
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 712–718
November 12-16, 2024 ©2024 Association for Computational Linguistics

QDyLoRA: Quantized Dynamic Low-Rank Adaptation for Efficient Large
Language Model Tuning

Hossein Rajabzadeh1 Mojtaba Valipour1 Tianshu Zhu2

Marzieh Tahaei2 Hyock Ju Kwon1 Ali Ghodsi1

Boxing Chen2 Mehdi Rezagholizadeh2

{hossein.rajabzadeh, mojtaba.valipour, ali.ghodsi}@uwaterloo.ca, mehdi.rezagholizadeh@huawei.com

1: University of Waterloo, 2: Huawei Noah’s Ark Lab
Abstract

Finetuning large language models requires
huge GPU memory, restricting the choice to
acquire Larger models. While the quantized
version of the Low-Rank Adaptation technique,
named QLoRA, significantly alleviates this is-
sue, finding the efficient LoRA rank is still
challenging. Moreover, QLoRA is trained on
a pre-defined rank, therefore, cannot be recon-
figured for its lower ranks without further fine-
tuning steps. This paper proposes QDyLoRA
-Quantized Dynamic Low-Rank Adaptation-, as
an efficient quantization approach for dynamic
low-rank adaptation. Motivated by Dynamic
LoRA, QDyLoRA is able to efficiently fine-
tune LLMs on a set of pre-defined LoRA ranks.
QDyLoRA enables fine-tuning Falcon-40b for
ranks 1 to 64 on a single 32 GB V100-GPU
through one round of fine-tuning. Experimen-
tal results show that QDyLoRA is competitive
to QLoRA and outperforms when employing
its optimal rank.

1 Introduction

The popularity of adopting Large Language Models
(LLMs) across a diverse range of downstream tasks
has rapidly increased over the past two years. Fine-
tuning LLMs has become necessary to enhance
their performance and introduce desired behaviors
while preventing undesired outputs (Ding et al.,
2023). However, as the size of these models in-
creases, fine-tuning costs become more expensive.
This has led to a large body of research that focuses
on improving the efficiency of the fine-tuning stage
(Liu et al., 2022; Mao et al., 2021; Hu et al., 2021;
Edalati et al., 2022; Sung et al., 2022).

Low-rank adapter (LoRA) (Hu et al., 2021) is
a well-known, parameter-efficient tuning (PEFT)
method that reduces memory requirements during
fine-tuning by freezing the base model and updat-
ing a small set of trainable parameters in form of
low-rank matrix multiplication added to matrices

in the base model. However, the memory demand
during fine-tuning remains substantial due to the
necessity of a backward pass through the frozen
base model during stochastic gradient descent.

Recent research has thus focused on further re-
ducing memory usage by designing new parameter-
efficient modules that can be tuned without ne-
cessitating gradients from the base models (Sung
et al., 2022). Alternatively, researchers have ex-
plored combining other efficiency strategies with
parameter-efficient tuning methods (Kwon et al.,
2022; Dettmers et al., 2023).

Among these approaches, QLoRA (Dettmers
et al., 2023) stands out as a recent and highly
efficient fine-tuning method that dramatically de-
creases memory usage. It enables fine-tuning of
a 65-billion-parameter model on a single 48GB
GPU while maintaining full 16-bit fine-tuning per-
formance. QLoRA achieves this by employing 4-
bit NormalFloat (NF4), Double Quantization, and
Paged Optimizers as well as LoRA modules.

However, another significant challenge when uti-
lizing LoRA modules is the need to tune their rank
as a hyperparameter. Different tasks may require
LoRA modules of varying ranks. In fact, it is ev-
ident from the experimental results in the LoRA
paper that the performance of models varies a lot
with different ranks, and there is no clear trend
indicating the optimal rank. On the other hand,
any hyperparameter tuning for finding the optimal
rank contradicts the primary objective of efficient
tuning and is not feasible for very large models.
Moreover, when deploying a neural network on
diverse devices with varying configurations, the
use of higher ranks can become problematic for
highly sensitive devices due to the increased pa-
rameter count. To address this, one typically has to
choose between training multiple models tailored
to different device configurations or determining
the optimal rank for each device and task. How-
ever, this process is costly and time-consuming,

712

even when using techniques like LoRA.
DyLoRA (Valipour et al., 2022), is a recent

PEFT method that aims to address theses chal-
lenges by employing dynamic Low-Rank Adapter
(DyLoRA). Inspired by nested dropout, this
method aims to order the representations of the
bottleneck at low-rank adapter modules. Instead of
training LoRA blocks with a fixed rank, DyLoRA
extends training to encompass a spectrum of ranks
in a sorted manner. The resulting low-rank PEFT
modules not only provide increased flexibility dur-
ing inference, allowing for the selection of different
ranks depending on the context, but also demon-
strate superior performance compared to LoRA, all
without imposing any additional training time.

In this paper, we employ the DyLoRA PEFT
method in conjunction with the quantization
scheme utilized in the QLoRA work, resulting in
QDyLoRA. QDyLoRA has all the aforementioned
benefits of DyLoRA but with significant memory
reduction both during training and at inference
through 4-bit quantization. We utilize QDyLoRA
for efficient fine-tuning of LLaMA-7b, LLaMA-
13b, and Falcon-40b models across ranks ranging
from 1 to 64, all on a single 32GB V100 GPU.
Once tuned, we determine the optimal rank by in-
ferring the model on the test set. Our results reveal
that the optimal rank can be quite low, yet it outper-
forms QLoRA.

1.1 Related Work
Low-rank PEFT methods These methods aim
to fine-tune pre-trained LLMs for specific tasks
while minimizing computational and memory re-
sources. Low-rank adaptation techniques were in-
spired by (Aghajanyan et al., 2020), demonstrating
that pre-trained language models possess a low
intrinsic dimension. Since then, several works
have explored the incorporation of trainable param-
eters in the form of low-rank up-projection/down-
projection during fine-tuning. In (Houlsby et al.,
2019), the Adapter module includes a down projec-
tion, a non-linear function, an up projection, and
a residual connection. These modules are sequen-
tially inserted after the feed-forward network (FFN)
or attention blocks.

Additionally, (He et al., 2021) extends the
Adapter concept by introducing trainable mod-
ules that run in parallel (PA) with the original
pre-trained language-model (PLM) module. As
a result of this extension, PA has demonstrated
improved performance compared to the original

Adapter method. One notable approach among
these techniques is LoRA (Hu et al., 2021), which
introduces low-rank up-projection/down-projection
into various matrices within a PLM. This method
offers efficient inference by seamlessly integrating
the adapter module into the original model’s weight
matrices.

Quantization-aware PEFT methods Alpha-
Tuning (Kwon et al., 2022), aims to combine
parameter-efficient adaptation and model compres-
sion. Alpha-Tuning achieves this by employing
post-training quantization, which involves convert-
ing the pre-trained language model’s full-precision
parameters into binary parameters and separate
scaling factors. During adaptation, the binary val-
ues remain fixed for all tasks, while the scaling
factors are fine-tuned for the specific downstream
task.

QLoRA (Dettmers et al., 2023) is a more recent
quantization-aware PEFT that combines a low-rank
adapter with 4-bit NormalFloat (NF4) quantization
and Double Quantization (DQ) of the base model
to optimize memory usage. NF4 ensures an op-
timal distribution of values in quantization bins,
simplifying the process when input tensors have
a fixed distribution. DQ further reduces memory
overhead by quantizing quantization constants.

To manage memory during gradient checkpoint-
ing, QLoRA employs Paged Optimizers, utiliz-
ing NVIDIA’s unified memory feature for effi-
cient GPU memory management. These techniques
collectively enable high-fidelity 4-bit fine-tuning
while effectively handling memory constraints.

Dynamic PEFT methods DyLoRA paper
(Valipour et al., 2022) introduces a novel approach
for training low-rank modules to work effectively
across a range of ranks simultaneously, eliminating
the need to train separate models for each rank.

Inspired by the concept of nested dropout, the
authors propose a method for organizing the repre-
sentations within low-rank adapter modules. This
approach aims to create dynamic low-rank adapters
that can adapt well to various ranks, rather than
being fixed to a single rank with a set training bud-
get. This is achieved by dynamically selecting
ranks during training, allowing for greater flexibil-
ity without the need for extensive rank searching
and multiple model training sessions.

713

Table 1: A comparison between QLoRA and QDyLoRA on the MMLU benchmark, reporting 5-shot test results for
LLMs of varying sizes. QDyLoRA is evaluated on ranks [1,2,4,8,16,32,64] and the best rank is reported in brackets.

Dataset LLaMA-7b LLaMA-13b Falcon-40b
QLoRA QDyLoRA QLoRA QDyLoRA QLoRA QDyLoRA

Alpaca 38.8 [64] 39.7 [16] 47.8 [64] 47.6 [8] 55.2 [64] 57.1 [4]

OASST1 36.6 [64] 36.8 [16] 46.4 [64] 47.2 [8] 56.3 [64] 56.7 [4]

Self-Instruct 36.4 [64] 37.2 [8] 33.3 [64] 41.6 [4] 51.8 [64] 51.1 [4]

FLAN-v2 44.5 [64] 45.9 [4] 51.4 [64] 52.1 [8] 58.3 [64] 60.2 [4]

Table 2: Comparing the performance of QLoRA and QDyLoRA across different evaluation ranks. Both models
receives the same training settings. Maximum LoRA rank is set to 64. Falcon-40b is adopted as the base LLM.
Exact matching and Bleu-score are used as evaluation measurements for GSM8k and Web-GLM, respectively.

Data Method Rank
1 2 4 8 16 32 64

Web-GLM
QLoRA 19.9 19.9 19.9 33.8 35.2 52.7 54.3

QDyLoRA 43.3 56.0 54.9 53.3 53.3 50.5 50.2

GSM8k
QLoRA 8.9 8.91 8.9 15.1 20.5 22.6 28.1

QDyLoRA 21.4 25.3 28.2 30.6 29.8 28.5 27.4

Algorithm 1 QDyLoRA - Training and Inference
Require: r ∈ [rmin,rmax]; i: the number of training iterations; α: a scaling

factor; pB : probability distribution function for rank selection; X ∈ Rd×n

: all input features to LoRA; W0 ∈ Rm×d the original frozen pre-trained
weight matrix, Wdw ∈ Rr×d; Wup ∈ Rm×r ; Q: Quantizer; LDY

↓b :
objective function given truncated weights
Initialization:
WNF4

0 = Q(W0) // Quantize W0 to NF4
Iterations:
while t < i do

Forward:
b ∼ pB(.) // sample a specific rank, during test is given
Wdw↓b = Wdw[:b,:] // truncate down-projection matrix
Wup↓b = Wup[:,:b] // truncate up-projection matrix

WDDequant−NF4
0 =

WNF4
0

cFP8
2 /cFP32

1

// dequantized the chunks of

the parameters that are needed
h = WDDequant−NF4

0 XBF16+ α
b WBF16

up↓b WBF16
dw↓b XBF16 //

calculate the LoRA output
Backward:
WBF16

dw↓b ← WBF16
dw↓b − η∇

WBF16
dw↓b

LDY
↓b

WBF16
up↓b ← Wup↓b − η∇

WBF16
up↓b

LDY
↓b

end while

2 Proposed Method: Quantized DyLoRA

Following DyLoRA notations (Valipour et al.,
2022), we define a truncated weight W↓b ∈ Rr×d

as W [: b, :]. Assume we have a set of input fea-
tures X ∈ Rd×n, a set of pre-trained weights W0,
and a given range of desired ranks represented by
r ∈ [rmin,rmax] that we want the model to operate
with, and a dynamic objective function LDY

↓b that
can evaluate a truncated sub-model. Then we can
use the following equation to calculate the forward
pass of the model at each iteration.

h = WDDequant−NF4
0 xBF16

+
α

b
WBF16

up↓b WBF16
dw↓b xBF16 (1)

where α is the LoRA scalar, and b is the chosen
rank by the pB(.) during training stage.

Following QLoRA (Dettmers et al., 2023), we
used 4-bit Normal Float (NF4) for storing the dou-
ble quantized pre-trained weights. As all the com-
putations need to be calculated in BFloat16 pre-
cision, DDequant-NF4 will dequantize the stored
data. Similar to (Dettmers et al., 2023), we have:

WDDequant−NF4
0 =

WNF4
0

cFP8
2 /cFP32

1

(2)

where cFP32
1 and cFP8

2 are quantization constants
introduced in (Dettmers et al., 2023). After this pro-
cess, we can update the dynamic LoRA parameters
using:

WBF16
dw↓b ←WBF16

dw↓b − η∇WBF16
dw↓b
LDY
↓b

WBF16
up↓b ←Wup↓b − η∇WBF16

up↓b
LDY
↓b

(3)

Algorithm 1 describes the workflow of our pro-
posed QDyLoRA in detail.

714

Table 3: Comparing the performance of DyLoRA, QLoRA and QDyLoRA across different evaluation ranks. all
models receives the same training settings. Maximum LoRA rank is set to 64. The results are reported in terms of
exact matching.

Data;LLM Method Rank
1 2 4 8 16 32 64

GSM8K;LLaMA-7b
DyLoRA 12.96 16.91 17.06 19.94 18.50 18.35 14.94
QLoRA 0.0 0.0 0.0 0.0 0.0 0.0 12.66

QDyLoRA 12.59 15.09 18.50 16.76 16.91 18.65 14.71

TriviaQA;LLaMA-7b
DyLoRA 19.27 23.20 22.99 23.32 23.25 24.12 22.43
QLoRA 0.0 0.0 0.0 0.0 0.0 0.0 15.52

QDyLoRA 6.66 12.49 17.16 19.51 20.09 21.65 20.27

GSM8K;LLaMA2-13b
DyLoRA OOM OOM OOM OOM OOM OOM OOM
QLoRA 0.0 0.0 0.0 0.0 0.0 0.0 21.08

QDyLoRA 1.90 15.01 22.97 25.55 24.26 23.81 22.08

3 Experiments and Evaluation

This section evaluates the efficiency and efficacy
of QDyLoRA through several instruct-fine-tuning
tasks. The first experiment compares QDyLoRA
with QLoRA on Massively Multitask Language Un-
derstating (MMLU) benchmark (Hendrycks et al.,
2020), consisting of more than 50 different tasks,
spanning from fundamental mathematics and U.S.
history to computer science and law. As shown
in Table 11, we finetune LLaMA-7b, LLaMA-13b,
LLaMA2-13b, and Falcon40b on different datasets,
Alpaca (Taori et al., 2023), OASST1 (Köpf et al.,
2023), Self-Instruct (Wang et al., 2022), and FLAN-
v2 (Chung et al., 2022), using QLoRA and QDy-
LoRA techniques. We use the same training bud-
get and maximum LoRA rank 2 for each tech-
nique. The results consistently show that QDy-
LoRA achieves a superior performance by finding
the optimal rank.

The second experiment provides a more in-depth
comparison between QLoRA and QDyLoRA. In
particular, we fairly finetuned Falcon-40b on We-
bGLM (Liu et al., 2023) and GSM8k (Cobbe et al.,
2021) benchmarks, and compared their test per-
formances across different ranks. As described in
Table 2, QDyLoRA attains superior performance,
notably when employing its optimal ranks (Rank
2 for Web-GLM and Rank 8 for GSM8k). Further-
more, QDyLoRA exhibits consistent superiority
over QLoRA, particularly at lower ranks. These
findings emphasize the adaptive nature of QDy-
LoRA in dynamically adjusting its focus during

1The same settings as the original QLoRA work are applied
here.

2The maximum LoRA rank is fixed to 64. While QLoRA’s
rank is always fixed, QDyLoRA can split the training across
ranks in range 1 to 64.

fine-tuning, leading to enhanced efficiency and ef-
ficacy compared to its static counterpart, QLoRA.
The third experiment compares the performance
of DyLoRA, QDyLoRA, and QLoRA on GSM8k
and TriviaQA (Joshi et al., 2017) while adopting
LLaMA2-13b and LLaMA-7b as LLMs. Table
3 reports the results. As the table illustrates, for
smaller-size models, i.e. LLaMA-7b, DyLoRA and
QDyLoRA both perform superior than QLoRA.
For larger models, i.e. LLaMA2-13b, DyLoRA
fails due to the out-of-memory (OOM) error while
QDyLoRA works the best in such situations.

4 On the semi-sorted behavior of
QDyLoRA

As shown in Table 2, QDyLoRA reveals a semi-
sorted performance across ranks. We justify this
behavior by pointing out the limited finetuning bud-
get. In a limited budget assumption, QDyLoRA
updates its lower ranks more frequently than its
higher ranks. That is because of the fact that lower
ranks are also updated when higher ranks are se-
lected. In other words, lower ranks have more
chance to get updated than higher ranks. Hence,
lower ranks are more tuned than higher ranks.

5 Conclusion

QDyLoRA offers an efficient and effective tech-
nique for LoRA-based fine-tuning LLMs on down-
stream tasks. Eliminating the need for fine-tuning
multiple models to find the optimal LoRA rank and
offering the possibility of fine-tuning larger LLMs
are two main advantages of QDyLoRA. The exper-
imental results demonstrated that the optimal rank
for QDyLoRA can be surprisingly low, yet it con-
sistently outperforms QLoRA. QDyLoRA provides
greater flexibility for deploying LLMs in various

715

contexts and represents a promising step towards
making fine-tuning large language models more
accessible and efficient.

Limitations

While the 4-bit QDyLoRA exhibits notable per-
formance, it falls short of achieving the perfor-
mance levels of full precision fine-tuning. One
possible solution could be dynamic quantized Dy-
LoRA (DyQDyLoRA), in which the quantization
level could also vary during finetuning. In particu-
lar, the finetuning strategy can dynamically switch
between different quantization levels based on a
predefined learning feedback. Additionally, further
research is required to investigate the impact of
LoRA's scalar and the range of underlying ranks in
QDyLoRA.

References
Armen Aghajanyan, Luke Zettlemoyer, and Sonal

Gupta. 2020. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. arXiv
preprint arXiv:2012.13255.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei,
Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. 2023.
Parameter-efficient fine-tuning of large-scale pre-
trained language models. Nature Machine Intelli-
gence, 5(3):220–235.

Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Par-
tovi Nia, James J Clark, and Mehdi Rezagholizadeh.
2022. Krona: Parameter efficient tuning with kro-
necker adapter. arXiv preprint arXiv:2212.10650.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2021. Towards a
unified view of parameter-efficient transfer learning.
arXiv preprint arXiv:2110.04366.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.

2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790–2799. PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. arXiv preprint arXiv:1705.03551.

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte,
Sotiris Anagnostidis, Zhi-Rui Tam, Keith Stevens,
Abdullah Barhoum, Nguyen Minh Duc, Oliver Stan-
ley, Richárd Nagyfi, et al. 2023. Openassistant
conversations–democratizing large language model
alignment. arXiv preprint arXiv:2304.07327.

Se Jung Kwon, Jeonghoon Kim, Jeongin Bae, Kang Min
Yoo, Jin-Hwa Kim, Baeseong Park, Byeongwook
Kim, Jung-Woo Ha, Nako Sung, and Dongsoo Lee.
2022. Alphatuning: Quantization-aware parameter-
efficient adaptation of large-scale pre-trained lan-
guage models. arXiv preprint arXiv:2210.03858.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin A Raf-
fel. 2022. Few-shot parameter-efficient fine-tuning
is better and cheaper than in-context learning. Ad-
vances in Neural Information Processing Systems,
35:1950–1965.

Xiao Liu, Hanyu Lai, Hao Yu, Yifan Xu, Aohan Zeng,
Zhengxiao Du, Peng Zhang, Yuxiao Dong, and Jie
Tang. 2023. Webglm: Towards an efficient web-
enhanced question answering system with human
preferences. arXiv preprint arXiv:2306.07906.

Yuning Mao, Lambert Mathias, Rui Hou, Amjad Alma-
hairi, Hao Ma, Jiawei Han, Wen-tau Yih, and Madian
Khabsa. 2021. Unipelt: A unified framework for
parameter-efficient language model tuning. arXiv
preprint arXiv:2110.07577.

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. 2022.
Lst: Ladder side-tuning for parameter and memory
efficient transfer learning. Advances in Neural Infor-
mation Processing Systems, 35:12991–13005.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model.

716

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan
Kobyzev, and Ali Ghodsi. 2022. Dylora: Parameter
efficient tuning of pre-trained models using dynamic
search-free low-rank adaptation. arXiv preprint
arXiv:2210.07558.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-
guage model with self generated instructions. arXiv
preprint arXiv:2212.10560.

5.1 Appendices

6 Supplementary Material

6.1 Hyperparameters

Table 4 provides an overview of the hyperparam-
eters and experimental configurations employed
in this study, which are crucial configurations that
determine various aspects of the training process
and model behavior in this study. Common key pa-
rameters across the experiments include the choice
of optimizer, Adam-Beta2 value, maximum gra-
dient norm, and warmup ratio, which collectively
influence how the model adjusts its weights during
training. LoRA-specific parameters such as LoRA
dropout probability, maximum LoRA rank, and
alpha value control the behavior of LoRA layers.
Additionally, double quantization and quantization
type impact the precision of numerical representa-
tions within the model, which are considered the
same as baselines. Learning rate scheduling and
weight decay contribute to the optimization process,
helping to prevent overfitting and stabilize training.
Random seeds ensure reproducibility, while the
specified GPU determines the hardware used for
training. Each model configuration, whether for
the Web-GLM, GSM8k, or the specific experiment
outlined in Table 1 and Table 3, features param-
eters tailored to the characteristics of the dataset
and the computational resources available. These
hyperparameters collectively shape the training pro-
cess, ultimately influencing the performance and
effectiveness of the models in the study.

6.2 Generated Text Quality

To describe the quality of texts generated by QDy-
LoRA, a sample query taken from GSM8k is fed
to Falcon-40b trained by QDyLoRA. Below, we
report the generated answers for different LoRA
ranks.

Query: Janet’s ducks lay 16 eggs per day. She
eats three for breakfast every morning and bakes
muffins for her friends every day with four. She

Model Parameter Value

Common settings

Optimizer paged-adamw-32bit
Adam-Beta2 0.999

Max-Grad-Norm 0.3
Warmup Ratio 0.03
LoRA-Dropout 0.05

LoRA-r 64
LoRA-Alpha 16

LoRA-Module all
Double-Quant True
Quant-Type nf4

LR Scheduler Constant
Learning Rate (LR) 1e-5

Weight Decay 0.0
Seeds [42]
GPU Tesla V100-PCIE-32GB

Web-GLM

Max-Steps 2700
Gradient-Accumulation-Step 2

Source-Max-Len 2048
Target-Max-Len 2048

Batch Size 16

GSM8k

Max-Steps 300
Gradient-Accumulation-Step 2

Source-Max-Len 2048
Target-Max-Len 2048

Batch Size 16

Table 1

Max-Steps 5000
Gradient-Accumulation-Step 16

Source-Max-Len 16
Target-Max-Len 512

Batch Size 32

Table 3 - GMS8k

Save-Steps 30
Early-Stopping-Patience 5

Source-Max-Len 1024
Target-Max-Len 1024

Batch Size 2 for DyLoRA; 8 for QLoRA/QDyLoRA
Gradient-Accumulation-Step 8 for DyLoRA; 2 for QLoRA/QDyLoRA

Table 3 - TriviaQA

Save-Steps 200
Early-Stopping-Patience 5

Source-Max-Len 512
Target-Max-Len 512

Batch Size 4 for DyLoRA; 4 for QLoRA/QDyLoRA
Gradient-Accumulation-Step 16 for DyLoRA; 1 for QLoRA/QDyLoRA

Table 4: The list of hyperparameters employed across
various experiments in our study. The common set-
tings are applied to each experiments. If a parameter is
not explicitly mentioned, it means that we use default
values from HuggingFace Transformers v’4.28.0.dev0’
(source: https://huggingface.co/docs/transformers).

sells the remainder at the farmers’ market daily for
$2 per fresh duck egg. How much in dollars does
she make every day at the farmers’ market?

Rank=64: Janet has 16 - 3 - 4 = «16-3-4=7»7
eggs left. She sells 7 - 16 = «7-16=9»9 eggs at the
farmers’ market.She makes 9 * 2 =«9*2=18»18 at
the farmers’ market every day.

Rank=32: She eats 3 eggs for breakfast and
bakes 4 muffins per day, so she uses 3 + 4 =
«3+4=7»7 eggs per day. She has 16 - 7 = «16-
7=9»9 eggs left over each day. She sells these eggs
at the farmers’ market for $2 per egg, so she makes
2 * 9 = «2*9=18»18 per day at the market.

Rank=28: She eats 3 eggs for breakfast and
bakes 4 muffins per day, so she uses 3+4 =
«3+4=7»7 eggs per day. She sells 16-7 = «16-7=9»9
eggs per day for $2 per egg. She makes 9*2 =
«9*2=18»18 per day at the market.

Rank=16: Janet’s ducks lay 16 eggs per day

717

and she eats 3 for breakfast every morning so she
has 16-3=13 eggs left. Janet bakes 4 muffins every
day and she uses 4 eggs so she has 13-4=9 eggs
left. Janet sells the remaining eggs at the farmers’
market for $2 each so she makes 9*2=«9*2=18»18
dollars a day. Janet makes 18 dollars a day at the
farmers’ market.

718

