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Abstract
Full-parameter fine-tuning is computationally
prohibitive for large language models (LLMs),
making parameter-efficient fine-tuning (PEFT)
methods like low-rank adaptation (LoRA) in-
creasingly popular. However, LoRA and its
existing variants introduce significant latency
in multi-tenant settings, hindering their appli-
cations in the industry. To address this issue,
we propose the Fantastic LoRA (FanLoRA)
framework, which consists of four steps: (a)
adding LoRA modules to all the Transformer
linear weights and fine-tuning on a large-scale
instruction tuning dataset. (b) The importance
of each module is then assessed using a novel
importance scoring method. (c) only the most
critical modules per layer are retained, resulting
in the FanLoRA setting. (d) The FanLoRA set-
ting is applied to fine-tune various downstream
tasks. Our extensive experiments demonstrate
that: (a) FanLoRA outperforms existing PEFT
baselines across a wide collection of tasks with
comparable tunable parameters. (b) FanLoRA
significantly reduces the inference latency of
LoRA, making it valuable for further broaden-
ing the applications of LLMs in the industry.

1 Introduction

In the era of large language models (LLMs),
parameter-efficient fine-tuning (PEFT) (Zhang
et al., 2023b; Zhao et al., 2023) has raised much
attention in the research field since in PEFT, the tun-
able parameters are often less than 1% of the LLMs
and the hardware requirements for fine-tuning are
significantly decreased. Among many PEFT meth-
ods, the reparameterization-based method, low-
rank adaptation (LoRA) (Hu et al., 2021), is consid-
ered one of the most effective methods for LLMs
(Xu et al., 2023; Ding et al., 2022; Xin et al.,
2024). Although LoRA and its more recent vari-
ants (Zhang et al., 2023a; Ding et al., 2023b; Hu
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Figure 1: Distribution of LoRA modules across Trans-
former layers under the FanLoRA setting. The LLM
backbones are LLM-Assist 7B and Qwen1.5 7B.

et al., 2023) are effective and can bring stable down-
stream performance, they cause inference ineffi-
ciency under the multi-tenant setting (Chen et al.,
2023), where one LLM backbone has to serve mul-
tiple users/tasks with the help of multiple sets of
LoRA parameters and the LoRA parameters can
not be merged to the LLM backbone. LoRA has to
add low-rank modules to multiple linear weights
of the Transformer layer, introducing significant
additional latency in every token generation step.
Thus, to promote efficiency in industrial usage, it
is of vital importance to investigate the following
research question:
RQ1. For a given LLM backbone, can we find a
LoRA setting that adds as few fantastic LoRA mod-
ules as possible to ensure efficiency, and is this
setting universally transferable to different indus-
trial tasks?

To address the above RQ1, we now propose the
Fantastic LoRA (FanLoRA) framework (Figure 2),
which makes LoRA more suitable for industrial
applications. First, we add LoRA modules with an
equal rank to each Transformer weight (full LoRA
setting) and fine-tune them on a general-purpose
large-scale instruction tuning dataset (Dtrain). Sec-
ond, after fine-tuning, we calculate the importance
of each LoRA module via AB-score, a novel im-
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Figure 2: Schematic illustration of our FanLoRA framework.

portance scoring method we propose. Third, we
keep at most two LoRA modules for each Trans-
former layer based on the importance scores and
obtain the FanLoRA setting. In the fourth step,
the LoRA modules under the FanLoRA setting are
randomly initialized and fine-tuned on downstream
tasks. Figure 1 presents the distribution of selected
LoRA modules in the FanLoRA setting when the
LLM backbone is Qwen1.5 7B1 or LLM-Assist
7B, a proprietary LLM developed by an industrial
participant2.

We conduct extensive experiments on various
open benchmark and proprietary tasks, including
question answering, content generation, math rea-
soning, and general LLM evaluation, demonstrat-
ing that our FanLoRA setting can be widely applied
to different downstream tasks. Our method can con-
sistently outperform strong PEFT baselines with
comparable tunable parameter budgets, especially
the recent LoRA variants. Through our experi-
ments and analysis, we can obtain the following
takeaways: (a) FanLoRA demonstrates that one can
effectively fine-tune the LLMs by adding a small
number of LoRA modules. (b) The FanLoRA set-
ting performs well on a wide range of downstream

1https://huggingface.co/Qwen/Qwen1.5-7B
2The LLM-Assist 7B model has the same Transformer

architecture with LlaMA-2 7B, but has a large vocabulary for
supporting languages other than English. Due to policies on
anonymous reviews, the detailed information for the LLM-
Assist 7B model and its developers will be revealed upon
acceptance.

tasks for a given LLM backbone, demonstrating its
broad transferability. (c) Our FanLoRA method has
significantly lower latency than the previous LoRA
variants, showing potential for wide industrial ap-
plications. Our contributions are summarized as
follows:

• we propose a novel framework, FanLoRA, to
evaluate each LoRA module via a novel impor-
tance scoring method and provide an efficient
LoRA setting.

• We have conducted extensive experiments and
analysis showing that our FanLoRA setting is
effective and efficient under the multi-tenant
setting and suitable for industrial usage.

2 Related works

LoRA (Hu et al., 2021) is proven to be an effec-
tive PEFT method when applied to both relatively
small pretrained backbones and large language
models (Dettmers et al., 2023; Zhu et al., 2023).
Recently, many LoRA variants have been proposed.
AdaLoRA (Zhang et al., 2023a) expresses the low-
rank matrix multiplication of LoRA in the form of
singular value decomposition (SVD), and it identi-
fies the most critical ranks by a sensitivity-based im-
portance score. SoRA (Ding et al., 2023b) prunes
abundant LoRA ranks by imposing a l0 norm and
optimizing with proximal gradient descent. Sa-
LoRA (Hu et al., 2023) prunes the LoRA ranks
via the Lagrange multiplier method. Despite its
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tractability and effectiveness, LoRA still has room
for improvement in both downstream task perfor-
mances and efficiency under the multi-tenant set-
ting (Chen et al., 2023).

Despite these recent efforts, the above LoRA
variants still add LoRA modules to almost all
the weight matrices in the Transformer backbone,
which results in significant latency under the multi-
tenant setting and poses difficulties for industrial
usage. Our work complements the existing litera-
ture by addressing LoRA’s efficiency issue.

3 Methods

3.1 Preliminaries

Transformer model As depicted in Figure 2,
each Transformer layer of a LLM such as LlaMA-2
(Touvron et al., 2023) consists of a multi-head self-
attention (MHA) sub-layer and a fully connected
feed-forward (FFN) sub-layer. MHA contains four
linear modules, which are the Query (Q), Key (K),
Value (V), and Output (O) modules. FFN contains
three linear modules: Gate (G), Up (U), and Down
(D). For notation convenience, we will refer to
the number of modules in a Transformer block as
Nmod. Thus, in LlaMA-2, Nmod = 7.

3.2 The FanLoRA framework

Now, we are ready to elaborate on the workflow
of the FanLoRA framework.
Full LoRA fine-tuning As depicted in Figure 2,
for each Transformer module m in {Q, K, V, O, G,
U, D} at layer l (l < L, L is the number of layers
in the LLM), we add a LoRA module m with rank
size r0 > 0 to reparameterize it. Formally, the
forward calculation of module m with LoRA is:

x
′
= xWm,l + xWA

m,lW
B
m,l + bm,l, (1)

where Wm,l ∈ Rd1×d2 is the weight matrix of
module m, bm,l ∈ R1×d2 is its bias term. WA

m,l ∈
Rd1×r0 and WB

m,l ∈ Rr0×d2 are the low-rank matri-
ces for the LoRA module. In this step, we conduct
LoRA fine-tuning on a general-purpose large-scale
instruction fine-tuning datasets Dtrain like Ultra-
Chat (Ding et al., 2023a), and the LoRA parameters
will acquire knowledge of diverse tasks after fine-
tuning.
Evaluating the importance score of each LoRA
module In this part, we evaluate the importance
of each LoRA module. A series of attribution meth-
ods are available, but they are not satisfactory for

industrial usage. As pointed out by Held and Yang
(2022), the sensitivity-based importance estimation
by Michel et al. (2019) cannot distinguish whether
it can improve or degrade the model so that pruning
may be guided in the wrong direction in practical
applications. The Shapley Value is widely applied
in model interpretability (Zhao et al., 2024; Saha
et al., 2022), primarily due to its sound theoreti-
cal foundation and properties (Lundberg and Lee,
2017). However, for large models like LLMs, the
calculation of Shapley Value is intractable due to
its computation complexity. To efficiently compute
the importance score, we propose a novel method
called ablation-based score (AB-score) since our
method mimics conducting ablation studies for a
LoRA module.

we introduce a binary LoRA gate gm,l ∈ {0, 1}
into Equation 1:

x
′
= xWm,l + gm,l ∗ xWA

m,lW
B
m,l + bm,l, (2)

In the previous full LoRA fine-tuning step, all gm,l

are set to 1. To compute the importance score of
a given LoRA m at layer l, We now consider four
model settings with LoRA adaptations:

• Mall, which is exactly the model obtained
from the previous step.

• M\(m,l), which is obtained by only zeroing
out the LoRA gate gm,l in Mall.

• Mnull, where all LoRA gates are set to zero.
That is, no LoRAs are added to the LLM.

• M(m,l), which is obtained by only setting the
LoRA gate gm,l to 1 in Mnull.

Denote the performance of model M on the vali-
dation set Dval as Sval(M), then the importance
score Vm,l of LoRA m at layer l is given by

Vm,l =Sval(Mall)− Sval(M\(m,l))

+ Sval(M(m,l))− Sval(Mnull).
(3)

Note that for a given LLM, Sval(Mnull) and
Sval(Mall) are fixed, so the above equation
can be simplified as Vm,l = −Sval(M\(m,l)) +
Sval(M(m,l)). We will use experiments to demon-
strate that our method AB-score is comparable to
the Shapley value and better than the sensitivity-
based method.
Obtaining the FanLoRA setting After obtain-
ing the importance score for each LoRA module,
we perform pruning on the LoRA modules of each
Transformer layer with the following principles:
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• We keep at most top Kmax LoRA modules
(Kmax > 0) with the highest scores in each
Transformer layer.

• If the importance score Vm,l of a LoRA mod-
ule is negative, it will be pruned.3

We will refer to the LoRA setting obtained from
the above steps as the FanLoRA setting. In the next
section, we will use experiments to show that, for
a given LLM backbone, the FanLoRA setting is
applicable for a wide range of tasks.
Adaptation for downstream Tasks For various
downstream tasks, we fine-tune each task using the
same FanLoRA setting obtained from the previous
steps. The LoRA modules with rank size r1 > 0
are added to the Transformer backbone according
to the FanLoRA setting, and their parameters are
randomly initialized and fine-tuned on the given
task. We will evaluate the effectiveness, efficiency,
and universality of the FanLoRA setting through
the performance of various downstream tasks.

4 Experiments

In this section, we conduct experiments to evalu-
ate our FanLoRA method.

4.1 Baselines
We compare our FanLoRA framework with

the current SOTA PEFT baseline methods: (a)
(IA)3 (Liu et al., 2022), which multiplies learn-
able vectors to the hidden representations of LLMs.
(b) Houlsby-Adapter (Houlsby et al., 2019). (c)
Learned-Adapter (Zhang et al., 2023b). (d) LoRA
(Hu et al., 2021). (e) AdaLoRA (Zhang et al.,
2023a). (f) SSP (Hu et al., 2022), which combines
different PEFT methods.

The baselines are implemented using Transform-
ers (Wolf et al., 2020a) or their open-sourced codes.
The hyper-parameter settings for the baselines are
detailed in Appendix C.

4.2 Datasets and evaluation metrics
We experiment on the following benchmark

tasks: (a) three benchmark question-answering
tasks: SQuAD (Rajpurkar et al., 2016) and two
tasks from the SuperGLUE benchmark (Wang
et al., 2019) (BoolQ, COPA). (b) two widely used
LLM evaluation benchmarks, MT-Bench (Zheng
et al., 2023), MMLU (Hendrycks et al., 2020). (c)

3According to this principle, the number of the kept LoRA
modules in a Transformer layer may be smaller than Kmax.

A proprietary LLM evaluation benchmark, LLM-
Eval1, for internal LLM developments of an indus-
trial participant. (d) a proprietary high-school-level
mathematical solving dataset, HSM10K. (e) a pro-
prietary SQL generation task, Q2SQL. The above
tasks’ dataset introductions, statistics, and evalua-
tion metrics are detailed in Appendix A.

4.3 Experiment Settings

Computing infrastructure We run all our ex-
periments on NVIDIA A40 (48GB) GPUs.
Pretrained backbones The main experiments
use a proprietary LLM, LLM-Assist 7B, as the pre-
trained backbone model. We also run the FanLoRA
framework with Qwen1.5 7B4.
Prediction heads After receiving a prompt or
instruction, all the responses are generated using
the LLM’s language modeling head (LM head).
For decoding during inference, we use beam search
with beam size 3.
Settings for the FanLoRA framework In this
work, for the full LoRA fine-tuning step of Fan-
LoRA framework, we add LoRA modules with
rank r0 = 12 at each linear module of the Trans-
former block. The large-scale UltraChat (Ding
et al., 2023a) dataset is split into a train set Dtrain

and a development set Dval, with a ratio of 99:1.
Dtrain is used to fine-tune the LoRA modules, and
Dval is used to calculate the importance scores. For
the downstream adaptation step of FanLoRA, each
Transformer block keeps at most Kmax = 2 LoRA
module, and the rank of LoRA modules is set to
r1 = 12. Under the above settings, our FanLoRA
method will introduce 8.8M tunable parameters to
the LLM-Assist 7B backbone.
Reproducibility We run each task under five
different random seeds and report the median per-
formance on the test set of each task.

Due to limited length, other experimental set-
tings for the baseline methods and the training pro-
cedures are in Appendix C.

4.4 Main results

The experimental results on the SQuAD, BoolQ,
COPA, HSM10K, and Q2SQL tasks are presented
in Table 1, in which the number of tunable param-
eters is reported in the second column. Table 1
reveals that our FanLoRA method outperforms the
baseline methods across all five tasks, with com-
parable or fewer tunable parameters. In particular,

4https://huggingface.co/Qwen/Qwen1.5-7B
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Method Tunable HSM10K Q2SQL SQuAD BoolQ COPA
Params (acc) (acc) (f1-em) (acc) (acc)

Full-FT 7B 57.9 82.9 89.5 88.7 91.9
Baselines PEFT methods

Housbly-Adapter 9.4M 52.8 80.4 87.3 84.5 90.4
Learned-Adapter 9.5M 53.7 81.3 87.6 85.9 90.6

SSP 8.6M 54.6 81.5 87.4 86.4 91.1
(IA)3 9.8M 54.3 81.2 87.6 86.2 90.7
LoRA 10.0M 55.1 81.8 87.7 86.3 90.9

AdaLoRA 10.0M 55.6 82.2 87.5 87.0 91.2
Our proposed method

FanLoRA 8.6M 56.4 83.1 88.9 87.9 92.4

Table 1: The Overall comparison of the SQuAD, BoolQ, COPA, HSM10K and Q2SQL tasks. The backbone model
is LLM-Assist 7B. We report the median performance over five random seeds. Bold and Underline indicate the best
and the second-best results. The metric for each task is explained in Appendix A.2.

Method MT-Bench MMLU LLM-Eval1
gpt4-score (↑) acc acc

AdaLoRA 7.13 46.5 56.8
FanLoRA 7.28 47.9 58.9

Table 2: Performance of general-purpose instruction
tuning using the FanLoRA and AdaLoRA methods. The
backbone model is LLM-Assist 7B. ↑ means the metric
is higher the better.

FanLoRA outperforms previous SOTA LoRA-style
baselines, LoRA and AdaLoRA, with comparable
parameters.

After the LLM-Assist 7B is fine-tuned on the
UltraChat (Ding et al., 2023a) dataset with our Fan-
LoRA setting or the AdaLoRA methods, we utilize
the challenging benchmarks, MT-Bench, MMLU,
and LLM-Eval1, for evaluation. The experiments
are conducted under the zero-shot setting, and no
demonstrative examples are concatenated to the
prompts. Table 2 presents the results. Consistent
with the previous experiments (Table 1), our Fan-
LoRA method outperforms the AdaLoRA meth-
ods on the three benchmarks, demonstrating that
FanLoRA is superior in enhancing the instruction
tuning quality of large language models.

The above results demonstrate that our FanLoRA
framework has successfully addressed RQ1 in Sec-
tion 1: FanLoRA adds only two LoRA modules
per Transformer layer to reduce inference latency
and performs well on a wide range of downstream
tasks.

4.5 Ablation studies and analysis

Visualization and analysis of the FanLoRA set-
ting Figure 1 presents the proportion of each
LoRA module across the Transformer layers un-

der the FanLoRA setting when the LLM back-
bone is LLM-Assist 7B or Qwen1.5 7B. We also
present the corresponding detailed LoRA impor-
tance scores and FanLoRA setting as heatmaps in
Figure 5 and 6 in Appendix D. We can observe
that: (a) In the FanLoRA setting, the distribution
of LoRA modules across the Transformer layers is
unbalanced. In LLM-Assist 7B, six layers choose
to add LoRA modules on the Query or Key mod-
ule, while 16 layers select the Value module to add
LoRA. (b) The LoRA importance distributions at
different layers differ inside a given LLM back-
bone. Intuitively, different Transformer layers play
different roles, and their knowledge is expressed in
different linear modules, causing LoRA modules to
have different importance. (c) Although fine-tuned
on the same dataset, the LoRA importance distribu-
tions on the Qwen1.5 7B model differ from those
on LLM-Assist 7B. However, a few common char-
acteristics can be observed: on the lower layers,
the LoRA modules in the self-attention part receive
higher importance scores, while on the deeper lay-
ers, the FFN part’s LoRA modules are generally
more important.

Analysis of the inference efficiency To demon-
strate the inference efficiency of our FanLoRA
method, we now compare the GPU memory and
generation speed of FanLoRA, AdaLoRA, and
(IA)3. In this experiment, LoRA parameters are not
merged to the backbone to mimic the single-LLM
multi-tenant setting (Chen et al., 2023) in industry
applications. The detailed settings for efficiency
analysis are presented in Appendix B. From Table
3, one can see that: (a) Our FanLoRA method and
(IA)3 have comparable tunable parameters, mem-
ory costs, and generation speed during generation.
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Method Beam size Speed (tps) Memory cost (MiB)

(IA)3
1 33.1 14572
3 27.6 16036

AdaLoRA
1 25.1 14616
3 21.9 16104

FanLoRA
1 31.8 14576
3 26.7 16054

Table 3: The memory and speed of LLM-Assist 7B for
generating responses with different PEFT methods.

Seed 1 Seed 2 Seed 3
Seed 1 1.00 0.989 0.984
Seed 2 - 1.00 0.991
Seed 3 - - 1.00

Table 4: The pairwise correlation scores for the LoRA
importance estimations obtained under three random
seeds.

(b) Our FanLoRA is much faster than AdaLoRA.
The LoRA-based method requires the model to call
the LoRA modules at each token generation step.
Since FanLoRA has significantly fewer LoRA mod-
ules than the AdaLoRA method, its inference speed
will be superior.
On the stability of FanLoRA setting On a
given LLM backbone, we must investigate whether
the FanLoRA setting is stable under different ran-
dom seeds. We run the FanLoRA framework under
three different random seeds and then calculate
the similarity of the importance scores, measured
using Spearman rank correlation. Note that these
three results are not included in the previous ex-
periments. Table 4 presents the pairwise similar-
ity scores. The results show that the importance
scores of the LoRA modules obtained under differ-
ent random seeds have very high correlations, in-
dicating that the FanLoRA setting obtained by our
FanLoRA method is stable against random seeds.
Effects of Kmax In Table 1, we set the number
of kept LoRAs per layer, Kmax, to 2, in order to
achieve higher efficiency. Now, we alter Kmax

to {1, 3, 4, 5, 6, 7}. The rank parameter r1 is
adjusted accordingly, from 12 to {24, 8, 6, 5, 4,
4}, so each setting has a comparable number of
tunable parameters. The results of the BoolQ and
Q2SQL tasks are presented in Figures 3(a) and 3(b).
The results show that: (a) The best performance
occurs with Kmax = 2 for both tasks, validating
our default experimental setting (in Table 1). (b)
With the increased number of kept LoRA modules,
FanLoRA’s performance first increases and then
decreases. When Kmax reaches 7, FanLoRA re-
duces to the vanilla LoRA. The results are intuitive.

Figure 3: Performances under different values of Kmax,
the maximum number of LoRA modules kept per layer.

When Kmax increases from 1 to 2 or 3, we include
LoRA modules that are the most effective, enhanc-
ing the fine-tuning performance. However, when
Kmax keeps increasing, many LoRA modules with
negative impacts are included and will degrade the
downstream performance.

Ablation on the FanLoRA framework Table 6
of Appendix E demonstrate that: (a) Compared to
our AB-score method, the sensitivity-based method
(Michel et al., 2019) is less effective in identifying
the most important LoRA modules that need to be
kept, resulting in less effective LoRA settings. (b) a
large-scale instruction tuning dataset like UltraChat
is essential for our FanLoRA framework to perform
well. And the small-scale instruction tuning dataset
like Alpaca (Taori et al., 2023) is not enough.

More ablation studies (a) Figure 4 of Appendix
F demonstrate that the FanLoRA method consis-
tently outperforms AdaLoRA under different bud-
gets of tunable parameters. (b) Table 7 in Ap-
pendix F demonstrates that our FanLoRA frame-
work works well with different LLM backbones.

5 Conclusion

In this work, we introduced the Fantastic LoRA
(FanLoRA) framework to enhance the efficiency
of parameter-efficient fine-tuning (PEFT) for large
language models (LLMs) in industrial applications.
By using a novel AB-score method to identify the
most critical LoRA modules, FanLoRA effectively
reduces latency overhead while maintaining high
performance across diverse downstream tasks. Our
extensive experiments demonstrate that FanLoRA
outperforms existing PEFT baselines with compa-
rable tunable parameters, proving its versatility and
efficiency in multi-tenant settings where an LLM
backbone has to serve multiple users/tasks via dif-
ferent sets of LoRA parameters.
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Limitations

We showed that our proposed method can im-
prove the performance and efficiency of parameter-
efficient tuning on diverse tasks and different
LLMs, thus can help to reduce the cost of indus-
trial applications involving LLMs. However, we ac-
knowledge the following limitations: (a) the more
super-sized open-sourced LLMs, model with 20B
or 70B parameters, are not experimented due to
limited computation resources. (b) Other tasks in
natural language processing, like information ex-
traction, were also not considered. But our frame-
work can be easily transferred to other backbone
architectures and different types of tasks. It would
be of interest to investigate if the superiority of our
method holds for other large-scaled backbone mod-
els and other types of tasks. And we will explore it
in future work.

Ethics Statement

The finding and proposed method aims to im-
prove the LoRA based tuning in terms of better
downstream performances whiling pursuing effi-
ciency. We make sure that the used datasets are
fully anonymized and have gone through thorough
ethical checks. In this work, we have experimented
with both open-sourced and proprietaty LLMs. As
with all LLMs, These models’ potential outputs
cannot be predicted in advance, and the model
may in some instances produce inaccurate, biased
or other objectionable responses to user prompts.
However, this work’s intent is to investigate dif-
ferent fine-tuning methods for these LLMs, not
building applications directly using these models.
In the future, we would like to conduct further tests
to see how our method affects the safety aspects of
LLMs.
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Datasets #train #dev #test |Y| Type Labels Metrics
BoolQ 9.4k 1.6k 1.6k 2 Question Answering True, False acc
COPA 0.4k 0.05k 0.05k 2 Question Answering choice1, choice2 acc

SQuAD 87k 1k 5.9k - Question Answering - f1-em
MT-Bench - - 80 - Question Answering - GPT-4 scores

MMLU - 1.5k 14.1k - Question Answering - acc
HSM10K 9K 0.6K 0.7K - Math reasoning - acc
Q2SQL 60k 4K 10K - SQL generation - acc

LLM-Eval1 - - 3.6k - Question Answering - acc
UltraChat 766k 7.7k - - Instruction tuning - -

Table 5: The dataset statistics of the GLUE and SuperGLUE benchmark tasks evaluated in this work. |Y| is the
number of classes for a classification task.

Wei Zhu, Xiaoling Wang, Huanran Zheng, Mosha Chen,
and Buzhou Tang. 2023. PromptCBLUE: A Chinese
Prompt Tuning Benchmark for the Medical Domain.
arXiv e-prints, page arXiv:2310.14151.

A Appendix for the datsets and
evaluation metrics

A.1 Datasets
We now introduce the datasets we used for ex-

periments. The detailed statistics of these tasks are
presented in Table 5.
COPA & BoolQ These two tasks are question
answering tasks in the format of binary choices,
and are included in the SuperGLUE benchmark.
Since the original test sets are not publicly avail-
able for these tasks, we follow Zhang et al. (2020);
Mahabadi et al. (2021) to divide the original vali-
dation set in half, using one half for validation and
the other for testing.
SQuAD task Stanford Question Answering
Dataset (SQuAD) (Rajpurkar et al., 2016) is a read-
ing comprehension dataset, consisting of questions
posed by crowdworkers on a set of Wikipedia arti-
cles, where the answer to every question is a seg-
ment of text, or span, from the corresponding read-
ing passage, or the question might be unanswerable.
This task is one of the most widely studied question
answering task in the field. In this work, we use
the v1.1 version of SQuAD. Since the original test
sets are not publicly available for these tasks, we
follow Zhang et al. (2020); Mahabadi et al. (2021)
and split 1k samples from the training set as the
development set, and use the original development
set as the test set. The detailed statistics of this task
is presented in Table 5.
HSM10K benchmark HSM10K is a dataset
of 10.3K high quality high school level problems
created by the math teachers. These problems are

the most difficult ones from a wide source of math
tests. The solving steps are generated by GPT-4 and
then checked/rewritten by math teachers to ensure
accuracy. We use this dataset to improve the math
reasoning abilities of LLMs. The dataset is split
into 9k/0.6K/0.7K train/dev/test sets.

Q2SQL dataset Q2SQL consists of a corpus of
74K hand-annotated SQL query and natural lan-
guage question pairs. This proprietary dataset is
collected from a company in the health insurance
company, where the SQL are primarily related to
analyzing insurance policies. These SQL queries
are further split into training (60k examples), devel-
opment (4k examples) and test sets (10k examples).
In this work, we will ask the LLMs to generate
SQL queries based on the given natural language
questions.

The MMLU benchmark Massive Multitask
Language Understanding (MMLU) (Hendrycks
et al., 2020) is a new benchmark designed to mea-
sure knowledge acquired during pretraining by eval-
uating large language models exclusively in zero-
shot and few-shot settings. This makes the bench-
mark more challenging and more similar to how
we evaluate humans. The benchmark covers 57
subjects across STEM, the humanities, the social
sciences, and more. It ranges in difficulty from
an elementary level to an advanced professional
level, and it tests both world knowledge and prob-
lem solving ability. Subjects range from traditional
areas, such as mathematics and history, to more spe-
cialized areas like law and ethics. The granularity
and breadth of the subjects makes the benchmark
ideal for identifying a model’s blind spots.

MT-Bench The MT-Bench (Zheng et al., 2023)
dataset is a widely used benchmark for evaluat-
ing the quality of LLMs. It contains 80 questions.
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The LLMs generate a two-round dialogue for these
questions, and human annotators or LLM annota-
tors will judge the quality of these responses.
The LLM-Eval1 benchmark This benchmark
is a proprietary dataset, designated to challenge the
LLMs for reasoning, world knowledge, and task
solving. This dataset is used internally to facilitate
LLM development. LLM-Eval1 contains a suite of
47 challenging tasks from multiple domains includ-
ing literature, healthcare, security, coding assistant,
and software development and testing. The number
of test samples are 3,569.
The UltraChat dataset UltraChat (Ding et al.,
2023a) is an open-source, large-scale, and multi-
round dialogue data curated with the help of Ope-
nAI’s GPT-3-Turbo API. To ensure generation qual-
ity, two separate GPT-3-Turbo APIs are adopted
in generation, where one plays the role of the user
to generate queries and the other generates the re-
sponse. The user model is carefully prompted to
mimic human user behavior and the two APIs are
called iteratively to create a dialogue. There are
774k dialogues in the dataset, and we split it into a
99:1 train/validate set for the FanLoRA workflow.

A.2 Evaluation metrics/protocols

For the BoolQ and COPA tasks, we report accu-
racy following (Wang et al., 2019).

For the SQuAD dataset, we also report the av-
erage of the F1 score and the exact match score
(denoted as f1-em).

For the HSM10K task, we will consider the cor-
rectness of the final answers. Thus, we report accu-
racy (denoted as acc).

For the Q2SQL, we will consider the correctness
of the generated SQL queries. A predicted SQL
query is correct if and only if it can be executed
and obtains the same results with the ground truth.

For the MMLU and LLM-Eval1 tasks, we will
directly consider the correctness of the final an-
swers. Thus, we report accuracy (denoted as acc).

For evaluating the quality of instruction tuned
LLMs, we follow the practice of utilizing GPT-4
as a unbiased reviewer (Zheng et al., 2023). 80
instructions from the MT-Bench is set as a test
set. We generate model responses from a fine-
tuned model with beam size 3 with the generation
function in Huggingface Transformers (Wolf et al.,
2020a). Then we compare AdaLoRA and Fan-
LoRA’s answers with GPT-4. For each instruction
in MT-Bench, GPT-4 (OpenAI, 2023) is asked to

write a review for both answers from the two meth-
ods, and assigns a quantitative score on a scale of
10 to each response.

B Appendix: settings for efficiency
analysis

In the Table 3 of the main contents, we con-
duct analysis on the FanLoRA and other PEFT
methods’ memory and speed during inference. We
present two metrics for measuring efficiency: (a)
peak memory cost during generation. (b) tokens
generated per second (tps).

We restrict the number of newly generated to-
kens to be 32 under the method of beam search
with beam size equal to 1 or 3. The length of the
initial instruction is 276 under the tokenizer of the
LLM-Assist 7B model. We run the generation pro-
cess for 100 times to calculate the average metric
values, reducing the randomness.

C Appendix for Experimental settings

Here, we provide more details for experimental
settings.
Hyper-parameters for the baseline PEFT meth-
ods For the P-tuning method, the soft prompts’
length is 64, and the soft prompts is first initialized
with dimension 36, and then a learnable projection
layer projects it to the same dimension with the
LLM-Assist 7B backbone. For P-tuning V2, the
number of prompt tokens at each layer is set to 64.
For LPT and IDPG, the bottleneck dimension is set
to 1024, and the number of soft tokens is set to 4.

For the Houlsby-Adapter, the bottleneck dimen-
sion is set to 18, and the adapter modules are added
on the self-attention and feed-forward module. For
the Learned-Adapter, the bottleneck dimension is
set to 36, and the adapter modules are connected to
the whole block.

We adjust the sparsity for SSP so that the number
of tunable parameters is comparable with FanLoRA
and the other baselines.

For (IA)3, the activation adjusting vectors are
added the Query, Key, and Up activations. The
adjusting vectors are initialized with dimension 16,
and then a learnable projection layer projects it
to the same dimension with the LLM-Assist 7B
backbone.

For LoRA, the initial rank at each module is set
to 4. For AdaLoRA, the initial rank at each module
is set to 8, and half of the rank budget is pruned
during fine-tuning.
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Training settings for PEFT methods We use
the HugginFace Transformers (Wolf et al., 2020b),
PEFT (Mangrulkar et al., 2022), or the original
code repositories for implementing all the meth-
ods, and for training and making predictions. For
fine-tuning LLM-Assist 7B model, the maximum
sequence length is set to 1024. The maximum train-
ing epoch is set to 10 on the downstream tasks. For
fine-tuning on UltraChat, the training epoch is set
to 1. The batch size is set between 16 for task with
less than 10k training set, and 128 otherwise. We
use AdamW as the optimizer with a linear learning
rate decay schedule and 6% of the training steps for
warm-up. The learning rate is set to 1e-4. The other
hyper-parameters are kept the same with Wolf et al.
(2020b). In every 200 steps, the model is evalu-
ated on the dev set to calculate dev set perplexity.
Patience is set to 10, that is, if the model does not
achieve a lower dev set perplexity for 10 evaluation
runs, the training stops early. The best checkpoint
on the dev set is used to run predictions on the test
set.

D Visualization of the FanLoRA settings

In Figure 5, we present LoRA importance scores
on LLM-Assist 7B and Qwen1.5 7B. In Figure 6,
we present the FanLoRA setting on LLM-Assist
7B and Qwen1.5 7B.

E Ablation on the FanLoRA framework

We now consider the following variants of the
FanLoRA framework: (a) substituting the large
scale instruction tuning dataset Dtrain from Ultra-
Chat to Alpaca (Taori et al., 2023). The latter is two
orders of magnitude smaller than the former. We
denote this version as FanLoRA-1. (b) FanLoRA-2,
which uses the sensitivity based importance scor-
ing method (Michel et al., 2019) instead of the AB-
score. The experiments on the BoolQ and Q2SQL
tasks are presented in Table 6. The results show
that FanLoRA under the default settings (as in Ta-
ble 1) outperforms the two variants. In addition: (a)
Comparing FanLoRA to FanLoRA-1 demonstrates
that a large scale instruction tuning dataset is essen-
tial for our FanLoRA framework to perform well.
(b) Comparing FanLoRA to FanLoRA-2 shows that
the sensitivity based method (Michel et al., 2019)
is less effective in identifying the most important
LoRA modules that need to be kept.

Method BoolQ Q2SQL
(acc) (acc)

FanLoRA 87.9 83.1
FanLoRA-1 86.2 82.6
FanLoRA-2 87.1 42.3

Table 6: The comparison of FanLoRA’s variants on
the BoolQ and Q2SQL tasks. The backbone model is
LLM-Assist 7B.

Figure 4: Performances under different tunable parame-
ter budgets. The x-axis represents the number of tunable
parameters, and the y-axis represents the performance
score.

F More ablation studies

Comparisons under different budgets of tunable
parameters We vary the budget of tunable pa-
rameters for FanLoRA by modifying the LoRA
rank value of r1 = 12 to {4, 32, 64, 128}. We
also vary the AdaLoRA method’ tunable parameter
numbers. The experimental results on the BoolQ
and Q2SQL tasks are presented in Figure 4(a) and
4(b). The results show that under different tun-
able parameter budgets, our FanLoRA method can
consistently outperform the AdaLoRA method.
Ablation on the LLM backbones Our main
experiments (Table 1) are conducted on the LLM-
Assist 7B model. To demonstrate the broad applica-
bility of our method, we now conduct experiments
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Method BoolQ Q2SQL
(acc) (acc)

Results for LlaMA-2 7B
AdaLoRA 84.9 80.8
FanLoRA 86.4 81.7

Results for Qwen1.5 7B
AdaLoRA 85.7 81.5
FanLoRA 87.1 82.6

Table 7: Results for different PEFT methods on the
BoolQ and Q2SQL benchmarks. The backbone LLMs
are LlaMA-2 7B and Qwen1.5 7B.

on LlaMA-2 7B and Qwen1.5 7B. The results are
reported in Table 7. We can see that on these three
backbones, our FanLoRA method can also outper-
form the baseline PEFT methods.
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(a) LLM-Assist 7B (b) Qwen1.5 7B

Figure 5: The LoRA importance scores on LLM-Assist 7B and Qwen1.5 7B.
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(a) LLM-Assist 7B (b) Qwen1.5 7B

Figure 6: The FanLoRA settings on LLM-Assist 7B and Qwen1.5 7B.
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