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Abstract

Automated claim verification plays an essen-
tial role in fostering trust in the digital space.
Temporal claim verification brings new chal-
lenges where cues of the temporal information
need to be extracted, and temporal reasoning
involving various temporal aspects of the text
must be applied. In this work, we describe an
end-to-end solution for temporal claim verifi-
cation that considers the temporal information
in claims to obtain relevant evidence sentences
and harnesses the power of a large language
model for temporal reasoning. We curate two
datasets comprising a diverse range of tempo-
ral claims to learn time-sensitive representa-
tions that encapsulate not only the semantic
relationships among the events, but also their
chronological proximity. Experiment results
demonstrate that the proposed approach sig-
nificantly enhances the accuracy of temporal
claim verification, thereby advancing current
state-of-the-art in automated claim verification.

1 Introduction

The proliferation of false information, or "fake
news," continues to pose a challenge with poten-
tially severe implications. Computational claim
verification has been proposed as a viable solution
to this issue, leveraging technology to verify tex-
tual claims against a set of evidence sentences that
either support or contradict these claims. How-
ever, there is still a considerable gap when it comes
to verifying temporal claims which are statements
associated with a specific time or duration. For
effective verification of temporal claims, we need
to retrieve evidence that focus not just on the se-
mantic coherence between the claim and potential
evidence, but more importantly, the temporal con-
text so that the timeline is aligned between the
claim and the evidence.

Consider the temporal claim "Matteo Renzi was
a full-time undergraduate student in Singapore in

2006". This claim can be refuted if we find evi-
dence like "Matteo Renzi served as President of
the Province of Florence from 2004 to 2009..."
since it is highly unlikely for someone to serve as
a president while concurrently undertaking a full-
time undergraduate degree in a different country.
Existing claim verification methods that employ
traditional evidence retrieval based on lexical or
semantic matching might overlook this evidence
sentence and conclude that there is NOT ENOUGH
INFO (NEI) to verify the claim.

Consider another temporal claim "Henry Con-
dell published his First Folio in 1623 and per-
formed several plays for his career in 1620.". This
claim has two events "published his First Folio"
and "performed several plays" which are associ-
ated with two distinct dates, "1623" and "1620",
respectively. For the temporal claim to be true, we
need to verify that both events are supported by
the evidence sentences. On the other hand, if we
have evidence that shows one of the events is false,
then the entire claim becomes false. For example,
if we have the evidence sentence "Henry Condell
ended his stage career in 1619.", then we can refute
the event that he performed several plays in 1620,
and conclude that the temporal claim is false. By
analyzing the claim and evidence sentence at the
event-level rather than the whole sentence, we can
link the time references to their respective events
and retrieve relevant evidence sentences.

We describe an end-to-end solution for temporal
claim verification by taking into account the tem-
poral information in the claim to retrieve relevant
evidence sentences. We identify events in both
the claim and evidence sentences and associate
the time-related information to the corresponding
events. With this, we can assign a higher score to
evidence sentences that align more closely with the
claim events. The top ranked evidence sentences
form the context for large language model (LLM)
to reason and determine the claim veracity.
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Figure 1: Overview of TACV framework.

Existing claim verification datasets such as
FEVER and FEVEROUS have limited temporal
claims. As such, we create two new temporal claim
verification datasets comprising of a diverse range
of temporal claims. Experiment results on multiple
datasets demonstrate that the proposed solution sur-
passes state-of-the-art claim verification methods,
is robust, and can handle real-world claims.

2 Related Work

Research on evidence-based claim verification typ-
ically formulates the problem as a natural lan-
guage inference task, and classifies whether the
evidence sentences support or refute the claim
(Stammbach and Neumann, 2019; Soleimani et al.,
2020). GEAR (Zhou et al., 2019) uses a graph
attention network to capture the semantic interac-
tion between evidence sentences. KGAT (Liu et al.,
2020) introduces kernels to measure the importance
of the evidence and conduct fine-grained evidence
propagation. CGAT (Barik et al., 2022) incorpo-
rates external knowledge to inject commonsense
knowledge into the model. UnifEE (Hu et al., 2023)
focuses on improving evidence retrieval on struc-
tured evidence by constructing a unified evidence
graph and employing graph network to facilitate
interactions between claims and evidence.

Several works have attempted to take into ac-
count temporal information for claim verification.
(Allein et al., 2021) considers the published date
of the claim and evidence sentences, and re-ranks
the sentences based on the proximity of their pub-
lished dates to that of the claim. (Mori et al.,
2022) verifies economic claims against time se-
ries sources which are in tabular format. This work
only deals with structured SQL data and does not
handle evidence in natural language. ITR (Allein
et al., 2023) exploits the temporal proximity be-
tween the claim’s publication date and evidence’s
publication date to create time representations for
temporal reasoning. These works do not consider
temporal expressions in the claim and evidence.

3 Proposed Solution

Figure 1 shows our proposed Temoral Aware
Claim Verification (TACV) solution. Given a tem-
poral claim, we extract claim events with their
associated temporal expressions from the claim.
To obtain more information about the claim, we
use a sequence-to-sequence entity linking model
GENRE (De Cao et al., 2021) to retrieve docu-
ments from sources such as Wikipedia articles.
Each sentence from the retrieved documents is
sent to the event extraction module to obtain evi-
dence sentence events. We pair the extracted claim
events with the evidence sentence events to create
temporal-aware representations. This step facili-
tates the identification of the top-k most relevant
evidence sentences, which are deemed potentially
useful for verifying the claim event. Utilizing the
top-k evidence sentences as context, the frame-
work harnesses the temporal reasoning capabilities
of Large Language Models (LLMs) to ascertain
whether the evidence supports or refutes the claim
event, or if the evidence is insufficient for verifica-
tion. Finally, these labels are aggregated to obtain
the final label for the input claim.

Event Extraction with Temporal Arguments.
In general, an event has two types of informa-
tion: (a) core information such as who is involved,
what is happening, and where it is happening;
and (b) temporal expression which includes spe-
cific dates, time duration and event ordering. We
employ an off-the-shelf Semantic Role Labeling
(SRL)1 from AllenNLP (Shi and Lin, 2019) to ex-
tract all the events mentioned in the claim or evi-
dence sentences. Each sentence is fed into the SRL
model to a list of predicates along with their argu-
ments. Each predicate corresponds to an event. The
core information comprises of the concatenation of
phrases related to the predicate and non-temporal
arguments. The temporal information comprises of

1https://demo.allennlp.org/semantic-role-labeling
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Figure 2: Temporal-aware Representation Encoding.

the phrases related to the temporal arguments. We
apply this process to the claim and evidence sen-
tences to extract claim events and evidence events.

Temporal-aware Representation Encoding.
Let Ec be a claim event and Es be a sentence event.
We create the sequence ([CLS] + Ec + [SEP ] +
Title + [SEP ] + Es + [SEP ]) where [CLS]
is the special start token, [SEP ] is the separator
token, and Title is the title of the document from
which the sentence event Es is obtained. The
sequence is then passed to BERT to obtain the
contextual representation B (see Figure 2).

We apply mean pooling on the date tokens,
followed by positional encoding (Vaswani et al.,
2017). Consider the temporal phrases October
1620 and 1619 in Ec and Es respectively. The
position pos for 1619 is 0, while that for October
1620 is 21, indicating that they are 0 and 21 months
apart from the earliest date in the text (which is
1619). Given the pos value, the temporal encod-
ing is a vector of d dimension, denoted as TEpos,
where the ith element is given by

TEpos[i] =

{
sin( pos

10000i/d
) if i is even

cos( pos
10000(i−1)/d ) otherwise

We feed the temporal encodings to the trans-
former to obtain the date representations B̂. The
resulting temporal-aware representation is the se-
quence R = (H[CLS], H1, · · ·Hd) where H[CLS]

is the average pooling of Hj , 1 ≤ j ≤ d, and

Hj =

{
Bj if jth token is not a date
B̂j if jth token is a date

Relevance Scoring. We construct an event-level
graph Gevent where each node i is a <claim event,
sentence event> pair, initialized with its correspond-
ing temporal-aware representation Ri. The nodes
are fully connected to each other. We utilize a

Graph Attention Network (GAT) to propagate in-
formation among the nodes in Gevent.

We compute the token-level attention weight be-
tween node i and node j, wi→j , where the pth entry
in wi→j is given by:

wi→j [p] =
∑

q

cosine-sim(Ri
p, R

j
q) (1)

where Rj
q is the qth element in Rj .

We normalize wi→j through a softmax function
before applying this attention weight to the rep-
resentation Ri. The information propagated from
node i to node j is given by:

zi→j = Rj
0 ◦ (wi→j ·Ri) (2)

where Rj
0 is the [CLS] token in Rj and ◦ denotes

concatenation.
The representation of Rj is updated as follows:

Rj =
∑

i

βi→j · zi→j (3)

where βi→j is the sentence-level attention weight
from i to j computed as follows:

βi→j = W · (zi→j)T (4)

where W ∈ R1×2d is the weight matrix of a linear
transformation, (zi→j)T is the transpose of zi→j .

The relevance score of each evidence sentence to
a claim event is obtained by applying element-wise
max operation (Zhou et al., 2019) on the updated
representations followed by a linear layer.

Temporal Reasoning with LLM. Finally, we
leverage the capabilities of LLM text-davinci-003
from OpenAI to perform temporal reasoning. We
design a prompt to use the top-k relevant evidence
sentences as context for LLM to reason and deter-
mine a label for each claim event.

The final label for a claim is determined as fol-
lows: If any event reveals factual discrepancies,
the entire claim is deemed REFUTE. Conversely,
if all events align with the facts in the evidence
sentences, the claim receives a SUPPORT label. In
cases where certain events lack sufficient evidence
while other events may be corroborated, the overall
verdict is NOT ENOUGH INFO.

4 Temporal Claim Datasets

We create two datasets for temporal claim verifica-
tion based on existing claim verification datasets
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Table 1: Characteristics of temporal claim datasets.

T-FEVER T-FEVEROUS
Single event Multiple events Single event Multiple events

Train set Test set Train set Test set Train set Test set Train set Test set
Ordering 20,625 2,805 1,009 161 17,546 1,910 39,402 4,175
Duration 456 75 21 3 374 51 729 106

FEVER (Thorne et al., 2018a), FEVER2.0 (Thorne
et al., 2018b) and FEVEROUS (Aly et al., 2021).
The original datasets comprise of synthetic gen-
eral claims generated by modifying sentences from
Wikipedia, and are labelled as SUPPORT, RE-
FUTE, or NEI, along with their evidence sen-
tences. Temporal claims account for 9% of the
FEVER dataset, and 46% of the FEVEROUS
dataset. While these datasets may have tempo-
ral claims, their verification is based on the gen-
eral aspect instead of the temporal aspects. For
example, the claim "DSV Leoben, an Australian
association football club which was founded in
1927 is managed by Austria Ivo Golz." is refuted
based on the ground truth evidence: "DSV Leoben
is an Austrian association football club based in
Leoben." Here, we augment the dataset with new
claims by manipulating the temporal information
such as "DSV Leoben was founded in 1928".

We first identify temporal claims from the gen-
eral claim verification datasets by extracting claims
with at least one temporal argument. These claims
are tagged according to their temporal expression
type. This is achieved through the use of regular
expression pattern matching to distinguish between
the temporal expression types, namely ordering (in-
dicated by words such as "before", "after"), and du-
ration (phrases like "for 5 years", "over 3 months").
Claims that are not tagged are filtered out.

We augment the datasets with new claims by
adjusting the temporal arguments of the original
claims such that it is either disputed by the evidence
sentences or is in agreement with the evidence sen-
tences. The evidence sentences are the ground-
truth evidence sentences provided in the original
datasets. New temporal claims whose labels are
REFUTE are generated as follows:

Ordering. We extract the temporal predicates and
dates from the claim’s temporal argument.

• If the temporal predicate is "in", "on" or "at",
we replace the extracted claim date by adding
or subtracting a random number to the date so
that the new claim date is no longer supported
by the date(s) in the evidence sentences.

• If the temporal predicate is "before", we iden-
tify the most recent date from the evidence
sentences. Then we replace the predicate with
"after" and adjust the claim date to the identi-
fied date after adding a random number. Simi-
larly, if the predicate is "after", we switch it to
"before" and revise the claim date to the earli-
est date mentioned in the evidence sentences,
again incremented by a random number.

• If the temporal predicate is "from", we find the
most recent date from the evidence sentences,
and replace the claim date by the identified
date after adding a random number.

• If the temporal predicate is "between" with
two temporal arguments date1 and date2, we
add a random number to date2 to get a new
date3. Then we replace date1 with date3, and
replace date2 with date3 after adding another
random number. This ensures that the new
range falls outside the original range.

Duration. The temporal predicate is either "for",
"over", or "within", accompanied by a temporal
argument indicating the duration period. We adjust
this argument by randomly increasing or decreas-
ing its value, thereby creating a new duration that
diverges from the original context.

Likewise, we augment the datasets with new
claims that are labeled as "SUPPORT" by ensur-
ing that the modified temporal arguments remain
consistent with the evidence sentences. We call the
dataset created based on FEVER and FEVER2.0
as T-FEVER, while the dataset created based on
FEVEROUS as T-FEVEROUS. Table 1 gives the
details of these datasets2.

We evaluated the quality of our new datasets by
randomly sampling 300 claims from each dataset.
Two human assessors, equipped with the necessary
background and skills, were tasked to determine
the accuracy of a claim’s label by referencing the
ground truth evidence sentences. Our findings in-
dicate that 97% of the claims in T-FEVER and
98% in T-FEVEROUS have the correct labels. The

2These datasets will be made available on Github.
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Table 2: Characteristics of the experimental datasets.

Training (80%) and Validation (20%) Test Set
Type Dataset Support Refute NEI Support Refute NEI
Temporal claims T-FEVER 10,784 8,007 3,238 1,015 1,285 737

T-FEVEROUS 30,366 26,032 1,041 2,991 2,927 225
General claims FEVER 80,035 29,775 35,639 3,333 3,333 3,333

FEVEROUS 41,835 27,215 2,241 3,372 2,973 1,500
Real world claims LIAR 1,683 1,998 - 211 250 -

remaining claims are wrongly labelled as SUP-
PORT/REFUTE when they should be labelled as
NOT ENOUGH INFO. One such claim was “Ash-
ley Graham was on a magazine cover in 2018.” with
the evidence sentence “In 2017, Graham became
the first plus-size model to appear on the covers
of British and American Vogue.”. This claim was
incorrectly labelled as REFUTE when it should
be NOT ENOUGH INFO because even if Graham
was on the magazine cover in 2017 does not imply
that she cannot appear on the cover in 2018.

5 Performance Study

We evaluate the effectiveness of the TACV frame-
work for temporal claim verification. We show that
TACV performs well not only on the new temporal
T-FEVER and T-FEVEROUS datasets, but also on
the standard benchmark FEVER and FEVEROUS
datasets as well as the real world LIAR dataset
(Wang, 2017). Table 2 shows the dataset details.

We use label accuracy and FEVER score as
the evaluation metrics. Label accuracy measures
the proportion of correct predictions made by the
model out of all predictions. This metric ignores
whether the evidence sentences directly contribute
to the prediction. In contrast, FEVER score only
marks a prediction as correct if the predicted la-
bel is correct and the retrieved evidence directly
contributes to the determination of the label.

TACV uses Huggingface’s implementation of
BERTbase to encode the tokens in the extracted
events. For the temporal-aware representation en-
coding, a transformer with two layers and eight
heads, having a dimension of 768, is used. The
training is conducted over five epochs with a batch
size of 8, and learning rate of 5e-6. We apply the
AdamW (Loshchilov and Hutter) optimizer with a
fixed weight decay and select the best performing
model for evaluation on the test set.

Sensitivity Experiments. We examine the per-
formance of TACV as we vary the number of top-k
relevant evidence sentences for temporal reason-

Figure 3: Effect on k on TACV

ing. Figure 3 shows the label accuracy and FEVER
score for different k values on the T-FEVER and
T-FEVEROUS validation datasets. We see that the
optimal performance is attained when k = 3 for
T-FEVER, and k = 5 for T-FEVEROUS. As such,
we use the top-3 sentences in T-FEVER, and the
top-5 sentences in T-FEVEROUS with the highest
relevance scores to form the context for the LLM
to output the label of each claim event.

Comparative Experiments. We compare TACV
with state-of-the-art evidence-based claim verifica-
tion baselines: KGAT (Liu et al., 2020), CGAT
(Barik et al., 2022), ITR (Allein et al., 2023),
UniFEE (Hu et al., 2023). Since ITR assumes
evidence sentences are given as input, we use the
evidence sentences retrieved by our TACV as input
to ITR for fair comparison. Table 3 shows the la-
bel accuracy and FEVER score of the methods on
T-FEVER and T-FEVEROUS. We see that TACV
outperforms existing methods by a large margin.

We also validate the ability of TACV to handle
the original synthetic general claims in FEVER and
FEVEROUS, as well as real-world claims in LIAR
which comprises of statements compiled from Poli-
tiFact.com. For each claim in LIAR, we feed the
claim sentence into BING search to retrieve the
top-2 articles and all the sentences from these ar-
ticles are used as potential evidence sentences. In
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Table 3: Results of comparative study on temporal claims.

T-FEVER T-FEVEROUS
Methods Label acc. FEVER score Label acc. FEVER Score
KGAT 44.28 33.61 15.69 4.59
CGAT 44.38 33.91 16.58 4.29

ITR 44.05 30.88 31.66 8.63
UnifEE 49.67 41.10 49.14 17.67
TACV 52.15 41.42 54.01 15.38

Table 4: Results of comparative study on general and real world claims.

FEVER FEVEROUS LIAR T-LIAR
Methods Label acc. FEVER score Label acc. FEVER score Label acc. Label acc.
KGAT 74.07 70.38 34.94 11.25 46.20 69.44
CGAT 76.39 73.15 39.70 12.52 45.77 72.22

ITR 73.36 70.04 44.20 14.39 49.24 69.44
TACV 76.42 73.16 53.97 15.08 62.86 83.33

Table 5: Results of Ablation Studies.

T-FEVER T-FEVEROUS
Methods Label acc. FEVER score Label acc. FEVER score

TACV w/o event extraction 46.92 39.47 39.64 12.02
TACV w/o temporal-aware encoder 49.22 38.88 52.14 13.07

TACV w/o GAT 50.60 40.07 52.84 13.91
TACV 52.15 41.42 54.01 15.38

TACV (GPT4) 55.08 42.17 56.56 18.98

addition, we identify 363 temporal claims (209
SUPPORT and 154 REFUTE) in LIAR to create
a T-LIAR dataset. Table 4 shows the results. We
see that TACV remains robust and can generalize
well to real world claims as demonstrated by the
big lead in the label accuracy in T-LIAR, indicat-
ing that TACV can be used for the verification of
temporal claims in real world settings.

Among the results, TACV performs the worst on
the FEVEROUS dataset which contains 54% non-
temporal claims and 46% temporal claims. We
randomly sample 25 temporal and 25 non-temporal
claims to conduct a more detailed error analysis.
Manual inspection reveals that 90% of the error
was due to the inability to extract structured evi-
dence such as tables. Incorrect temporal reasoning
by LLM contributed 10%, even when the correct
evidence was retrieved.

Ablation Studies. We examine the effect of the
components in TACV with the following variants:

• TACV without event extraction. Instead of ex-
tracting events from claim and evidence sentences,
we pass them directly to the temporal-aware repre-
sentation encoder. The top-k relevant sentences are
passed to the LLM to obtain the claim’s label.

• TACV without temporal-aware representation
encoding. For this variant, we use BERT to ob-
tain the encoding for each pair of claim event and

sentence event and use this representation for rele-
vance scoring.

• TACV without GAT. Here, we do not construct
the Gevent graphs. Instead, we perform mean pool-
ing over the token representations of the <claim
event, sentence event> pairs.

• TACV (GPT4). Here, we also experimented
with a better LLM by using GPT4-turbo.

Table 5 shows that the largest drop in both la-
bel accuracy and FEVER score occur when events
are not extracted from claim and evidence. This
is followed by the variant where temporal-aware
representation encoding is not utilized. This sug-
gests that identifying events in claims and evidence
enhances the retrieval of relevant sentences for the
subsequent claim verification process. Also, using
a better LLM further improves the performance.

6 Case Studies

Table 6 shows a claim from T-FEVEROUS. The
claim has two events "appointed" (in blue) and
"awarded" (in red) with temporal arguments "on
the 10th April 2019" and "in December 2019" re-
spectively. By decomposing the claim into events
and their temporal arguments, TACV is able to re-
trieve both ground truth sentences, one supporting
the "awarded" event and the other contradicting
the "appointed" event. LLM predicts the label RE-
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Table 6: Sample Claims from T-FEVEROUS.
Claim: McDonaugh was appointed to the first managerial job on the 10th April 2019, and then he was awarded SPFL League 2 Manager of the Month, in
December 2019. Ground Truth Label: REFUTE
Method Events Retrieved Sentences Event Label Claim Label

TACV • McDonaugh was ap-
pointed to the first man-
agerial job on the 10th
April 2019.

• McDonaugh was appointed to first managerial job succeeding Gary Jardine
at Edinburgh City on 10 October 2017.
• McDonaugh again won the SPFL League 2 Manager of the Month award in
December 2019, winning all four games and keeping three clean sheets.
• He was awarded SPFL League 2 Manager of the Month in September 2018.

REFUTE REFUTE

• McDonaugh was
awarded SPFL League 2
Manager of the Month,
in December 2019.

• McDonaugh again won the SPFL League 2 Manager of the Month award in
December 2019, winning all four games and keeping three clean sheets.
• He was awarded SPFL League 2 Manager of the Month in September 2018.
• McDonaugh was appointed to first managerial job succeeding Gary Jardine at
Edinburgh City on 10 October 2017.

SUPPORT

CGAT - • James McDonaugh is a Scottish football manager, who is currently manager of
Scottish League Two club Edinburgh City and a current UEFA Pro Licence holder.
• McDonaugh again won the SPFL League 2 Manager of the Month award in
December 2019, winning all four games and keeping three clean sheets.
• He was awarded SPFL League 2 Manager of the Month in Sept 2018.

- NEI

Table 7: Sample Claims from T-Liar.
Claim: Illinois suffered 1,652 overdose deaths in 2014, of which 40 percent were associated with heroin and Illinois is ranked number one in the nation for a
decline in treatment capacitybetween 2007 and 2012. Ground Truth: SUPPORT
Method Events Retrieved Sentences Event Label Claim Label
TACV • Illinois suffered 1,652

overdose deaths in 2014 ,
of which 40 percent were
associated with heroin

•Illinois suffered 1,652 overdose deaths in 2014 – a 30 percent increase over
2010 – of which 40 percent were associated with heroin
•Durbin claims 40 percent of drug overdose deaths in Illinois involve heroin
•However, the Illinois Department of Public Health, which reports preliminary and
final drug overdose deaths to the CDC, puts the 2010 total at 1,284 and 1,700 in
2014 – a slight discrepancy but not unusual when reporting overdose deaths as they
often get revised

SUPPORT SUPPORT

• Illinois ranked number
one in the nation for a
decline in treatment ca-
pacity between 2007 and
2012.

•A report published in August 2015 by the Illinois Consortium on Drug Policy
at Roosevelt University, or ICDP, shows state-funded treatment capacity in
Illinois fell by 52 percent from 2007-2012, the largest decrease in the nation
•In 2007, Illinois ranked 28th in state-funded treatment capacity before dropping to
No. 44, or third worst in 2012, behind Tennessee and Texas, respectively, according
to the report.
•Durbin, who used statistics from this study, is correct when he says Illinois led the
nation in the decline for state-funded treatment capacity.

SUPPORT

CGAT - •Illinois suffered 1,652 overdose deaths in 2014 – a 30 percent increase over
2010 – of which 40 percent were associated with heroin
• As for the other figures, the percent increase from 2010 is slightly more than 32
percent, and drug overdose deaths in 2014 that were associated with heroin is about
42 percent
•In 2007, Illinois ranked 28th in state-funded treatment capacity before dropping to
No. 44, or third worst in 2012, behind Tennessee and Texas, respectively, according
to the report

- REFUTE

FUTE for the first event and SUPPORT for the
second event. As such, the claim label is REFUTE.
In contrast, CGAT does not retrieve the evidence
sentence regarding the job appointment and pre-
dicts the claim as NEI.

Table 7 shows a sample claim from T-Liar. The
claim consists of two events: "suffered" (in blue)
and "ranked" (in red), along with their temporal ar-
guments "in 2014" and "between 2007 and 2012".
By breaking down the claim into events, TACV is
able to retrieve sentences that confirm the date of
overdose deaths for the first event, and sentences
that mention the period when Illinois is ranked
number one for decline in treatment capacity. This
allows LLM to verify each event as SUPPORT,
and TACV to correctly predict the overall claim
label as SUPPORT. On the other hand, CGAT fails
to retrieve sentences that reference the date when
Illinois was ranked first for declined treatment ca-
pacity, leading to an incorrect prediction.

7 Conclusion

We have introduced a new framework for tempo-
ral claim verification that addresses the growing
challenge posed by misinformation in real-world
settings, particularly in information-heavy indus-
tries such as media, finance, and legal sectors. Our
end-to-end solution can be seamlessing integrated
into existing workflows to verify temporal claims
where the accuracy of time-sensitive information is
crucial. We have developed two temporal datasets
that serve as evaluation benchmarks and resources
for further research in temporal claim verification.
Experimental results have demonstrated the effec-
tiveness of temporal-aware representations, which
lead to marked performance improvements over
state-of-the-art methods across multiple datasets,
including the real world Liar dataset. Future re-
search includes handling more complex sentence
structures with implicit temporal expressions.
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