all the elements of the
activation vectors that are above a defined threshold
(0.5 for simplicity) corresponding to the [MASK]
tokens. We then eliminate those whose parent ele-
ment (obtained from the hierarchy) is not present
in this list. The elimination step only occurs for
the second level and below. This leaves us with
elements / predictions that adhere to the hierarchy
structure.

A.8 Selection of datasets
We selected datasets based on a recent HTC review
(Zangari et al. (2024)), where five datasets were
studied (BGC, Bugs, WOS, Amazon and RCV1-
v2). For a fair comparison, we benchmarked our
approach using the same data split provided by
Zangari et al. (2024). RCV1-v2 dataset was not
provided in the original paper appendix. RCV1-v2
is also not publicly available and needs request to

obtain. RCV1-v2 is similar to BGC. BGC adapted
RCV1-v2’s properties, and was constructed to
mimic its setting. The dataset statistics are com-
parable, e.g., overall labels are 103 vs 146, label
per level is 4-55-43-1 vs 7-46-77-16) [1]. Given
the similarity, we decided to choose BGC to bench-
mark our results as an alternative.

A.9 Comparison with Zeroshot / Fewshot
inference using more recent generative
LLMs

We have been working on comparing our approach
with zeroshot and fewshot inference using more
recent generative LLMs and intend to publish our
findings in a subsequent work. At a higher level,
we argue that LLMs and supervised small models
both have pros and cons.

• LLMs work better with very few examples
(< 50). However, with sufficient data, our ap-
proach outperforms the zero-shot LLMs by
a large margin. Prompting techniques im-
proves LLM to approach results from small
models, yet still under performs. For exam-
ple, our experiments on BGC show Claude
Haiku and Claude V2 have scores of 0.346
and 0.363 using zero-shot, chain-of-thought
prompting, while our PTMT small LM shows
0.6903. Chen et al. Chen et al. (2024) showed
that zero-shot ChatGPT on WOS has a score
of 0.4479. With ICL and retrieval techniques,
the best reported LLM score is 0.7408. In
comparison, our approach gets 0.8221.

• LLMs have notably higher latency (5-10 sec-
onds vs milliseconds for our approach) and
cost.

• LLM outputs are inconsistent even with the
same input. We found around at least 10-15%
of the predictions inconsistent on multiple
runs even with temperature = 0.

In brief, our approach and LLMs have pros and
cons and could be used in different scenarios.

A.10 Scalability of the Approach

The public datasets we tested on, have hierarchies
that contain 134 to 145 nodes. Our internal datasets
had around 200-300 nodes per hierarchy and we ob-
served similar performance improvement over the
existing methods here as well. We have tested our
method on 150 hierarchies that we have internally.

474

Root

A

AA

AAA

AB AC

B

BA BB BC

C

CA

Figure 4: Toy example of a taxonomy - This taxonomy contains a maximum of 3 levels.

Table 6: Sample vocabulary This table shows tokens and the corresponding embedding lookup key for a sample
vocabulary.

Token Key Token Key Token Key Token Key

A 1 N 14 [CLS] 50 [LABEL_A] 103
B 2 O 15 [SEP] 51 [LABEL_B] 104
C 3 P 16 [MASK] 52 [LABEL_C] 105
D 4 Q 17 [P_1] 53 [LABEL_AA] 106
E 5 R 18 [P_2] 54 [LABEL_AB] 107
F 6 S 19 [P_3] 55 [LABEL_AC] 108
G 7 T 20 [LABEL_AAA] 109
H 8 U 21 [LABEL_BA] 110
I 9 V 22 [LABEL_BB] 111
J 10 W 23 [LABEL_BC] 112
K 11 X 24 [LABEL_CA] 113
L 12 Y 25
M 13 Z 26

One of the future works we have lined up is to mea-
sure the performance of this method when all these
hierarchies are combined into a single hierarchy
and a single model is trained. This would lead to a
massive hierarchy with 30,000 nodes which would
be a good test of scalability.

A.11 Effectiveness differentiable labels

A fair measure of effectiveness of differentiable la-
bel tokens would be to measure the performance of
the method with and without differentiable tokens
for each label. There would be two alternative ap-
proaches to using differentiable label tokens, they
are 1) to use a verbalizer that maps labels to exist-
ing tokens or 2) using new fixed non differentiable
tokens. The first alternative is particularly hard and
not scalable for the following reasons:

• One label will most probably be split into mul-
tiple tokens. This can be due to the label being
a phrase or due to the behavior of the tokenizer.
In the Bugs dataset that we experimented with,

File-System was one of the labels. This would
be split into multiple tokens making it difficult
to use a verbalizer. Another label was Reis-
erFS which was split into rei, ##ser and ##fs
which again meant that using verbalizer was
not feasible.

• The internal datasets we have are more tech-
nical in nature, which made the creation of a
verbalizer even harder and not scalable.

The second alternative is sensitive to the choice
of initialization.

Due to the limitations in the alternatives we de-
cided to forgo an accuracy comparison as there was
no viable alternatives.

We do propose the following set of experiments
as future work to understand the differentiable to-
kens and what their embedding after training repre-
sents.

• An in-depth examination of how token em-
beddings capture semantic nuances in highly

475

specialized domains possibly by using simi-
larity between embeddings or by visualization
in a low dimension space.

• A study on a complex hierarchy to demon-
strate the model’s ability to distinguish be-
tween closely related labels.

476

