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Abstract

Large language models (LLMs) have achieved
significant leadership in many NLP tasks, but
aligning structured output with generative mod-
els in information extraction (IE) tasks re-
mains a challenge. Prompt Engineering (PE)
is renowned for improving IE performance
through prompt modifications. However, the
realm of the sample design for downstream
fine-tuning, crucial for task-specific LLM adap-
tation, is largely unexplored. This paper intro-
duces Sample Design Engineering (SDE), a
methodical approach to enhancing LLMs’ post-
tuning performance on IE tasks by refining in-
put, output, and reasoning designs. Through
extensive ID and OOD experiments across six
LLMs, we first assess the impact of various
design options on IE performance, revealing
several intriguing patterns. Based on these in-
sights, we then propose an integrated SDE strat-
egy and validate its consistent superiority over
heuristic sample designs on three complex IE
tasks with four additional LLMs, demonstrat-
ing the generality of our method. Additionally,
analyses of LLMs’ inherent prompt/output per-
plexity, zero-shot, and ICL abilities illustrate
that good PE strategies may not always trans-
late to good SDE strategies. Code is available
at https://github.com/beyondguo/LLM-Tuning.

1 Introduction

Information extraction (IE) aims to extract struc-
tured information from unstructured text, which
is highly valuable in a wide range of industrial
scenarios. The emergence of Large Language Mod-
els (LLMs) such as GPT-3 (Brown et al., 2020),
LLaMA (Touvron et al., 2023a) has broadened the
capabilities of language models to tackle various
complex IE tasks with a single model. Nonethe-
less, a fundamental challenge arises from the dis-
crepancy between the unstructured nature of the
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Figure 1: A simplified comparison between PE and our
proposed SDE.

LLMs’ generative paradigm and the requirement
for structured output. In this background, Prompt
Engineering (PE) has become a key area in lever-
aging cutting-edge LLMs to address this challenge
(Wan et al., 2023; Wang et al., 2023a; Xie et al.,
2023; Pang et al., 2023).

However, the efficacy of PE relies on the size
of LLMs. In industrial applications, the high costs
of deploying large models and data privacy risks
drive many companies to seek the customization of
smaller, open-source models tailored to their spe-
cific needs by downstream fine-tuning. Inspired by
PE, we believe that the design of samples is also
vital in downstream fine-tuning scenarios. This pa-
per, therefore, aims to design effective fine-tuning
samples for IE tasks, which we term Sample De-
sign Engineering (SDE). Different sample designs
may make it easier or harder for the LLMs to learn,
especially given the complexity and scarcity of
training samples for downstream tasks. Figure 1 is
a simplified demonstration of PE and SDE.

We begin by identifying a range of SDE op-
tions and conduct experiments on a typical IE task
– multi-aspect sentiment analysis (MASA) to ex-
plore the impact of each option. Some enlightening
insights can be revealed such as the position of
task instructions and the use of placeholders for
unmentioned targets, which demonstrate the sig-
nificant impact of various SDE options on LLMs’
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fine-tuning performance. Leveraging these find-
ings, we propose an integrated strategy ES-SDE
(Empirically Strong - SDE), which outperforms
weaker SDE combinations and heuristic designs
from other studies on several complex IE tasks,
showcasing its robustness and effectiveness on dif-
ferent models and training settings. Furthermore,
our exploratory analysis of perplexity, zero-shot,
and in-context learning (ICL) furthers our under-
standing of the relationship between PE and SDE.
Our analysis indicate that a well-crafted PE strategy
may not necessarily translate to a successful SDE
strategy, prompting further investigation into the
mechanisms of SDE to optimize LLMs for down-
stream applications. These discoveries underscore
the potential for refining SDE mechanisms to aug-
ment LLMs’ fine-tuning. The main contributions
of our research are as follows:
• We propose Sample Design Engineering, a new

data-centric perspective for enhancing the per-
formance of Large Language Models in down-
stream tasks. we emphasize the importance of
sample design during the fine-tuning of LLMs,
whereas much of the existing research has fo-
cused primarily on prompt design.

• We provide a comprehensive summary and sys-
tematic evaluation of various sample design
strategies, many of which have either been over-
looked in previous research or only explored in
a fragmented manner.

• Through extensive experiments involving ten
models and three task types, we demonstrate the
necessity and effectiveness of this novel Sample
Design Engineering perspective.

2 Related Work

2.1 Prompt Engineering (PE) for Information
Extraction

With the rapid advancement of LLMs, several stud-
ies have explored the zero-shot and few-shot ca-
pabilities of large models on typical IE tasks (Wei
et al., 2023; Li et al., 2023a; Han et al., 2023),
revealing notable performance gaps compared to
traditional supervised SoTA models. To bridge
the gap between IE tasks and text generation mod-
els, previous studies have proposed various prompt
strategies to improve prompt quality. These strate-
gies include carefully designed prompt templates
or generation methods (Xie et al., 2023; Pang et al.,
2023; Xu et al., 2023; Xie et al., 2024), sample
retrieval techniques to provide better few-shot ex-

amples (Wan et al., 2023; Wang et al., 2023a), and
code-based methods (Wang et al., 2023c; Li et al.,
2023b) to enhance the model’s adaptation to struc-
tured tasks.

However, most research focus on very large mod-
els (Sahoo et al., 2024). These most advanced and
effective LLMs are either black-box models that
are only accessible via APIs, or extremely large
models with large resource requirements. Con-
sequently, many practitioners turn to smaller but
open-source LLMs, especially 10B around models.

2.2 Fine-tuning LLMs

According to the different purposes, we can di-
vide LLMs’ fine-tuning into two types: instruction-
tuning (IT) and downstream-tuning (DT)1. IT trains
LLMs to comprehend and follow human instruc-
tions across diverse NLP tasks (Longpre et al.,
2023; Taori et al., 2023). DT customizes LLMs
for complex industrial tasks, requiring high output
stability for easier parsing and downstream appli-
cation. To intrinsically enhance the LLMs’ com-
prehension of IE tasks, some IT-based methods
have been proposed and have shown some suc-
cess (Wang et al., 2022; Zhang et al., 2023b; Sainz
et al., 2024; Wang et al., 2023b). However, above
works merely adopt a vanilla format of fine-tuning
data and do not further explore the organization of
structured data. Our study centers in DT scenarios,
highlighting sample design challenges, but the in-
sights may also benefit IT sample design, a topic
for future exploration.

In addition, parameter-efficient fine-tuning
(PEFT) methods, such as prefix-tuning(Li and
Liang, 2021), prompt-tuning(Lester et al., 2021), p-
tuning(Liu et al., 2023), and LoRA(Hu et al., 2021)
provide cost-effective alternatives that retain FFT’s
effectiveness, gaining popularity in industrial ap-
plications. In this research, we use the widely-used
LoRA as the default fine-tuning technique. How-
ever, we believe results from our study are also
applicable to other PEFT methods.

3 Sample Design Engineering

3.1 Typical SDE Options

We categorize sample design options into input,
output, and reasoning. We take the Multi-Aspect
Sentiment Analysis (MASA) task as an example
to clarify each option. MASA requires analyzing

1It is also known as task tuning (TT) in some literature,
like (Weber et al., 2023).
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Figure 2: Typical SDE options to be considered when designing downstream-tuning samples, taking the MASA task as an
example. Ai means aspect i, Si means its sentiment label, [P] refers to placeholder tokens.

review texts to assign sentiments to predefined as-
pects, while some aspects may be unmentioned, a
specific example can be found in A.2. Figure 2 is
an overview of different SDE options.
Input Design Options:
(1) Instruction Placement: Put the instruction be-

fore / after the task text (Inst-first / Inst-last),
or with no instruction (No-inst) as used in many
previous tasks (Lewis et al., 2019; Guo et al.,
2022; Zhang et al., 2023a).

(2) Input Modeling: Compare No-MI that ex-
cludes input from loss calculation, akin to
LLaMA2’s SFT process (Touvron et al.,
2023b)) against MI (modeling input in back-
propagation).

Output Design Options:
(1) Multiple Predictions Formatting: Set the out-

put formatting from less to more structured,
Natural (free-form text), Lines (each aspect
on a new line), and JSON (JSON-lines for pre-
cision and explicitness).

(2) Unmentioned Targets: Each text may only
contain content related to a part of predefined
targets. For those unmentioned targets, omit
them, termed OU (Omit Unmentioned), or
place placeholders such as "None", "", or others
for them, termed PU (Placeholders for Unmen-
tioned).

(3) Textual or numerical labels: Use the de-
fault textual labels (TxtLabel) or numbers
(NumLabel) to represent outcomes.

Reasoning Design Options:
Chain-of-Thought (CoT) (Wei et al., 2022) has
shown promise in improving LLM’s reasoning
in zero-shot, ICL, and IT(Kim et al., 2023),
but requires more study in DT. We introduce
the CoT option to "think before predict". Con-

versely, the R-CoT (Reverse-CoT) enabling
"predict then explain" to explore CoT’s me-
chanics further. Note that Implementing CoT-
like samples incurs additional annotation costs
due to the description fields, making it task-
dependent.

3.2 Integrated SDE Strategy

A final sample design is a combination of the above
options, which we call an integrated SDE strategy.
This paper initially explores the impact of each op-
tion through extensive experimentation, then pro-
poses an evidence-based integrated SDE strategy.

4 Experiments I: Evaluating The Impact
of Each SDE Option

4.1 Settings

• Tasks and Datasets. For the Chinese online
review MASA scenario, the data is provided and
annotated by our collaborating company, which
encounters a real-world business need. The data
annotations come from two domains of aspect: D1,
D2. We conduct experiments with both in-domain
(ID) and out-of-domain (OOD) scenarios, testing
model on domains that appear or not appear in
training set, respectively. The models need to give
a sentiment label from {positive, neutral, negative}
for each aspect, while some aspects may not occur
in the review. Based on the two domains, we con-
struct 2 ID tasks (D1⇒D1, D2⇒D2) , and 2 OOD
tasks (D1⇒D2, D2⇒D1). More details refer to
A.2. Specific design examples can be found in A.3.

• Models. We utilize the following widely used
open-source LLMs of 7B size : (1) chinese-llama /
alpaca-2-7b (Cui et al., 2023) (note as c-llama2-
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Figure 3: Sentiment analysis performances (κ) of different SDE options. Results of ID are the average of D1⇒D1
and D2⇒D2, same for OOD. The lines depict the performance of default options (baseline) in each group, and
the bars depict each method’s relative improvement or degradation compared to the baseline, with each method
differing from the baseline in only one option (colored in red).

base / chat); (2) internlm-7b-base / chat (Team,
2023) (intern-base / chat); (3) baichuan2-7b-base
/ chat (Yang et al., 2023) (bc2-base / chat). We use
LoRA as the default efficient fine-tuning technique.
Hyperparameters and other training details can be
found in Appendix A.2.

• Evaluation Metrics. We evaluate from two per-
spectives: (1) Sentiment analysis performance.
We use the weighted Kappa score κ (Cohen, 1968)
for this measurement considering the imbalance
of different aspects and the ordinal nature of sen-
timent labels. (2) Format adherence, to assess
the generation stability. Maintaining format adher-
ence is vital for the subsequent utilization of LLM
outputs. We track this with the format-parsing er-
ror rate. More details of metrics can be seen in
Appendix A.1.

4.2 Experimental Results on Each Option

4.2.1 Sentiment Analysis Performance
We first assess the sentiment analysis performances
of LLMs using different sample design options.
The comparative results of ID and OOD tasks on 3
Chat-LLMs and 3 Base-LLMs are plotted in Figure
3 (full results see Table 3 to Table 8 in Appendix
A.4). Some shared and intriguing patterns are re-
vealed from the results.
Conclusions for Input Options:
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(1) Instructions enhance DT. No-Inst damages
performance in ID tasks and OOD generaliza-
tion ability. This underlines the importance of
including instructions to enhance LLMs’ com-
prehension and adaptability.

(2) Better to place instruction first. Inst-first out-
performs Inst-last across both ID and OOD
tasks for different LLMs. This demonstrates the
significance of instruction placement for LLMs’
tuning process. We hypothesize that this may
partly be explained by the attention mechanism,
see Appendix A.6.

(3) Modeling input detracts from performance.
MI results in worse outcomes across various
models and tasks. suggesting a cautious ap-
proach in determining which parts of the task
to model.

Conclusions for Output Options:
(1) Lines format is reliable for multiple pre-
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dictions. Lines, positioned between Natural
and JSON, demonstrates stable and high per-
formance across various models and tasks. It
offers structured information while retains natu-
ral language readability, making it versatile for
different LLMs.

(2) Format preferences of Base/Chat models.
Base models show consistent responses across
formats, while Chat models vary, implying dif-
ferences in their SFT or RLHF data’s structure.
Moreover, Base models favor natural styles and
are more affected by NumLabel, but Chat mod-
els are more accommodating to sophisticated or
less natural formats, also benefit from the SFT
and RLHF process.

(3) Textual over numeric labels. Numeric labels
worsens performance, possibly due to lacking
the descriptive depth and context clues that tex-
tual labels provide, which is crucial for LLMs.

(4) Omitting the unmentioned targets may not
be a good choice. OU(Omit Unmentioned)
may simplify outputs by omitting unmentioned
aspects, but leads to inconsistency of aspects.
This variability compels the models to adjust
dynamically, increasing task complexity. PU
(Placeholders for Unmentioned) keeps consis-
tent by adding placeholders, perhaps making it
easier for LLMs to learn. Additional analysis
shows that the aspects with a higher degree of
unmentioning suffer greater underperformance
with OU compared to PU, see Appendix A.7.

Conclusions for Reasoning Options:
(1) Subtle impact of CoT on ID, while significant

on OOD tasks. CoT design marginally affects
ID tasks but markedly improves OOD perfor-
mance. This contrast highlights CoT’s role in
enhancing model reasoning and adaptability in
unfamiliar contexts, underpinning its value for
generalization.

(2) "Think before predict" beats "predict then
explain". The performance of R-CoT, which
places the reasoning step after predicting, does
not match that of CoT. However, R-CoT can
still outperform No-CoT in many cases, sug-
gesting that a single reasoning component is
also beneficial.

4.2.2 Format Adherence Performance
Figure 4 presents the results of the format adher-
ence performances for Chat-LLMs, from which we
find the following conclusions:
(1) Inst-first improves sentiment analysis perfor-

mance but reduces format stability, especially
in OOD tasks, indicating that leading with in-
structions might increase format errors with un-
familiar content.

(2) Structured design options lead to better format
adherence abilities: JSON > Lines > Natural.
JSON format demonstrates strong adherence
to the correct structure, highlighting a balance
between output complexity and precision.

(3) MI, NumLabel and CoT can be quite unstable,
which should be taken seriously in applications
where stability is vital.

(4) Though improving the understanding or reason-
ing , CoT design puts LLMs at a higher risk
of parsing failure for customized downstream
tasks, underlining a trade-off for this option.

Considering LLMs’ format adherence alongside
the understanding abilities is crucial for specialized
downstream applications, suggesting a need for a
balanced approach in industrial scenarios.

5 Experiments II: A Robust Integrated
SDE Strategy

Based on the experimental evidence from the pre-
vious section, we propose an empirically strong
SDE strategy (termed as ES-SDE) using the well-
performing options: a combination of Inst-first, No-
MI input designs and Lines, PU(Placeholders for
Unmentioned), TxtLabel output designs. We don’t
use the CoT design because of its high annotation
cost and relatively unstable output.

In this section, we conduct comprehensive exper-
iments to validate its effectiveness across different
downstream tasks, as well as the robustness against
perturbations in instructions or generation.

5.1 Settings

• Tasks and datasets. To evaluate the effective-
ness of ES-SDE, we conduct experiments on three
typical and challenging IE tasks:
GENIA (Ohta et al., 2002), a nested named entity
recognition (Nested-NER) dataset in the molecular
biology domain, where ChatGPT-3.5 only achieves
an F1 score of 50.89% using 5-shot CoT reasoning
(Han et al., 2023).
MAVEN (Wang et al., 2020), a general domain
event detection (ED) dataset. Han et al. (2023)
demonstrate that the performance of ChatGPT in
ED tasks falls below expectations. We use the
top-10 event types in our experiments.
Review11, our self-collected Chinese MASA
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Figure 5: Comparison of different sample design strategies. (a) Performance of different sample design strategies
with increasing training sizes: 500, 1000, 2000 and 4000. (b) Robustness on decoding sampling randomness,
training size = 500. (c) Robustness on instruction content variation, training size = 500.

dataset that involves 11 aspects, more complicated
than the MASA tasks in Section 4.

• Baselines. As a comparison to ES-SDE, we
also propose an empirically weak SDE strategy
(EW-SDE), combining the less effective options
Inst-last, Natural, and OU(Omit Unmentioned)
options, while keeping other options the same
with ES-SDE. Note that ES-SDE and EW-SDE
are both evidence-based strategies according to
the previous empirical results, therefore, we also
set up a heuristic-based baseline, referring to the
prompt designs from the study of Han et al. (2023),
which are similar to a combination of Inst-first
and OU options, with a "lines-of-list" output for-
mat. Examples of these strategies see Appendix 11.

• Models. For a more generalized evaluation, we
utilize four new LLMs. Considering the task lan-
guage, the llama2-7b-chat (Touvron et al., 2023b)
and gemma2-9b-chat (Team, 2024) are used for
GENIA and MAVEN, and qwen1.5-4b-chat (Bai
et al., 2023) and yi1.5-6b-chat (Young et al., 2024)
are used for Review11. The training details are the
same as Section 4.

5.2 Results

Figure 5 reports the comparison between different
sample design strategies , from different perspec-
tives . Soft-match F1 scores (Han et al., 2023) are
reported for GENIA and MAVEN, and κ reported
for Review11. More detailed results see Appendix

A.5. Several key conclusions can be observed:
(1) ES-SDE maintains advantages across tasks

and training sizes. Figure 5-(a) demonstrates
that ES-SDE keeps its advantage as the training
size increases, indicating the high quality of
ES-SDE samples. Although the performance
differences between designs are narrowed with
large training size, ES-SDE achieves similar
results with fewer training samples, facilitating
fine-tuning with limited resources.

(2) Stable on decoding randomness. By default,
the model employs a greedy decoding strategy
(no sampling). Figure 5-(b) shows the results
when activating decoding sampling with vary-
ing random seeds. ES-SDE maintains excep-
tional stability across different seeds compared
with SW-SDE and heuristic strategies.

(3) Robust to instruction variation. We can use
diverse expressions for the same instruction, so
we validate how different strategies react to var-
ied instruction phrasing (examples in Appendix
12). As shown in Figure 5-(c), ES-SDE keeps
its edge in different variations, showing its ro-
bustness to instruction content.

Overall, ES-SDE represents a reliable and po-
tent approach for the DT of LLMs, illustrating
that—through a careful SDE process, LLMs can
achieve much higher performances in downstream
tasks. This method could also extend to other tasks
requiring structured output. For example, analyz-
ing financial reports with LLMs, which involves
multi-dimensional understanding and forecasting,
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Figure 6: Average rankings of the DT performances of SDE options and zero-shot/ICL/PPL rankings of their
corresponding prompts. Results based on the MASA ID tasks across 6 LLMs.

is not a typical IE task but is similar to our sample
design considerations. Decisions like whether to
use JSON or lines format for multi-dimensional pre-
dictions, or whether to use placeholders for miss-
ing dimensions, closely relate to our findings. We
believe our conclusions are relevant and can be
applied to analogous tasks beyond the scope of tra-
ditional IE. Note that ES-SDE may not be the best
strategy for all cases. A detailed investigation into
SDE across a broader spectrum of tasks and models
could yield even more effective strategies.

6 Can PE guide SDE?

Effective PE can reveal a LLM’s strengths and pref-
erences. We explore if PE can guide SDE by craft-
ing zero-shot and ICL prompts according to dif-
ferent SDE options. Figure 6 reports the average
rankings of SDE options and their corresponding
prompts in the MASA ID tasks, with detailed re-
sults in Appendix A.8.

For both PE and SDE evaluations, Inst-first
and CoT works well. However, there are also
many inconsistent patterns between PE and SDE,
such as the performance of OU, and the compar-
ison between Natural and Lines. Gonen et al.
(2023) showed that the lower perplexity (PPL) gen-
erally leads to better prompt designs. Inspired
by this, we conduct PPL analysis on the ICL
prompts/predictions. There are also some discrep-
ancies between the PPL scores and the performance

in PE and SDE. For instance, OU has poor PPL
scores, but performs well in zero-shot scenarios,
and JSON shows weaker performance in SDE com-
pared to Lines, despite its better PPL score.

These findings highlight a complex landscape
where prompt design patterns do not always
align with SDE effectiveness, underscoring the
nuanced relationship between PE and SDE.

7 Conclusion

In this study, we introduce SDE as an effective
method to enhance the downstream-tuning perfor-
mances of LLMs on IE tasks. Through compre-
hensive ID and OOD experiments involving six
LLMs, we demonstrate the effects of various sam-
ple design strategies, uncovering some interesting
patterns that are consistent across different LLMs.
Building on these findings, we develop the ES-SDE
approach, which integrates the most effective op-
tions. Our experiments on three new tasks with four
additional LLMs consistently show ES-SDE’s su-
periority over baseline methods. Further analysis of
the relationship between PE and SDE suggests that
effective prompt designs do not necessarily trans-
late to successful sample designs. This observation
opens up avenues for more detailed investigations
into the mechanisms of SDE in future research.
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Limitations

This research follows a two-step experimental ap-
proach. In the first step, we investigate the impact
of each SDE option, the results are then used as
evidence for the second step—proposing an em-
pirically strong SDE combination strategy. As an
empirical study, this research is subject to certain
limitations:

1. While we demonstrate that the experimental
findings from the first phase are extendable to
different downstream tasks, the applicability
to other untested scenarios remains uncertain.
For instance, although the Lines output design
outperforms the JSON format in our current
experiments, it is unclear if this advantage
persists in more complex tasks with intricate
structures. Future research will address these
more challenging contexts;

2. With the rapid pace of advancements in LLMs,
new and more sophisticated models are being
introduced frequently. The models we used in
our study were among the best open-source
options available at the start of our research
but have since been surpassed by newer re-
leases. Although we assessed a total of 10
LLMs, including both base and chat variants,
there remains a possibility that our findings
may not be universally applicable to other
models;

3. Combining different SDE options poses sig-
nificant challenges, particularly without prior
validation experiments such as those de-
scribed in Section 4. The challenges are
twofold. Firstly, unlike typical hyperpa-
rameters like learning rate or network lay-
ers, choosing different SDE options alters
the training data itself, rendering traditional
hyperparameter-tuning techniques such as
Bayesian Optimization (Snoek et al., 2012)
less practical. Secondly, evaluating LLMs on
downstream tasks is both resource-intensive
and costly, due to the need for customized
task metrics, parsing rules, and high model
inference costs. Therefore, developing a more
efficient framework for SDE studies is a criti-
cal objective for future research.
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A Appendix

A.1 Metrics for MASA
Weighted Kappa. Considering the imbalance
of different aspects and the ordinal nature of la-
bels, weighted agreement measures are proved to
be more effective than traditional metrics (Ben-
David, 2008; Galar et al., 2011; Grandini et al.,
2020). Thus we adopt Weighted Kappa (Cohen,
1968; Yilmaz and Demirhan, 2023) as the measure
of classification effect, which is an extension of
Cohen’s Kappa (Cohen, 1960). Weighted Kappa
κ is defined as κ = Po−Pe

1−Pe
, which measures a

model’s performance by considering how much
better it performs than random guessing. Here,
Po =

∑R
i,j=1wijpij and Pe =

∑R
i,j=1wijpi.p.j .

The probabilities pij , pi., p.j are values or accumu-
lated values from the classification confusion ma-
trix. The weighting factor, wij , enables a nuanced
assessment of different error degrees. For exam-
ple, classifying "positive" as "negative" is more
detrimental than classifying "positive" as "neutral,"
hence a higher penalty should be imposed on the
former. Based on the feedback from enterprises in
practical applications, we define the weight matrix
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without loss of generality as Table 1.

Pre-Pos Pre-Neu Pre-Neg Pre-Unm

Label-Pos 1 1/2 0 1/2

Label-Neu 2/3 1 2/3 2/3

Label-Neg 0 1/2 1 1/2

Label-Unm 1/2 2/3 1/2 1

Table 1: Weight matrix for calculating weighted Kappa.

Format adherence. Format adherence not only
ensures that outputs from the model can be reliably
parsed and utilized in practical applications, but
also reflects the model’s ability to understand the
context and the nuances of different instructions.
We set up parsers according to the prescribed for-
mats of different designs, then we calculate the ra-
tio of predictions that cannot be successfully parsed
with our output parser. Considering the inherently
uncertainty nature of generative language models,
we relaxed the format such as the expression of
aspects and sentiments. Meanwhile, in order to
compare the content correctness between designs
more fairly, for some cases such as common punc-
tuation errors, we will correct it into the required
format when calculating the Kappa. If a certain
aspect can still not be parsed correctly, this aspect
is treated as "unmentioned". Figure 10 shows a va-
riety of representative format error types and how
they are processed by the parsers we design.

A.2 Datasets and Training Settings
The data annotations come from two domains of as-
pects: D1 about food, beverage, price, hygiene,
staff attitude, and parking convenience and D2
about traffic convenience, queuing, serving speed,
decoration, and noise. Figure 7 is an example of
the MASA task on D1.

Review Text:
This restaurant is on the second floor and is a bit out of the way. If driving, 
you can only park in the underground parking of the mall opposite (6). The. most 
popular item ordered is the black tiger shrimp, which tastes good (1). Overall, 
the prices are cheap (3), probably because the XX Plaza is not very popular. The 
only downside is that the beverages are instant fruit juices, which don't taste 
very good (2). The waitstaff's attitude was nice (5), they showed us how to use the 
coupon to save money.

Positive price (3)food (1)
hygiene (4)

Negative Positive
Negative

Desired Prediction:

Unmentioned Positive

beverage (2)
staff (5) parking (6)

Figure 7: An example for the MASA task.

Considering the high cost of annotation in indus-
tries and the fact that fine-tuning LLMs requires
less annotated data (Zhou et al., 2024), we train the

model with 500 and 1, 000 samples, respectively.
We use a large test set containing around 8, 000
samples to make results more stable and convinc-
ing. Table 2 shows the label distribution of each
aspect for two domains D1 and D2, where we can
see the distributions are highly unbalanced.

The training setup was as follows: learning rate
set to 1e-4, batch size of 4, LoRA rank of 8 LoRA
alpha of 32, LoRA dropout of 0.1. In the generation
phase, the hyperparameter ’max new tokens’ is set
to 200 for input design options and output design
options, while for reasoning design options, it is set
to 400. For the same model, the other generation
parameters of different designs are kept consistent.

A.3 Sample Design Examples
Figure 9 shows a detailed example of our sample
designs on MASA tasks.

A.4 Detailed Evaluations of Each SDE Option
The detailed results of in-domain (ID) and out-of-
domain (OOD) evaluations on the MASA task of
different SDE options across six LLMs are shown
in Table 3 to Table 8, including both the sentiment
analysis performances (κ) and the format adher-
ence performances (format error rate). An aver-
aged results of training size 500 and 1000 of ID
and OOD scenarios are visualized in Figure 3.

A.5 Detailed Results on GENIA, MAVEN and
Review11

Table 9 shows the comparison of different
sample design strategies on three downstream
tasks—GENIA (Nested NER), MAVEN (Event
Detection), and Review11 (MASA). Hard and soft-
matching F1 scores are reported for GENIA and
MAVEN, while kappa κ and accuracy are reported
for Review11. From the results, we can see that ES-
SDE maintains its advantage over other methods,
across different tasks and training sizes.

Table 10 illustrates the performances of different
sample design strategies on three downstream tasks
across different instruction variations.

A.6 Additional Analysis on Inst-last and
Inst-first

The experimental results showing that Inst-first con-
sistently outperforms Inst-last across various tasks
and models are thought-provoking, leading us to
conduct a more in-depth analysis. We extract the
attention weights related to some task-related fields
in the instruction, and sum up these task-related
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TrainSet (size=500) TrainSet (size=1000) TestSet

Pos Neu Neg Unm Pos Neu Neg Unm Pos Neu Neg Unm

D1

F 65.20 15.00 18.80 1.00 66.60 13.70 18.30 1.40 66.01 12.23 20.12 1.64
B 22.20 4.20 8.20 65.40 23.50 3.60 7.20 65.70 21.50 3.15 6.29 69.07
P 33.40 13.00 15.60 38.00 35.60 10.70 15.80 37.90 36.64 10.24 13.97 39.15
H 14.80 1.20 6.00 78.00 17.10 1.00 5.50 76.40 16.12 0.82 5.58 77.48
SA 48.80 3.60 14.00 33.60 47.90 4.10 13.60 34.40 42.73 3.46 13.87 39.94
PC 4.40 0.60 1.40 93.60 4.80 0.30 1.90 93.00 3.93 0.34 1.56 94.18

D2

TC 52.40 13.20 7.60 26.80 53.10 13.20 8.10 25.60 48.56 12.84 7.03 31.57
Q 18.80 8.20 11.20 61.80 17.90 10.10 11.00 61.00 14.67 10.00 10.44 64.89
SS 16.80 3.60 8.20 71.40 15.70 3.80 8.90 71.60 14.86 3.15 8.58 73.41
D 46.00 8.20 4.20 41.60 48.50 8.10 4.30 39.10 43.10 7.68 5.28 43.93
N 1.00 1.40 2.80 94.80 1.40 1.30 3.40 93.90 2.10 1.08 3.36 93.46

Table 2: Label distribution(%) in various aspects of train set and test set. D1 contains annotations for 6 aspects—food
(F), beverage (B), price (P), hygiene (H), staff attitude (SA), and parking convenience (PC); D2 contains annotations
for 5 different aspects—traffic convenience (TC), queuing (Q), serving speed (SS), decoration (D), and noise (N).
We use ’Pos’, ‘Neu’, ’Neg’, ‘Unm’ to represent Positive, Neutral, Negative and Unmentioned labels, respectively.

attention weights for each token. Figure 8 shows
the comparison of the attention weights for a cer-
tain customer review. As we can see, tokens that
are closer to the instruction usually get higher
task-related attention weights. Intuitively, when
people write reviews, they generally present their
core opinions at the beginning. This leads to the
possibility that if the instructions are placed at the
front, those core parts may receive greater task-
related attention weights. This may partly explain
why Inst-first usually leads to a higher sentiment
analysis performance.

A.7 Additional Analysis on OU and PU

In previous experiments, we found that OU per-
forms much worse than PU. This intriguing result
motivates us to a further analysis. Specifically, we
calculate and compare the kappa scores of OU and
PU for each aspect, to analyze the relationship be-
tween label distributions and the effect of OU.

From the result in Table 11, we can observe that
when training the model with 500 samples, for
aspects with a higher number of unmentioned, the
OU method showed a significant gap compared to
the PU format. When the training set increased to
1000 samples, this gap noticeably narrowed. This
suggests that for the OU method, aspects with more
unmentioned, implying less frequent occurrence
in answers, are harder for the model to learn, so
requiring more data. From another perspective, it
also indicates that even if a certain aspect is not
covered in the text, mentioning this aspect in the
answers can enhance the model’s understanding of
it.

A.8 Can PE Guide SDE? Detailed Results

Evaluating the performances of sample designs
involves fine-tuning models on downstream tasks,
which can be time-consuming. Therefore, we also
pondered whether it might be possible to design
better samples without training models first. We
tried to understand the inherent capabilities and
potential of the model by experimenting with
different prompt designs in both the zero-shot and
in-context learning scenarios.

A.8.1 Zero-shot and In-context Learning
Analysis

Zero-shot and In-context learning ability can di-
rectly reveal LLMs’ familiarity with the given task.
In the zero-shot approach, we use the input (which
contains the instruction on output format) from
each SDE option as the prompt for the original
frozen LLMs prediction. For the ICL approach, we
add two fixed examples from the training set before
each test instance. Considering the inference time
cost caused by the increase in sample length, we
limit our prediction and analysis to 500 samples.
All other experimental setups remain aligned with
those described in Experiments I.

Zero-shot Study. All six 7B LLMs used in Sec-
tion 4 exhibit poor zero-shot MASA ability, failing
to follow the instructions to generate proper output
in most cases, as shown in Table 13, making it hard
to analysis its relationship with SDE results. Vari-
ations in format preferences across different mod-
els are observed, which we conjecture is strongly
related to the datasets employed for instruction
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model: c-llama2-chat Weighted Kappa κ # Wrong format (7969 test samples in total)

train_size=500 D1→D1 D2→D2 D1→D2 D2→D1 D1→D1 D2→D2 D1→D2 D2→D1

Input

Inst-last, No-MI 0.8091 0.6882 0.5243 0.7217 0 0 2 2
Inst-first, _ 0.8136 0.7079 0.5124 0.7223 0 0 9 15
No-inst, _ 0.7757 0.6626 \ \ 20 1 \ \
_, MI 0.6187 0.6187 0.4806 0.2756 1 0 0 1079

Output

Natural, TxtLabel, PU 0.8091 0.6882 0.5243 0.7217 0 0 2 2
Lines, _, _ 0.8083 0.6969 0.5068 0.7447 0 0 0 0
JSON, _, _ 0.8086 0.6952 0.4905 0.7354 0 0 0 0
_, NumLabel, _ 0.7697 0.6373 0.4221 0.6723 3 1 0 1260
_, _, OU 0.7934 0.6005 0.5282 0.6203 0 0 87 0

Reasoning
No-CoT 0.8086 0.6952 0.4905 0.7354 0 0 0 0
CoT 0.7928 0.6873 0.5249 0.7085 56 65 36 282
R-CoT 0.8074 0.6752 0.4726 0.7297 93 65 141 263

train_size=1000 D1→D1 D2→D2 D1→D2 D2→D1 D1→D1 D2→D2 D1→D2 D2→D1

Input

Inst-last, No-MI 0.8256 0.7110 0.5518 0.7312 0 0 0 3
Inst-first, _ 0.8236 0.7090 0.5483 0.7264 0 0 5 1
No-inst, _ 0.8003 0.6920 \ \ 6 4 \ \
_, MI 0.8113 0.6700 0.5095 0.5182 0 0 0 728

Output

Natural, TxtLabel, PU 0.8256 0.7110 0.5518 0.7312 0 0 0 3
Lines, _, _ 0.8259 0.7118 0.5560 0.7452 0 0 0 0
JSON, _, _ 0.8249 0.7094 0.5488 0.7432 0 0 0 0
_, NumLabel, _ 0.7624 0.6604 0.4210 0.6840 2 2 0 765
_, _, OU 0.8172 0.7125 0.5511 0.6746 0 0 493 1

Reasoning
No-CoT 0.8249 0.7094 0.5488 0.7432 0 0 0 0
CoT 0.8111 0.7111 0.5354 0.7311 59 24 30 253
R-CoT 0.8214 0.7137 0.5085 0.7532 51 25 75 115

Table 3: MASA evaluations of each SDE option for model c-llama2-chat. The first method in each group is the
group baseline. "_" means keeping the same option with the group baseline.

model: c-llama2-base Weighted Kappa κ # Wrong format (7969 test samples in total)

train_size=500 D1→D1 D2→D2 D1→D2 D2→D1 D1→D1 D2→D2 D1→D2 D2→D1

Input

Inst-last, No-MI 0.8067 0.6801 0.5246 0.7000 0 0 6 98
Inst-first, _ 0.8092 0.6921 0.5575 0.6794 0 0 34 3
No-inst, _ 0.7762 0.6511 \ \ 0 1 \ \
_, MI 0.7778 0.5024 0.4946 0.4184 2 0 118 0

Output

Natural, TxtLabel, PU 0.8067 0.6801 0.5246 0.7000 0 0 6 98
Lines, _, _ 0.8066 0.6410 0.5128 0.6622 0 0 19 0
JSON, _, _ 0.8010 0.6242 0.5170 0.6287 0 0 0 0
_, NumLabel, _ 0.7728 0.5949 0.5155 0.6296 14 1 26 356
_, _, OU 0.7746 0.5012 0.4199 0.5711 0 3 300 7

Reasoning
No-CoT 0.8010 0.6242 0.5170 0.6287 0 0 0 0
CoT 0.7789 0.6652 0.4649 0.6974 83 82 33 226
R-CoT 0.8019 0.6428 0.4657 0.4199 88 11 87 1823

train_size=1000 D1→D1 D2→D2 D1→D2 D2→D1 D1→D1 D2→D2 D1→D2 D2→D1

Input

Inst-last, No-MI 0.8237 0.7011 0.6010 0.7197 0 0 3 177
Inst-first, _ 0.8231 0.7068 0.6069 0.6956 0 2 16 28
No-inst, _ 0.7957 0.6882 \ \ 2 2 \ \
_, MI 0.8048 0.6174 0.5306 0.6390 0 3 139 6

Output

Natural, TxtLabel, PU 0.8237 0.7011 0.6010 0.7197 0 0 3 177
Lines, _, _ 0.8205 0.6947 0.5900 0.6963 0 0 10 0
JSON, _, _ 0.8212 0.6857 0.5649 0.6875 0 0 0 0
_, NumLabel, _ 0.7619 0.6536 0.4804 0.6709 1 2 0 584
_, _, OU 0.8179 0.6774 0.5034 0.6277 0 5 64 29

Reasoning
No-CoT 0.8212 0.6857 0.5649 0.6875 0 0 0 0
CoT 0.8026 0.6979 0.5519 0.7159 70 31 16 125
R-CoT 0.8195 0.7034 0.5368 0.6454 46 14 24 666

Table 4: MASA evaluations of each SDE option for model c-llama2-base. Definition of "_" see Table 3.
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model: intern-chat Weighted Kappa κ # Wrong format (7969 test samples in total)

train_size=500 D1→D1 D2→D2 D1→D2 D2→D1 D1→D1 D2→D2 D1→D2 D2→D1

Input

Inst-last, No-MI 0.7774 0.6278 0.3947 0.6707 0 0 0 11
Inst-first, _ 0.8035 0.6609 0.3949 0.7090 4 2 13 304
T2L 0.7862 0.5963 \ \ 10 7 \ \
_, MI 0.7463 0.5178 0.3153 0.5363 0 0 0 395

Output

Natural, TxtLabel, PU 0.7774 0.6278 0.3947 0.6707 0 0 0 11
Lines, _, _ 0.7827 0.6261 0.4032 0.6799 0 1 1 1
JSON, _, _ 0.7713 0.5966 0.3965 0.6129 0 0 0 2
_, NumLabel, _ 0.7765 0.6261 0.4165 0.6926 0 0 3 23
_, _, OU 0.7520 0.4888 0.4029 0.6221 0 1 16 7

Reasoning
No-CoT 0.7713 0.5966 0.3965 0.6129 0 0 0 2
CoT 0.7666 0.6401 0.4843 0.6797 43 19 30 121
R-CoT 0.7764 0.6124 0.3892 0.6648 44 23 23 72

train_size=1000 D1→D1 D2→D2 D1→D2 D2→D1 D1→D1 D2→D2 D1→D2 D2→D1

Input

Inst-last, No-MI 0.8049 0.6793 0.4330 0.6982 0 0 0 0
Inst-first, _ 0.8173 0.7125 0.4640 0.7343 0 1 6 259
No-inst, _ 0.8139 0.6811 \ \ 8 5 \ \
_, MI 0.7819 0.6256 0.3332 0.6520 1 0 8 29

Output

Natural, TxtLabel, PU 0.8049 0.6793 0.4330 0.6982 0 0 0 0
Lines, _, _ 0.8060 0.6797 0.4498 0.7038 0 1 0 1
JSON, _, _ 0.8021 0.6649 0.4661 0.6647 0 0 0 0
_, NumLabel, _ 0.8081 0.6764 0.4393 0.7286 0 0 3 3
_, _, OU 0.8008 0.6369 0.4374 0.6694 0 0 33 1

Reasoning
No-CoT 0.8021 0.6649 0.4661 0.6647 0 0 0 0
CoT 0.7981 0.6966 0.5190 0.7098 36 7 10 132
R-CoT 0.8043 0.6709 0.3994 0.7195 50 4 19 42

Table 5: MASA evaluations of each SDE option for model intern-chat. Definition of "_" see Table 3.

model: intern-base Weighted Kappa κ # Wrong format (7969 test samples in total)

train_size=500 D1→D1 D2→D2 D1→D2 D2→D1 D1→D1 D2→D2 D1→D2 D2→D1

Input

Inst-last, No-MI 0.7849 0.6465 0.4898 0.6129 0 1 1 0
Inst-first, _ 0.7955 0.6472 0.4947 0.7006 3 8 18 221
No-inst, _ 0.7936 0.6119 \ \ 11 6 \ \
_, MI 0.7562 0.5029 0.3305 0.4672 0 1 232 447

Output

Natural, TxtLabel, PU 0.7849 0.6465 0.4898 0.6129 0 1 1 0
Lines, _, _ 0.7873 0.6455 0.4939 0.6365 0 2 4 0
JSON, _, _ 0.7859 0.6250 0.4727 0.6127 0 0 3 82
_, NumLabel, _ 0.7605 0.6003 0.3861 0.6412 14 3 10 102
_, _, OU 0.7275 0.5185 0.3943 0.4935 0 4 48 6

Reasoning
No-CoT 0.7859 0.6250 0.4727 0.6127 0 0 3 82
CoT 0.7621 0.6489 0.4581 0.6388 77 12 2347 50
R-CoT 0.7734 0.6342 0.3752 0.6816 141 49 1496 206

train_size=1000 D1→D1 D2→D2 D1→D2 D2→D1 D1→D1 D2→D2 D1→D2 D2→D1

Input

Inst-last, No-MI 0.8112 0.6874 0.5216 0.7065 1 0 0 0
Inst-first, _ 0.8167 0.6965 0.5195 0.7544 0 0 5 46
No-inst, _ 0.8191 0.6963 \ \ 5 8 \ \
_, MI 0.7937 0.6238 0.2780 0.6492 0 2 383 45

Output

Natural, TxtLabel, PU 0.8112 0.6874 0.5216 0.7065 1 0 0 0
Lines, _, _ 0.8113 0.6919 0.5060 0.7126 0 0 3 0
JSON, _, _ 0.8076 0.6781 0.5195 0.6817 0 0 3 1
_, NumLabel, _ 0.8084 0.6776 0.4426 0.7139 3 1 31 20
_, _, OU 0.8006 0.6330 0.4587 0.6098 0 1 30 3

Reasoning
No-CoT 0.8076 0.6781 0.5195 0.6817 0 0 3 1
CoT 0.7956 0.6874 0.5196 0.6903 34 12 405 56
R-CoT 0.8069 0.6725 0.4890 0.7185 46 11 220 125

Table 6: MASA evaluations of each SDE option for model intern-base. Definition of "_" see Table 3.
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model: bc2-chat Weighted Kappa κ # Wrong format (7969 test samples in total)

train_size=500 D1→D1 D2→D2 D1→D2 D2→D1 D1→D1 D2→D2 D1→D2 D2→D1

Input

Inst-last, No-MI 0.7904 0.6544 0.4067 0.6170 8 0 21 10
Inst-first, _ 0.7958 0.6660 0.3858 0.6739 19 36 12 385
No-inst, _ 0.7176 0.4776 \ \ 23 13 \ \
_, MI 0.7645 0.5636 0.3713 0.5490 0 0 5 16

Output

Natural, TxtLabel, PU 0.7904 0.6544 0.4067 0.6170 8 0 21 10
Lines, _, _ 0.7869 0.6653 0.4091 0.6344 0 0 9 1
JSON, _, _ 0.7927 0.6489 0.4714 0.6196 0 0 1 0
_, NumLabel, _ 0.7839 0.6401 0.3671 0.6506 5 4 12 17
_, _, OU 0.7016 0.5670 0.3599 0.3285 2 81 50 19

Reasoning
No-CoT 0.7927 0.6489 0.4714 0.6196 0 0 1 0
CoT 0.7722 0.6400 0.5006 0.6776 3641 757 739 3323
R-CoT 0.7922 0.6535 0.4534 0.6579 107 126 280 563

train_size=1000 D1→D1 D2→D2 D1→D2 D2→D1 D1→D1 D2→D2 D1→D2 D2→D1

Input

Inst-last, No-MI 0.8113 0.7060 0.4709 0.6365 0 4 13 18
Inst-first, _ 0.8142 0.7095 0.4733 0.6787 31 12 21 136
No-inst, _ 0.7466 0.6172 \ \ 6 6 \ \
_, MI 0.7935 0.6514 0.3951 0.5885 0 0 7 3

Output

Natural, TxtLabel, PU 0.8113 0.7060 0.4709 0.6365 0 4 13 18
Lines, _, _ 0.8103 0.7057 0.4691 0.6387 0 0 3 0
JSON, _, _ 0.8118 0.7064 0.5237 0.6323 0 0 1 0
_, NumLabel, _ 0.8121 0.6962 0.4042 0.6697 10 17 4 15
_, _, OU 0.8061 0.6467 0.4843 0.5155 1 25 44 4

Reasoning
No-CoT 0.8118 0.7064 0.5237 0.6323 0 0 1 0
CoT 0.7995 0.7026 0.4992 0.6975 2273 193 560 2043
R-CoT 0.8087 0.6961 0.5022 0.6772 57 48 85 167

Table 7: MASA evaluations of each SDE option for model bc2-chat. Definition of "_" see Table 3.

model: bc2-base Weighted Kappa κ # Wrong format (7969 test samples in total)

train_size=500 D1→D1 D2→D2 D1→D2 D2→D1 D1→D1 D2→D2 D1→D2 D2→D1

Input

Inst-last, No-MI 0.8017 0.6412 0.4441 0.6146 0 0 75 0
Inst-first, _ 0.8016 0.6649 0.4488 0.6657 0 6 27 4
No-inst, _ 0.7533 0.6020 \ \ 2 3 \ \
_, MI 0.7660 0.4999 0.3220 0.1978 0 0 1 164

Output

Natural, TxtLabel, PU 0.8017 0.6412 0.4441 0.6146 0 0 75 0
Lines, _, _ 0.7996 0.6317 0.4583 0.6191 0 0 2 0
JSON, _, _ 0.8008 0.6476 0.4316 0.6104 0 0 0 0
_, NumLabel, _ 0.7969 0.5794 0.4312 0.5206 7 45 469 47
_, _, OU 0.7595 0.5202 0.4240 0.4944 0 0 116 2

Reasoning
No-CoT 0.8008 0.6476 0.4316 0.6104 0 0 0 0
CoT 0.7865 0.6814 0.3854 0.6745 63 17 43 483
R-CoT 0.7980 0.6548 0.4240 0.6349 32 44 39 32

train_size=1000 D1→D1 D2→D2 D1→D2 D2→D1 D1→D1 D2→D2 D1→D2 D2→D1

Input

Inst-last, No-MI 0.8143 0.6981 0.4747 0.6767 0 0 26 4
Inst-first, _ 0.8155 0.7157 0.5061 0.6974 0 3 26 4
No-inst, _ 0.7543 0.6391 \ \ 0 3 \ \
_, MI 0.8010 0.6489 0.4164 0.5250 0 0 1 431

Output

Natural, TxtLabel, PU 0.8143 0.6981 0.4747 0.6767 0 0 26 4
Lines, _, _ 0.8103 0.7003 0.4732 0.6713 0 0 6 1
JSON, _, _ 0.8120 0.7039 0.4785 0.6819 0 0 0 0
_, NumLabel, _ 0.8119 0.6812 0.4575 0.6467 1 5 292 8
_, _, OU 0.7894 0.6484 0.4031 0.6235 0 1 31 0

Reasoning
No-CoT 0.8120 0.7039 0.4785 0.6819 0 0 0 0
CoT 0.8045 0.7063 0.5319 0.6965 21 12 25 494
R-CoT 0.8160 0.7021 0.4604 0.6949 15 14 24 115

Table 8: MASA evaluations of each SDE option for model bc2-base. Definition of "_" see Table 3.
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GENIA (Nested-NER) MAVEN (ED) Review11 (MASA)

LLM llama2-7b-chat gemma2-9b-it llama2-7b-chat gemma2-9b-it Qwen-4b-chat Yi1.5-6b-chat
training size Strategies F1-hard F1-soft F1-hard F1-soft F1-hard F1-soft F1-hard F1-soft κ Acc κ Acc

500
heuristic 0.5123 0.5747 0.7128 0.7684 0.5197 0.5356 0.6269 0.6442 0.5880 0.7586 0.6227 0.7811
EW-SDE 0.4833 0.5432 0.6869 0.7482 0.4922 0.5364 0.5394 0.6589 0.7235 0.8327 0.6985 0.8172
ES-SDE 0.5407 0.6141 0.7127 0.7702 0.5846 0.6331 0.6662 0.6799 0.7691 0.8626 0.7476 0.8475

1, 000
heuristic 0.5654 0.6228 0.7430 0.7955 0.6237 0.6354 0.6987 0.7068 0.7058 0.8262 0.7104 0.8254
EW-SDE 0.4879 0.5517 0.7259 0.7805 0.6109 0.6275 0.5789 0.7116 0.7565 0.8502 0.7512 0.8471
ES-SDE 0.6159 0.6895 0.7407 0.7977 0.6432 0.6726 0.7066 0.7167 0.7892 0.8716 0.7683 0.8575

2, 000
heuristic 0.6476 0.6990 0.7617 0.8101 0.6722 0.6813 0.7335 0.7446 0.7479 0.8483 0.7442 0.8461
EW-SDE 0.5435 0.6025 0.7571 0.8077 0.6966 0.7106 0.6144 0.7381 0.7805 0.8649 0.7672 0.8580
ES-SDE 0.6807 0.7393 0.7593 0.8125 0.7033 0.7172 0.7392 0.7502 0.8023 0.8785 0.7696 0.8589

4, 000
heuristic 0.6873 0.7383 0.7804 0.8279 0.7118 0.7176 0.7418 0.7503 0.7751 0.8644 0.7521 0.8494
EW-SDE 0.7111 0.7709 0.7781 0.8299 0.7265 0.7338 0.6367 0.7585 0.7917 0.8715 0.7692 0.8570
ES-SDE 0.7273 0.7849 0.7758 0.8265 0.7295 0.7466 0.7461 0.7577 0.805 0.8814 0.7744 0.8618

Table 9: Comparison of different sample design strategies on three downstream tasks. In most cases, ES-SDE has
advantages over other designs on different tasks and training scales.

GENIA (Nested-NER) MAVEN (ED) Review11 (MASA)

LLM llama2-7b-chat gemma2-9b-it llama2-7b-chat gemma2-9b-it Qwen-4b-chat Yi1.5-6b-chat
Instruction Variation Strategies F1-hard F1-soft F1-hard F1-soft F1-hard F1-soft F1-hard F1-soft κ Acc κ Acc

inst-1
heuristic 0.5123 0.5747 0.7128 0.7684 0.5197 0.5356 0.6269 0.6442 0.5880 0.7586 0.6227 0.7811
EW-SDE 0.4833 0.5432 0.6869 0.7482 0.4922 0.5364 0.5394 0.6589 0.7235 0.8327 0.6985 0.8172
ES-SDE 0.5407 0.6141 0.7127 0.7702 0.5846 0.6331 0.6662 0.6799 0.7691 0.8626 0.7476 0.8475

inst-2
heuristic 0.4981 0.5610 0.7096 0.7643 0.5134 0.5334 0.6347 0.6481 0.6009 0.7685 0.2756 0.3803
EW-SDE 0.4859 0.5500 0.6915 0.7486 0.4956 0.5339 0.5252 0.6560 0.7208 0.8344 0.2515 0.4437
ES-SDE 0.5348 0.6077 0.7170 0.7727 0.5636 0.6167 0.6578 0.6687 0.7659 0.8615 0.7568 0.8560

inst-3
heuristic 0.4873 0.5549 0.7054 0.7601 0.4940 0.5060 0.6306 0.6414 0.5793 0.7533 0.5671 0.7116
EW-SDE 0.4764 0.5369 0.6863 0.7461 0.4925 0.5399 0.5416 0.6664 0.7210 0.8365 0.6696 0.807
ES-SDE 0.5353 0.6090 0.7147 0.7717 0.5530 0.6087 0.6748 0.6854 0.7624 0.8601 0.7556 0.8581

Table 10: Performances of different sample design strategies on three downstream tasks across different instruction
variations.

Figure 8: Comparison of task-related attention scores using Inst-last and Inst-first.
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Aspect
Trainsize=500 Trainsize=1000

(%)Num_ ∆κ (%)Num_ ∆κ

Unmen Avg_Chat Avg_Base Unmen Avg_Chat Avg_Base
D1 F 1.00 -.0004 .0007 1.40 -.0026 -.0011

SA 33.60 -.0687 -.0555 34.40 -.0062 -.0212
P 38.00 -.0469 -.0495 37.90 -.0068 -.0255
B 65.40 -.0410 -.0291 65.70 -.0117 -.0079
H 78.00 -.0920 -.1367 76.40 -.0033 -.0207
PC 93.60 -.2338 -.2590 93.00 -.0181 -.0305

D2 TC 26.80 -.0891 -.1341 25.60 -.0497 -.0492
D 41.60 -.1106 -.2475 39.10 -.0280 -.0500
Q 61.80 -.0329 -.0588 61.00 -.0361 -.0149
SS 71.40 -.2537 -.2575 71.60 -.0574 -.0896
N 94.80 -.3347 -.3954 93.90 -.0494 -.1405

Table 11: Number of ‘Unmentioned’ labels and average
∆κ (κOU -κPU ) for different aspects.

fine-tuning in each model. Some patterns are also
contradictory between zero-shot and SDE. For ex-
ample, the OU SDE option consistently harms DT
performances, however, its prompts result in no-
tably fewer format errors in zero-shot inference, for
certain LLMs. Therefore, zero-shot performances
can hardly tell good or bad SDE options.

In-context Learning Study. ICL can effectively
improve LLMs’ instruction-following abilities re-
sulting in far fewer formatting errors than zero-shot.
Therefore we report the average sentiment analysis
performances of each model on two domains in Ta-
ble 14. The results suggest that Inst-first and CoT
enhance the performance of most models, which
provides valuable insights for format selection dur-
ing the fine-tuning process. For output designs,
JSON and OU options outperform the other ap-
proaches for some models, differing from the SDE
results.

A.8.2 Perplexity Analysis
Perplexity measures the uncertainty of the model
in generating a given text sequence (Chen et al.,
1998), with lower perplexity values indicating more
confident predictions by the model. In calculations,
we estimate perplexity using the common practice
of taking the logarithm of the model’s loss.

In our task, we compare the PPL scores of the
ICL prompts corresponding to each different SDE
option, as well as the conditional PPL of the mod-
els’ ICL predictions. For predictions, we concate-
nate the prompt and the prediction together as a
sequence, then consider the prompt as its context.

The perplexity results for different designs are
shown in Table 12. For input designs, the PPL
score of Inst-first option is lower than that of Inst-
last in general, which is consistent with the conclu-

sion that Inst-first performs better in ICL and SDE
experiments. For output designs, the OU option
gets the highest score, which is inconsistent with
its performance on the ICL, but is consistent with
its being the worst option in the SDE experiment.
Surprisingly, the JSON format achieved the signifi-
cantly lowest ppl score, but it was on par with the
Lines format in ICL and even worse than Lines in
SDE. The most interesting result appears in the rea-
soning designs. The CoT and R-CoT options have
low PPL scores on prompts but have high scores on
predictions conversely. Such contradictions make
it difficult to analyze the results of ICL or SDE
through PPL scores.

The analysis above also highlights the indispens-
ability of our SDE experiments, cause we cannot
predetermine the final effectiveness of different de-
signs through preliminary analysis alone.
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Perplexity:Prompts c-llama2-chat c-llama2-base intern-chat intern-base bc2-chat bc2-base

Input Inst-last, No-MI 47.662 111.063 18.422 19.036 59.046 42.030
Inst-first, _ 46.357 110.065 19.561 18.632 54.795 39.003

Output

Natural, TxtLabel, PU 47.662 111.063 18.422 19.036 59.046 42.030
Lines, _, _ 47.918 191.274 18.561 19.219 60.498 42.638
JSON, _, _ 29.008 78.848 14.675 13.260 38.547 25.405
_, NumLabel, _ 41.690 92.717 17.664 16.348 51.963 35.185
_, _, OU 55.345 129.055 20.862 21.450 69.022 49.426

Reasoning
No-CoT 29.008 78.848 14.675 13.260 38.547 25.405
CoT 18.263 41.312 10.812 9.379 23.406 15.267
R-CoT 18.210 42.648 10.789 9.354 22.671 15.333

Perplexity:Predictions c-llama2-chat c-llama2-base intern-chat intern-base bc2-chat bc2-base

Input Inst-last, No-MI 1.052 1.109 1.051 1.394 1.061 1.127
Inst-first, _ 1.088 1.284 1.046 1.360 1.066 1.113

Output

Natural, TxtLabel, PU 1.052 1.109 1.051 1.394 1.061 1.127
Lines, _, _ 1.052 1.137 1.058 1.386 1.222 1.136
JSON, _, _ 1.038 1.074 1.045 1.407 1.019 1.042
_, NumLabel, _ 1.096 1.142 1.078 1.403 1.088 1.102
_, _, OU 1.183 1.368 1.089 1.279 1.353 1.823

Reasoning
No-CoT 1.038 1.074 1.045 1.407 1.019 1.042
CoT 1.234 1.475 1.084 1.186 1.090 1.129
R-CoT 1.239 1.293 1.069 1.185 1.063 1.090

Table 12: The PPL scores on the ICL prompts and predictions corresponding to each SDE options on the MASA ID
tasks.

c-llama2-chat Intern-chat bc2-chat c-llama2-base Intern-base bc2-base
D1 D2 D1 D2 D1 D2 D1 D2 D1 D2 D1 D2

Input
Ins-last 74.24 31.67 85.82 11.75 40.67 22.12 88.92 36.60 94.89 81.60 100 98.18
Ins-first 70.05 44.82 98.76 99.61 59.56 24.18 88.62 27.49 89.79 75.59 99.66 96.26

Output

Natural, TxtLabel, PU 74.24 31.67 85.82 11.75 40.67 22.12 88.92 36.60 94.89 81.60 100 98.18
Lines, _, _ 1.18 1.31 99.94 97.06 4.17 1.57 72.51 12.10 99.57 99.79 99.99 99.94
JSON, _, _ 5.94 16.49 100 100 96.15 73.53 99.94 100 100 100 100 100
_, Numerical, _ 99.87 92.21 99.99 100 100 100 100 100 100 100 100 100
_, _, OU 45.75 18.31 70.21 31.38 44.15 50.93 72.79 87.99 76.80 56.87 99.74 95.33

Reasoning
No-CoT 5.94 16.49 100 100 96.15 73.53 99.94 100 100 100 100 100
CoT 35.25 34.25 100 100 58.66 53.29 100 100 100 100 99.99 99.99
R-CoT 33.84 75.87 100 100 80.71 77.12 98.24 90.58 100 100 100 100

Table 13: Format error rate(%) in zero-shot scenario

test_size=500 c-llama2-chat c-llama2-base intern-chat intern-base bc2-chat bc2-base

Input Inst-last 0.3834 0.2835 0.1856 0.1212 0.4402 0.4187
Inst-first 0.4832 0.2959 0.2038 0.2044 0.5091 0.4345

Output

Natural, TxtLabel, PU 0.3834 0.2835 0.1856 0.1212 0.4402 0.4187
Lines, _, _ 0.4220 0.2921 0.2436 0.1846 0.3971 0.4077
JSON, _, _ 0.3773 0.2132 0.3390 0.2954 0.4614 0.3683
_, NumLabel, _ 0.1522 0.1666 0.2470 0.2603 0.2406 0.1960
_, _, OU 0.3612 0.3168 0.2461 0.1443 0.1948 0.1924

Reasoning
No-CoT 0.3773 0.2132 0.3390 0.2954 0.4614 0.3683
CoT 0.3383 0.2174 0.3636 0.3167 0.4810 0.4466
R-CoT 0.3638 0.2445 0.3522 0.2633 0.4668 0.4075

Table 14: The average weighted Kappa κ on the MASA ID tasks in in-context learning scenario
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`
<review>\n---\n阅读上面这段评论，观察以下这些方面：[aspect]。
请根据评论对这些方面进行情感分析，具体有四类情感：正面、负
面、中性、未提及。请用以下格式给出所有方面的情感："方面1：
情感类别，方面2：情感类别，..."\n输出：

I：

O：方面1：情感类别，方面2：情感类别，... 

<review>\n---\n Read the above comment and observe the following aspects:
[aspect]. Based on the comment, please conduct sentiment analysis on these aspects
with four specific categories: positive, negative, neutral, and unmentioned. Please
provide the sentiment for all aspects in the following format: "Aspect 1:
Sentiment category, Aspect 2: Sentiment category, ..."\n Output：

Aspect 1: Sentiment category, Aspect 2: Sentiment category, ...

阅读下面这段评论，观察以下这些方面：[aspect]。请根据评论对
这些方面进行情感分析，具体有四类情感：正面、负面、中性、
未提及。请用以下格式给出所有方面的情感："方面1：情感类
别，方面2：情感类别，..."\n---\n评论：<review>\n输出：

方面1：情感类别，方面2：情感类别，... 

Read the comment below and observe the following aspects: [aspect]. Based on the
comment, please conduct sentiment analysis on these aspects with four specific
categories: positive, negative, neutral, and unmentioned. Please provide the
sentiment for all aspects in the following format: "Aspect 1: Sentiment category,
Aspect 2: Sentiment category, ..."\n---\n Review: <review>\n Output：

Aspect 1: Sentiment category, Aspect 2: Sentiment category, ...

Inst-first, _

No-Inst, _
<review>\n Output：<review>\n输出：

方面1：情感类别，方面2：情感类别，... Aspect 1: Sentiment category, Aspect 2: Sentiment category, ...

<review>\n---\n阅读上面这段评论，观察以下这些方面：[aspect]。
请根据评论对这些方面进行情感分析，具体有四类情感：正面、负
面、中性、未提及。请用以下格式给出所有方面的情感："方面1：
情感类别\n方面2：情感类别\n..."\n输出：

Lines, _, _

方面1：情感类别，
方面2：情感类别，
... 

JSON, _, _ / No-CoT 
<review>\n---\n阅读上面这段评论，观察以下这些方面：[aspect]。
请根据评论对这些方面进行情感分析，具体有四类情感：正面、负
面、中性、未提及。请用以下格式给出所有方面的情感："{"方面":
方面1, "情感":情感类别}\n{"方面":方面2, "情感":情感类别}\n..."\n
输出：

{"方面": ..., "情感": ...}
{"方面": ..., "情感": ...}
... 

I：

O：

I：
O：

I：

O：

I：

O：

<review>\n---\n阅读上面这段评论，观察以下这些方面：[aspect]。
请根据评论对这些方面进行情感分析，具体有四类情感：正面(1)、
负面(-1)、中性(0)、未提及(-2)。请用以下格式给出所有方面的情
感："方面1：情感类别，方面2：情感类别，..."\n输出：

<review>\n---\n阅读上面这段评论，观察以下这些方面：[aspect]。
请对评论中提及的方面进行情感分析，具体有三类情感：正面、负
面、中性。请用以下格式给出提及的方面的情感："方面1：情感类
别，方面2：情感类别，..."，未提及的方面不用给出。\n输出：

<review>\n---\n阅读上面这段评论，观察以下这些方面：[aspect]。
请提取或总结原文中对这些方面的描述，并进行情感分析，具体有
四类情感：正面、负面、中性、未提及。请用以下格式给出所有方
面的结果：{"方面":方面1, "描述":描述, "情感":情感类别}\n{"方
面":方面2, "描述":描述, "情感":情感类别}\n..."\n输出：

<review>\n---\n阅读上面这段评论，观察以下这些方面：[aspect]。
请提取或总结原文中对这些方面的描述，并进行情感分析，具体有
四类情感：正面、负面、中性、未提及。请用以下格式给出所有方
面的结果：{"方面":方面1, "情感":情感类别, "描述":描述}\n{"方
面":方面2, "情感":情感类别, "描述":描述}\n..."\n输出：

方面1：0，方面2：1，...

_, NumLabel, _

_, _, OU

方面1：情感类别，方面2：情感类别，...

{"方面":..., "描述":..., "情感":...}
{"方面":..., "描述":..., "情感":...}
...

{"方面":..., "情感":..., "描述":...}
{"方面":..., "情感":..., "描述":...}
...

I：

O：

I：

O：

CoT
I：

O：

R-CoT
I：

O：

<review>\n---\n Read the above comment and observe the following aspects:
[aspect]. Based on the comment, please conduct sentiment analysis on these aspects
with four specific categories: positive, negative, neutral, and unmentioned. Please
provide the sentiment for all aspects in the following format: "Aspect 1:
Sentiment category\n Aspect 2: Sentiment category\n ..."\n Output：
Aspect 1: Sentiment category，
Aspect 2: Sentiment category，
... 
<review>\n---\n Read the above comment and observe the following aspects:
[aspect]. Based on the comment, please conduct sentiment analysis on these aspects
with four specific categories: positive, negative, neutral, and unmentioned. Please
provide the sentiment for all aspects in the following format: "{"Aspect ": Aspect
1, "Sentiment": Sentiment category}\n{"Aspect": Aspect 2,
"Sentiment": Sentiment category}\n ..."\n Output：

{"Aspect 1": ..., "Sentiment category": ...}
{"Aspect 2": ..., "Sentiment category": ...}
... 

<review>\n---\n Read the above comment and observe the following aspects:[aspect].
Based on the review, please make a sentiment analysis on these aspects with four
specific categories: positive(1), negative(0), neutral(-1), and unmentioned(-2). Please
provide the sentiment for all aspects in the following format: "Aspect 1: Sentiment
category, Aspect 2: Sentiment category, ..."\n Output：

Aspect 1: 0, Aspect 2: 1, ...

<review>\n---\n Read the above review and observe the following aspects:[aspect].
Please make a sentiment analysis of the aspects mentioned in the review with three
specific categories: positive, negative, and neutral. Please provide the sentiment of
the mentioned aspects in the following format: "Aspect 1: Sentiment category,
Aspect 2: Sentiment category, ...", and the aspects not mentioned need not be
given.\n Output：

Aspect 1: Sentiment category, Aspect 2: Sentiment category, ...

<review>\n---\n Read the above review and observe the following aspects:[aspect]. 
Please extract or summarize the descriptions of these aspects in the original text
and make a sentiment analysis with four specific categories: positive, negative,
neutral, and unmentioned. Please provide the sentiment for all aspects in the
following format: "{"Aspect ": Aspect 1, "Description ": Description, 
"Sentiment":  Sentiment category}\n{"Aspect": Aspect 2, "Description
": Description, "Sentiment": Sentiment category}\n ..."\n Output：

{"Aspect 1": ..., "Description ": ..., "Sentiment category": ...}
{"Aspect 2": ..., "Description ": ..., "Sentiment category": ...}
... 

<review>\n---\n Read the above review and observe the following aspects:
[aspect]. Please extract or summarize the descriptions of these aspects in the
original text and make a sentiment analysis with four specific categories: positive,
negative, neutral, and unmentioned. Please provide the sentiment for all aspects in
the following format: "{"Aspect ": Aspect 1,  "Sentiment":  Sentiment
category, "Description ": Description}\n{"Aspect": Aspect 2, "Sentiment": 
Sentiment category, "Description ": Description,}\n ..."\n Output：

{"Aspect 1": ..., "Sentiment category": ..., "Description ": ...}
{"Aspect 2": ..., "Sentiment category": ..., "Description ": ...}
... 

Inst-last,No-MI / Natural, TxtLabel, PU 

Figure 9: Examples of different sample designs on the MASA task.
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Output
Processed
Output

 {"方面": "食品评价", "描述": "蔓越莓泡在水里种子也都挤漏
出来", "情感": "负面"}\n{"方面": "饮品评价", "描述": "蔓越莓
晶钻果茶，蔓越莓泡在水里种子也都挤漏出来，蔓越莓泡在
水里种子也都挤漏出来，蔓越莓泡在水里种子也都挤漏出
来", "情感": "负面"}\n{"方面": "价格水平", "描述": "蔓越莓晶
钻果茶，蔓越莓晶钻果茶，蔓越莓晶钻果茶，……蔓越莓晶
钻

{"食品评价": "负面", "饮品评价": "负面", "价格水平": "未提及", "卫生
情况": "未提及", "服务人员态度": "未提及", "停车方便程度": "未提及"}

{"交通便利程度": "未提及", "排队等候情况": "未提及", "点菜上菜速度": 
"未提及", "装修情况": "未提及", "嘈杂情况": "未提及"}

{"食品评价": "负面", "饮品评价": "未提及", "价格水平": "负面", "卫生
情况": "未提及", "服务人员态度": "负面", "停车方便程度": "未提及"}

交通便利，正面，排队等候情况，未提及，点菜上菜速度，
正面，装修情况，中性，嘈杂情况，负面。

{"交通便利程度": "未提及", "排队等候情况": "未提及", "点菜上菜速度":
"未提及", "装修情况": "未提及", "嘈杂情况": "未提及"}

{"饮品评价": "未提及", "价格水平": "未提及", "卫生情况": "未提及", "停
车方便程度": "未提及", "食品评价": "未提及", "服务人员态度": "未提及"}

食品评价：负面，饮品评价：未提及，价格水平：负面，服务
人员态度：未提及，停车方便程度：未提及。

交通情况：未提及，排队等候情况：负面，点菜上菜速度：
负面，装修情况：正面，嘈杂情况：未提及。

{"交通便利程度": "正面", "排队等候情况": 负面", "点菜上菜速度": "负
面", "装修情况": "未提及", "嘈杂情况": "未提及"}

{"食品评价": "未提及", "饮品评价": "未提及", "价格水平": "负面", "卫
生情况: 未提及", "服务人员态度": "负面", "停车方便程度": "未提及"}

交通非常便利，离地铁青年路站很近，点菜上菜速度较快，装
修情况良好，嘈杂情况一般。

食品评价：负面，饮品评价：未提及，价格水平：负面，卫生
情况：未提及，服务人员态度：负面，未提及，停车方便程
度：未提及。

食品评价：8，饮品评价：-2，价格水平：-2，卫生情况：-2，
服务人员态度：10，停车方便程度：-2。

食品评价：正面，饮品评价：负面，价格水平：中性，卫生情
况：未提及，服务人员态度：正面（虽然服务水平不算专业但
看上去挺善良的爱笑的小姑娘），停车方便程度：未提及。

{"food": "unmentioned", "beverage": "unmentioned", "price":
"negative", "hygiene: unmentioned", "staff attitude": "negative",
"parking convenience": "unmentioned"}

food: unmentioned, beverage: unmentioned, price:
negative, staff attitude: negative, parking convenience:
unmentioned.

{"traffic convenience": "positive", "queuing": "negative", 
"serving speed": "negative", "decoration": "unmentioned", "noise":
"unmentioned"}

traffic situation: positive, queuing: negative, serving
speed: negative, decoration: unmentioned, noise:
unmentioned.

食品评价：负面\n饮品评价：未提及\n价格水平：负面\n卫生
情况：未提及\n服务人员态度：负面\n停车方便程度：未提及
\n空调：负面

Error
Type

Lack of
Aspect

Aspect
Expression

Count as
Format 
Error

NO

NO
Extra
Aspect

food: negative\n beverage: unmentioned\n price: negative
\n hygiene: unmentioned\n staff attitude: negative\n
parking convenience: unmentioned\n air conditioner:
negative

{"食品评价": "负面", "饮品评价": "未提及", "价格水平": "负面", "卫生
情况: 未提及", "服务人员态度": "负面", "停车方便程度": "未提及"}

{"food": "unmentioned", "beverage": "unmentioned", "price":
"negative", "hygiene: unmentioned", "staff attitude": "negative",
"parking convenience": "unmentioned"}

NO

{"食品评价": "正面", "饮品评价": "负面", "价格水平": "中性", "卫生
情况: 未提及", "服务人员态度": "正面", "停车方便程度": "未提及"}Redundant

Describe
food: positive, beverage: negative, price: neural, staff
attitude: unmentioned (The service level is not
professional but seems to be a kind little girl who
loves to laugh), parking convenience: unmentioned.

The transportation is very convenient, it is very close to
the subway Qingnian Road station, the ordering speed is
fast, the decoration is in good condition, and the noisy
situation is general.

food: unmentioned, beverage: unmentioned, price:
negative, hygiene: unmentioned, staff attitude: negative, 
unmentioned, parking convenience: unmentioned.

traffic convenience, positive, queuing, unmentioned,
serving speed, positive, decoration, neural, noise,
negative.

food: 8, beverage: -2, price: -2, hygiene: -2, staff
attitude: 10,  parking convenience: -2.

{"aspect": "food", "describe": "Cranberries soak 
in water and the seeds squeeze out", "sentiment":
"negative"}\n{"aspect": "beverage", "describe":
"Cranberry tea, cranberry soaked in water and the seeds
will leak out, cranberry soaked in water and the seeds will
leak out, cranberry soaked in water and the seeds will leak
out", "sentiment": "negative"}\n{"aspect": "price",
"describe": "Cranberry tea, cranberry tea, cranberry
tea,...cranberry tea

Extra
Sentiment

Punctuation
Error

Numbers
out of
range

Repeat
Segment

Unformatted

YES

YES

YES

YES

YES

YES

{"food": "positive", "beverage": "negative", "price": "neural",
"hygiene: unmentioned", "staff attitude": "positive", "parking
convenience": "unmentioned"}

{"food": "negative", "beverage": "unmentioned", "price":
"negative", "hygiene: unmentioned", "staff attitude": "negative",
"parking convenience": "unmentioned"}

{"food": "negative", "beverage": "negative", "price":
"unmentioned", "hygiene: unmentioned", "staff attitude":
"unmentioned", "parking convenience": "unmentioned"}

{"beverage": "unmentioned", "price": "unmentioned",
"hygiene: unmentioned",  "parking convenience": "unmentioned",
"food": "unmentioned", "staff attitude": "negative"}

{"traffic convenience": "unmentioned", "queuing": "unmentioned", 
"serving speed": "unmentioned", "decoration": "unmentioned", 
"noise": "unmentioned"}

{"traffic convenience": "unmentioned", "queuing": "unmentioned", 
"serving speed" : "unmentioned",
"decoration": unmentioned", "noise": "unmentioned"}

Figure 10: Examples of format error types and how they are processed on the MASA task.
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heuristic

EW-SDE

ES-SDE

GENIA
(Nested-
NER)

[INST]Read the given sentence carefully, identify all named entities of type
"DNA", "RNA", "protein", "cell_type" or "cell_line". Answer in the format
["entity_type", "entity_name"]. If no entity exists, then just answer "
[]". Given sentence: <sentence> [/INST]

["DNA", "xxx"]
["protein", "xxx"]
["protein", "xxx"]
...

[INST]Given sentence: <sentence> Read the given sentence carefully,
identify all named entities of type "DNA", "RNA", "protein", "cell_type" or
"cell_line". For each entity type, answer in the format like "'entity_type':
'entity_name_1', 'entity_name_2'...", then concat answer for each type
with ';'. Only output entity types that contain entities.[/INST]

'DNA': 'xxx', 'xxx', ... ; 'protein':
'xxx', 'xxx'; 'cell_type': 'xxx'

[INST]Read the given sentence carefully, identify all named entities of type
"DNA", "RNA", "protein", "cell_type" or "cell_line". For each entity type,
answer in a line in the format like "'entity_type': 'entity_name_1',
'entity_name_2'..." (when no entities exist, answer  "'entity_type':
''").Given sentence: <sentence> [/INST]

'DNA': 'xxx', 'xxx', ...
'RNA': ''
'protein': 'xxx', 'xxx'
'cell_type': 'xxx'
'cell_line': ''

Tasks Strategies Prompts Output_Formats

MAVEN
(ED)

heuristic

EW-SDE

ES-SDE

We define the event types set: Catastrophe, Attack, Hostile_encounter,
Causation, Process_start, Competition, Motion, Social_event, Killing,
Conquering. Given a sentence, please detect the type of events it contains and
extract the trigger word from it. Please generate the result in the following
format: "["event_type", "trigger_word"]\n..."If no event exists, just
answer[]. The sentence is: <sentence> Output: \n"

["Motion", "xxx"]
["Conquering", "xxx"]
["Conquering", "xxx"]

Given a sentence: <sentence> \n---\nWe define the event types set:
Catastrophe, Attack, Hostile_encounter, Causation, Process_start,
Competition, Motion, Social_event, Killing, Conquering. Please detect the type
of events the given sentence contains and extract the trigger word from
it.  Please generate the result in the following format: "event_type1:
trigger_word1, trigger_word2, ...; event_type2: trigger_word1,
trigger_word2, ...; ..." Output:\n

We define the event types set: Catastrophe, Attack, Hostile_encounter,
Causation, Process_start, Competition, Motion, Social_event, Killing,
Conquering. Given a sentence, please detect all the type of events in the
predefined set from it. For the types this sentence contains, please extract
the trigger words from it, and for the types it does not contain, return
the trigger words as NONE. Please generate the result in the following
format: "event_type1: trigger_word1, trigger_word2, ...\nevent_type2:
trigger_word1, trigger_word2, ...\n..." The sentence is:
<sentence> Output: \n

Motion: xxx; Conquering: xxx, xxx

Catastrophe: NONE
Attack: NONE
Hostile_encounter: NONE
Causation: NONE
Process_start: NONE
Competition: NONE
Motion: xxx
...

heuristic

EW-SDE

ES-SDE

Read the comment below and observe the following aspects: [aspect]. Based on
the comment, please conduct sentiment analysis on these aspects with three
specific categories: positive, negative, and neutral. Please provide the
sentiment of the mentioned aspects in the following format: "["Aspect 1",
"Sentiment category"]\n["Aspect 2", "Sentiment category"]\n ...", and the
aspects not mentioned need not be given.\n---\n Review: <review>\n Output：

Read the comment below and observe the following aspects: [aspect]. Based
on the comment, please conduct sentiment analysis on these aspects with
four specific categories: positive, negative, neutral, and unmentioned. Please
provide the sentiment for all aspects in the following format: "Aspect 1:
Sentiment category\nAspect 2: Sentiment category\n..."\n---\n
Review: <review>\n Output：

<review>\n---\n Read the above review and observe the following aspects:
[aspect]. Please make a sentiment analysis of the aspects mentioned in the
review with three specific categories: positive, negative, and neutral. Please
provide the sentiment of the mentioned aspects in the following format:
"Aspect 1: Sentiment category, Aspect 2: Sentiment category, ...", and
the aspects not mentioned need not be given.\n Output：

["Aspect 1", "xxx"]
["Aspect 3", "xxx"]
...

Review11
(MASA)

Aspect 1: xxx, Aspect 3: xxx, ...

Aspect 1: xxx
Aspect 2: unmentioned
Aspect 3: xxx 
...

Figure 11: Examples of different sample designs on GENIA, MAVEN and Review11.
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heuristic

EW-SDE

ES-SDE

We have the following event types: Catastrophe, Attack, Hostile_encounter, Causation, Process_start, Competition, Motion,
Social_event, Killing, Conquering. For a sentence, please detect the type of events it contains and extract the trigger word from it. We
define the format of the result as: "["event_type", "trigger_word"]\n..."If no event exists, just answer[]. Here is the sentence:
<sentence> Output: \n

In our event detection task, we specify a set of event types: Catastrophe, Attack, Hostile_encounter, Causation, Process_start,
Competition, Motion, Social_event, Killing, Conquering. Your goal is to analyze a given sentence and identify the types of events
included in the sentence from the predefined set. Extract the trigger words related to each included event types from the sentence.
Format the output as shown: "["event_type", "trigger_word"]\n...". If no event exists, just answer[]. Here is the sentence: <sentence>
Output: \n

We have the following event types: Catastrophe, Attack, Hostile_encounter, Causation, Process_start, Competition, Motion,
Social_event, Killing, Conquering. For a sentence, please detect all the type of events in the predefined set from it. For the types this
sentence contains, please extract the trigger words from it, and for the types it does not contain, return the trigger words as NONE.
We define the format of the result as: "event_type1: trigger_word1, trigger_word2, ...\nevent_type2: trigger_word1, trigger_word2,
...\n..."Here is the sentence: <sentence> Output: \n

In our event detection task, we specify a set of event types: Catastrophe, Attack, Hostile_encounter, Causation, Process_start,
Competition, Motion, Social_event, Killing, Conquering. Your goal is to analyze a given sentence and identify each event types from the
predefined set. Extract the trigger words related to each event type from the sentence. If the sentence does not contain certain
event types, please indicate NONE for those types. Format the output as shown: "event_type1: trigger_word1, trigger_word2,
...\nevent_type2: trigger_word1, trigger_word2, ...\n...". Here is the sentence: <sentence> Output: \n

For a sentence: <sentence>\n---\nWe have the following event types: Catastrophe, Attack, Hostile_encounter, Causation,
Process_start, Competition, Motion, Social_event, Killing, Conquering. Please detect the type of events the given sentence contains and
extract the trigger word from it. We define the format of the result as: "event_type1: trigger_word1, trigger_word2, ...; event_type2:
trigger_word1, trigger_word2, ...; ..." Output: \n

Here is a sentence: <sentence>\n---\nIn our event detection task, we specify a set of event types: Catastrophe, Attack,
Hostile_encounter, Causation, Process_start, Competition, Motion, Social_event, Killing, Conquering. Your goal is to analyze the given
sentence and identify the types of events included in the sentence from the predefined set. Extract the trigger words related to each
included event types from the sentence. Format the output as shown: "event_type1: trigger_word1, trigger_word2, ...; event_type2:
trigger_word1, trigger_word2, ...; ..." Output: \n

We define the event types set: Catastrophe, Attack, Hostile_encounter, Causation, Process_start, Competition, Motion, Social_event,
Killing, Conquering. Given a sentence, please detect the type of events it contains and extract the trigger word from it. Please generate
the result in the following format: "["event_type", "trigger_word"]\n..."If no event exists, just answer[]. The sentence is:
<sentence> Output: \n"

Original Instruction:

Instruction Variation 1:

Instruction Variation 2:

Given a sentence: <sentence> \n---\nWe define the event types set: Catastrophe, Attack, Hostile_encounter, Causation, Process_start,
Competition, Motion, Social_event, Killing, Conquering. Please detect the type of events the given sentence contains and extract the
trigger word from it.  Please generate the result in the following format: "event_type1: trigger_word1, trigger_word2, ...; event_type2:
trigger_word1, trigger_word2, ...; ..." Output:\n

We define the event types set: Catastrophe, Attack, Hostile_encounter, Causation, Process_start, Competition, Motion, Social_event,
Killing, Conquering. Given a sentence, please detect all the type of events in the predefined set from it. For the types this sentence
contains, please extract the trigger words from it, and for the types it does not contain, return the trigger words as NONE. Please
generate the result in the following format: "event_type1: trigger_word1, trigger_word2, ...\nevent_type2: trigger_word1,
trigger_word2, ...\n..." The sentence is: <sentence> Output: \n

Original Instruction:

Instruction Variation 1:

Instruction Variation 2:

Original Instruction:

Instruction Variation 1:

Instruction Variation 2:

Figure 12: Variations of Instructions on different strategies (taking MAVEN as an example).
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