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Abstract

Recent developments in the quality and acces-
sibility of large language models have precip-
itated a surge in user-facing tools for content
generation. Motivated by a necessity for hu-
man quality control of these systems, we intro-
duce ReportGPT: a pipeline framework for ver-
ifiable human-in-the-loop table-to-text genera-
tion. ReportGPT is based on a domain specific
language, which acts as a proof mechanism for
generating verifiable commentary. This allows
users to quickly check the relevancy and fac-
tuality of model outputs. User selections then
become few-shot examples for improving the
performance of the pipeline. We configure 3
approaches to our pipeline, and find that usage
of language models in ReportGPT’s compo-
nents trade off precision for more insightful
downstream commentary. Furthermore, Re-
portGPT learns from human feedback in real-
time, needing only a few samples to improve
performance.

1 Introduction

Data-to-text generation has been a longstanding
problem in natural language processing (Gatt
and Krahmer, 2018; Sharma et al., 2022). Re-
cent advancements in deep learning gave rise to
transformer-based models that have achieved state
of the art performance (Gatt and Krahmer, 2018;
Sharma et al., 2022; OpenAI, 2022; Manyika,
2023). Within any real-world context, these sys-
tems must grapple with hallucinations and omis-
sions caused by the underlying language model.
Neglecting to address this may lead to the dissem-
ination of misleading or false content. With this
motivation we introduce ReportGPT, a framework
for human-in-the-loop table-to-text generation that
consists of a domain specific language and a set of
modules that use it as a representation for generat-
ing verifiable commentary. Human verification of
Data-to-Text Generation, while clearly vital, can

be difficult and time consuming especially when
it involves checking numerical calculations, as the
human must perform the calculations in order to
verify the output. The ReportGPT DSL acts as
a proof mechanism, allowing users to effectively
verify outputs for relevancy and correctness. Our
approaches learn efficiently from human feedback
using a Bayesian updating mechanism and few-
shot prompting with language models. Our experi-
ments show that usage of language models in our
pipeline trade precision for insightfulness. As a
result, while there are fewer factual outputs, those
that are accurate tend to be more insightful for the
end user.

2 Related Works

Many approaches to data-to-text generation utilize
pre-trained, instruction tuned large language mod-
els (Manyika, 2023; OpenAI, 2022; Sanh et al.,
2022; Ouyang et al., 2022). Various recent works
have proposed improving the factuality and rele-
vancy of these models by grounding the outputs
with logical representations (Saha et al., 2022; Liu
et al., 2022; Gao et al., 2023). Saha et al. (2022)
utilize a logical form to represent reasoning paths,
which are then ranked and converted to natural lan-
guage via a surface realization. The ranking uses
a BERT-base model trained to classify reasoning
path and table tuples as correct or incorrect. During
generation, a best-first search is conducted using
the correct class probability as a saliency score.
Liu et al. (2022) pre-train transformers on table to
logical form objectives and then fine-tune on table
to text objectives. Gao et al. (2023) utilize python
programs as intermediate reasoning steps in the
chain of thought of language models and demon-
strate their effectiveness across 13 mathematical,
symbolic and algorithmic reasoning tasks. OpenAI
Code Interpreter (Lu, 2023), utilizes python pro-
grams in the chain of thought to perform a wide
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variety of tasks related to data processing and anal-
ysis. Hennigen et al. (2023) propose symbolically
grounded generation, where LLMs are prompted
to interleave their output with references to spans
of input text. These references are used to reduce
the effort of manual verification. ReportGPT de-
fines a domain specific language that serves both as
an intermediate representation to logically ground
downstream text and as a verification mechanism.
The DSL contains direct references to the input ta-
ble, allowing users to quickly verify corresponding
textual outputs. Going one step further, our pipeline
utilizes human feedback as an online learning sig-
nal to improve precision.

3 ReportGPT

The ReportGPT pipeline consists of a domain spe-
cific language for computations over tabular data,
as well as a set of modules that interface with it.
The modules are: Program Generation, Program
Execution, Surface Realization, and Human Feed-
back. The pipeline flow is as follows: Program
Generation takes a table as input, outputs a distri-
bution over programs and samples a batch from
this distribution. These programs are then executed
by the Program Execution module. The batch of
programs and their results are fed into the Surface
Realization module, which outputs a single sen-
tence natural language description corresponding
to each program and result tuple. These sentences,
as well as their underlying program and result tu-
ple, are shown to the user. The user verifies the
correctness and relevancy of each individual sen-
tence by checking its alignment with the underly-
ing program. The Human Feedback module stores
the user selections, both positive and negative, and
uses them to update the Program Generation and
Surface Realization modules. This loop is iterated
until the user is satisfied with their set of verified
sentences. Figure 1 provides an example of the full
execution of the pipeline, showing the functionality
of each module and intermediate steps. Sections
3.1 and 3.2 describe how tables and programs are
represented within ReportGPT, respectively. Sec-
tions 3.3-3.6 discuss each of the above-mentioned
modules in detail.

3.1 Table Linearization

Many data-to-text generation systems represent ta-
bles as linear sequences of attribute value pairs
(Zhang et al., 2020; Radford et al., 2018; Raffel

et al., 2020; Kasner and Dusek, 2022). This format
gives poor scaling of the number of tokens required
to encode the table, O(Rows ∗ Columns), which
can be problematic for usage with language models
due to their finite context size and high cost per
token. If we limit our DSL, described in section
3.2, to only require header information we can limit
the linearization to the title, row headers, and col-
umn headers. This format, shown below, brings
our token count down to O(Rows + Columns).

Title: <TITLE>
Rows: <ROW HEADERS>
Columns: <COL HEADERS>

3.2 ReportGPT Domain Specific Language
Now that we have defined a suitable table represen-
tation, we define a DSL that performs calculations
over this table. Programs are generated by the Pro-
gram Generation module (section 3.3), executed by
the Program Execution module (section 3.4), and
reasoned over by the Surface Realization module
(section 3.5). End-to-end models for data-to-text
generation, notably T5 (Raffel et al., 2020), strug-
gle to generate good summaries when numerical
calculations are involved (Sharma et al., 2022). In-
termediate program representations remedy this
by allowing the model to first generate programs,
which are automatically executed, and then reason
about their results. This assists models that struggle
with numerical calculation while excelling at pro-
gram generation and program reasoning tasks, and
is a common approach to neural data-to-text gener-
ation (Saha et al., 2022; Chen et al., 2020; Liu et al.,
2022; Gao et al., 2023; Cheng et al., 2022). Several
of these works (Saha et al., 2022; Chen et al., 2020;
Cheng et al., 2022) opt for a minimal language in-
stead of Microsoft Excel or Python. This makes the
programs simpler and lighter weight while main-
taining high expressiveness. Within the ReportGPT
framework we require that our language supports
useful operations on tabular data and that its align-
ment with a corresponding natural language sen-
tence can be human verified. To be verifiable, it
should be human readable and easily linked back
to the input table. We propose a domain specific
language that trades expressiveness for simplicity
and readability. The ReportGPT domain specific
language contains the 12 operations shown below.

get, sum, avg, max, min,
argmax, argmin, std,
eq, less_than, diff, proportion
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Figure 1: The ReportGPT Architecture. Tables are fed into the program generation module consisting of a language
model call, several chained language model calls, or a PCFG. Programs are executed and fed into the surface
realization module, which consists of a single language model call. This module outputs the final commentary,
which is shown to the end user. User selections are used as few shot examples for the Program Generation and
Surface Realization Modules.

Figure 2: Illustration of the verification process. Commentary is linked to the table via corresponding programs.
Programs contain row and column headers that are linked to sections of the table via color coded highlighting

In a Lisp-like syntax, each operator is matched
to its operands in parenthesis. Valid operands con-
sist exclusively of row and column headers, which
are referenced in curly braces, as well as results
from other operations. Refer to Figures 2 and 1 for
examples of programs along with their target tables
and corresponding results.

The following sections describe the four main
ReportGPT modules illustrated in Figure 1.

3.3 Program Generation

Given an input table, the Program Generation mod-
ule iteratively produces programs that are exe-
cutable over the table. Formally, the module out-
puts a distribution of progams conditioned on this
table. At inference time, we sample a batch from
this distribution without replacement, using a tem-
perature hyper-parameter to control the random-

ness of sampling. Next, we pass the sampled batch
to the next module in the pipeline: Program Ex-
ecution. Downstream, these programs and their
execution results are realized into commentary sen-
tences. The Human Feedback module, described
in section 3.6, matches natural language sentences
with corresponding programs generated by the Pro-
gram Generation module to an accept or reject de-
cision. Once these selections are available, the
module should update to produce programs more
likely to be accepted by the user. Programs that
correspond to accepted sentences should not be gen-
erated again, as they have already been reviewed
by the user. With these requirements in mind, we
define three approaches to Program Generation.
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3.3.1 PCFG-based
In our first approach, we define a probabilistic
context-free grammar and devise a simple mech-
anism for generating programs that can be effi-
ciently updated with user preferences. A Context-
Free Grammar consists of a set of non-terminal
strings, {α1, α2, ...αn}, and a set of production
rules that can be applied to each non-terminal string
αi → β0, ...αi → βm. A Probabilistic Context-
Free Grammar consists of a Context-Free Gram-
mar and set of probabilities for each production rule
given a non-terminal. We write these probabilities
as P (αi → ·|αi) with

∑m
j=1 P (αi → βj |αi) = 1.

A PCFG can be sampled to produce a string by
beginning with the starting non-terminal S, and it-
eratively applying production rules to non-terminal
strings until left with exclusively terminal strings.
Production rules are selected for each expansion
of a non-terminal αi by sampling αi → βj from
P (αi → ·|αi). We define a Context-Free Grammar
for ReportGPT DSL, shown below.

S -> Z | Y Z Z
Z -> get {R} {C} | X {R} | X {C}
X -> sum | avg | max | min

| argmax | argmin | std
| eq | less_than | diff | proportion

Y -> eq | less_than | diff | proportion
R -> <ROW HEADERS>
C -> <COLUMN HEADERS>

Generating a program using the PCFG also gen-
erates a parse tree: the set of production rules se-
lected during generation. Given a set of production
rules containing α1 → β1, α2 → β2, . . . , αn →
βn, we define COUNT as the following:

COUNT(α → β) =
n∑

i=1

[αi → βi = α → β]

Downstream, the user makes selections based on
natural language sentences with underlying pro-
grams. This produces two sets of transitions, one
corresponding to accepted programs and another to
rejected programs. We count the number of times
that a certain transition appears in accepted pro-
grams COUNTacc(α → β), and rejected programs
COUNTrej(α → β). We then compute the accep-
tance rate for this transition and apply a soft-max
with a temperature parameter θ to obtain a proba-
bility.

Rα→β = COUNTacc(α→β)+1
COUNTacc(α→β)+COUNTrej(α→β)+1

P (α → β|α) = exp(
Rα→β

θ
)

∑
β exp(

Rα→β
θ

)

3.3.2 LLM-based
Large language models, specifically GPT-4, have
shown remarkable performance in program gener-
ation conditioned on human intent (Bubeck et al.,
2023). As an alternative to a PCFG, we utilize GPT-
4 for Program Generation. We implement this as a
single API call with a prompt that includes the task
description, the linearized table, a short description
of ReportGPT DSL, and few-shot examples. These
few-shot examples consist of programs correspond-
ing to commentary that has been accepted by the
user. We ask the language model not to generate
these programs again. Note that we can apply a
temperature parameter to our API calls to increase
or decrease randomness.

3.3.3 Chaining LLMs
Given recent advances in chain of thought prompt-
ing and chaining language models (Wu et al.,
2022b,a; Wei et al., 2022), we hypothesized that
allowing the model to first generate relevant ques-
tions about the table, and then answer them, would
lead to more insightful downstream commentary.
To achieve this, we chain two GPT-4 API calls:
one that ingests the table metadata and generates
questions, and another that generates programs to
answer these questions. The first API call prompt
consists of a task description, the linearized table,
a description of ReportGPT DSL, and few-shot ex-
amples. The second API call prompt is similar,
but with a different task description and with the
output of the previous call concatenated at the end.
Few-shot examples consist of questions in call 1,
and (question, program) tuples in call 2. These ex-
amples are taken from corresponding user accepted
commentary.

3.4 Program Execution

The Program Execution module evaluates a pro-
gram on an input table and outputs the result. We
implement it as an interpreter for ReportGPT DSL
written in Python. First, the table is represented
as a Python object. The interpreter then scans the
program from left to right, matching operators to a
operands in parenthesis.

3.5 Surface Realization

The Surface Realization module turns program rep-
resentations and their execution results into natural
language sentences. These sentences should be
a faithful descriptions of their corresponding pro-
grams, without incorporating outside knowledge or
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omitting any facts. The Human Feedback module
is directly responsible for filtering these errors in
the process described in section 3.6. Surface Real-
ization is a common task in the NLP literature for
which Language Models have exhibited strong per-
formance (Farahnak et al., 2020; Saha et al., 2022).
Thus, we implement surface realization as a GPT-4
API call. The API call prompt consists of a task
description, the linearized table a description of
ReportGPT DSL, few-shot example tuples of (pro-
gram, result, sentence), and the input (programs,
results).

3.6 Human Feedback
The automated portion of the ReportGPT pipeline
ingests tables and produces natural language sen-
tences with corresponding programs and their exe-
cution results. The human portion of ReportGPT,
which we refer to as the Human Feedback module,
is responsible for individually accepting or reject-
ing each output. The user is presented with tuples
of (commentary sentence, program, result) linked
back to the table through column and row high-
lighting, as depicted in Figure 2. The user then
chooses to accept or reject each tuple depending
on the following criteria. First, any tuple where
the commentary contains omissions or hallucina-
tions is rejected. Second, any tuple that contains
uninteresting or trivial commentary, according to
the individual user preference, is rejected. While
the second may vary based on user preferences, the
first criterion ensures that output commentaries are
free of errors.

3.7 Batching
As seen in previous sections, we utilize GPT-4 APIs
for our Surface Realization, and Program Gener-
ation modules. As a result, each forward pass of
our pipeline may require as many as 4 API calls.
These calls incur a high latency cost which trans-
lates to a low quality user experience. Cheng et al.
(2023) propose batch prompting, a method that con-
catenates a batch of samples into a single prompt.
Their experiments show no significant drops in per-
formance while increasing throughput by a factor
of the batch size. We adapt this approach to our
pipeline and choose a batch size of 5, which we use
for all of our calls.

4 Experiments

In this section, we describe our experimental design
and results.

4.1 Dataset
In order to evaluate our proposed pipeline, we
conduct a user study using tables from the HiTab
dataset (Cheng et al., 2022). Hitab contains 3,700
complex tables sourced from over 30 domains. The
tables contain noise in the form of missing cells.
This approximates real-world data, and thus pro-
vides a suitable benchmark for how ReportGPT
might perform in real-world use-cases.

4.2 Pipeline configurations
For all experiments shown in Tables 1 and 2, we
report the results for 3 pipeline configurations and
4 settings. The configurations are: PCFG-based
program generation, LLM-based program genera-
tion, and chained LLM-based program generation.
The settings are zero-shot, 1-shot, 3-shot, and with
manually written table titles. For zero-shot, we pro-
vide the HiTab tables to the pipeline as-is with no
human feedback. We then construct 1-shot and 3-
shot experiments using user labels from zero-shot.
A notable source of errors in these experiments is
that tables in HiTab’s (Cheng et al., 2022) dataset
are missing descriptive titles. In order to measure
the effect this has on performance, we manually
write titles for 20 tables and re-run our zero-shot
experiment.

4.3 Experiment 1: Acceptance, Hallucination,
and Error rates

For our first experiment, seen in Table 1, we run
each pipeline configuration and setting on a set
of tables. For each table in the experiment, the
pipeline is used to generate 5 (program, result, com-
mentary) tuples. For each tuple, the annotator is
asked to choose ‘accept’, ‘hallucination’, ‘program
error’. Program error is chosen if the underlying
program throws an error or is malformed, halluci-
nation is chosen if the commentary is incorrect or
not aligned with the underlying program. Accept is
chosen if the commentary is correct and there is no
program error. Additionally, the pipeline may fail
to generate 5 samples for a table. In this case we
report the missing tuples as ‘dropped’. We utilize
4 researchers to annotate this task.

4.4 Experiment 2: Ranking and Number of
Operations

For our second experiment, we compile accepted
commentary from all configurations and settings in
experiment 1. For each annotator, we sample 45
tables and 1 accepted commentary per table from
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Configuration Model Acc. Rate Halluc. Rate Prog. Err. Rate Gen. Drop.

0-shot
Chained 31.81% 22.22% 43.18% 396 9

LLM 61.0% 18.43% 19.11% 293 7
PCFG 84.0% 18.33 0% 300 0

1-shot
Chained 54.0% 18.67% 9.33% 75 15

LLM 73.1% 6.66% 12.22% 90 10
PCFG 87% 13.0% 0% 100 0

3-shot
Chained 93.0% 0% 7.0% 100 0

LLM 78% 4.0% 18.0% 100 0
PCFG 95.0% 5.0% 0% 100 0

titles
Chained 62.0% 11.0% 27.0% 100 0

LLM 89.0% 3.0% 8.0% 100 0
PCFG 98.0% 2.0% 0% 100 0

Table 1: Acceptance, Hallucination, and Error Rates

Model Avg. Rank Avg. num ops
Chained 1.71 1.07

LLM 2.06 1.42
PCFG 2.23 1.26

Table 2: Ranking and Average Number of Operations

each of the 3 pipeline configurations. We present
the table, as well as the 3 samples to the annotator
and ask them to rank them in order of insightful-
ness. We define the insightfulness of commentary
as its descriptiveness and usefulness to the reader.
We take the average of these rankings and report
them in Table 2. We utilize 2 researchers as an-
notators for this task, each giving rankings for 45
pairs of three samples with each pair of three taken
from a distinct table. Additionally, we compute the
average number of operations in the programs of
accepted outputs for each configuration and report
it in Table 2.

5 Results and Discussion

Table 1 shows that acceptance rates increase with
few-shot examples, as well as with labelled tables.
Table 1 also shows that our PCFG-based model at-
tains the highest acceptance rates across the board,
while scoring the lowest on our ranking experi-
ment shown in Table 2. This highlights a trade-off
between precision and insightfulness. Our PCFG
based pipeline imposes the most rule-based con-
straints, and attains high precision with low insight-
fulness. It does so by generating programs from
a pre-defined context-free grammar, which limits
the output space compared to generating the pro-
grams from a language model. Our LLM based
pipelines impose less constraints, and thus trade off

increased insightfulness for decreased precision.

The results in Tables 1 and 2 demonstrate that
downstream applications might benefit from differ-
ent (or possibly hybrid) configurations. A PCFG-
based approach increases the acceptance rate but
does not necessarily produce commentary that is
novel or insightful. In contrast, the Chained ap-
proach provides higher insightfulness and might be
preferred in settings when multi-shot prompting is
feasible.

Lastly, we examine whether the number of op-
erations in the program is associated with the in-
sightfulness of the commentary. This is based on
the hypothesis that sophisticated calculations can
lead to more novel or non-trivial outputs. Table 2
lists the number of operations against the ranking
of each pipeline’s outputs. As the table shows, a
higher number of operations does not necessarily
translate to more insightful commentary, demon-
strating that insightfulness is a more semantically
complex concept and automating it based on proxy
metrics might not be useful to downstream applica-
tions.

6 Conclusion

Motivated by the necessity for human supervision
in real world use cases, we introduce ReportGPT:
a pipeline framework for verifiable human-in-the-
loop table-to-text generation. ReportGPT consists
of a domain specific language that enables verifi-
ability, as well as a set of modules that generate
and reason about it. We configure 3 approaches to
our pipeline, and find a trade-off between precision
and insightfulness.
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7 Disclaimer

This paper was prepared for informational purposes
by the Artificial Intelligence Research group of JP-
Morgan Chase & Co. and its affiliates ("JP Mor-
gan") and is not a product of the Research Depart-
ment of JP Morgan. JP Morgan makes no repre-
sentation and warranty whatsoever and disclaims
all liability, for the completeness, accuracy or re-
liability of the information contained herein. This
document is not intended as investment research or
investment advice, or a recommendation, offer or
solicitation for the purchase or sale of any security,
financial instrument, financial product or service,
or to be used in any way for evaluating the merits of
participating in any transaction, and shall not con-
stitute a solicitation under any jurisdiction or to any
person, if such solicitation under such jurisdiction
or to such person would be unlawful.
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A Program Generation Configurations

Figures 3, 4, and 5 illustrate the processes of pro-
gram generation, chained program generation, and
surface realization, respectively.
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Figure 3: Prompt template and output format for LLM Program Generation module

Figure 4: Prompt template and output format for Chained LLM Program Generation module

Figure 5: Prompt template and output format for LLM Surface Realization module
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