
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 728–737
November 12-16, 2024 ©2024 Association for Computational Linguistics

PARA: Parameter-Efficient Fine-tuning with Prompt Aware
Representation Adjustment

Zequan Liu1∗ Yi Zhao2∗ Ming Tan3 Wei Zhu4† Aaron Xuxiang Tian 5

1 RWTH Aachen University, Aachen, Germany
2 University of Pennsylvania, USA

3 Southern University of Science and Technology, Shenzhen, China
4 University of Hong Kong, Hong Kong, China
5 Carnegie Mellon University, Pittsburgh, USA

Abstract

In the realm of parameter-efficient fine-tuning
(PEFT) methods, while options like LoRA are
available, there is a persistent demand in the in-
dustry for a PEFT approach that excels in both
efficiency and performance within the context
of single-backbone multi-tenant applications.
This paper introduces a new and straightfor-
ward PEFT technique, termed Prompt Aware
Representation Adjustment (PARA). The core
of our proposal is to integrate a lightweight
vector generator within each Transformer layer.
This generator produces vectors that are respon-
sive to input prompts, thereby adjusting the
hidden representations accordingly. Our exten-
sive experimentation across diverse tasks has
yielded promising results. Firstly, the PARA
method has been shown to surpass current
PEFT benchmarks in terms of performance,
despite having a similar number of adjustable
parameters. Secondly, it has proven to be more
efficient than LoRA in the single-backbone
multi-tenant scenario, highlighting its signif-
icant potential for industrial adoption.

1 Introduction

In industrial applications, large language models
(LLMs) are frequently utilized in a single-instance,
multi-tenant configuration, as highlighted in Chen
et al.’s 2023 study on PunicaML (Chen et al., 2023).
An instance of this is when an LLM vendor of-
fers a model as a service (MaaS), as described
by Gan et al. in 2023 (Gan et al., 2023). In this
arrangement, various clients can tailor the LLM
to their specific needs using their own parameter-
efficient fine-tuning (PEFT) modules. A locally
installed LLM is typically required to manage a
variety of tasks for different tenants, each with
their own set of PEFT parameters. However, while
techniques like Low-Rank Adaptation (LoRA) (Hu

∗Equal contributions.
† Corresponding author. Email: michael-

wzhu91@gmail.com.

et al., 2021) are adept at fine-tuning LLMs, they
add considerable latency to each generation step
because the low-rank components cannot be inte-
grated into the main model structure. On the other
hand, (IA)3 (Liu et al., 2022a), which relies solely
on dot product operations, is a more efficient PEFT
approach but may lack the necessary expressive-
ness. Consequently, there is a pressing need in the
industry for a PEFT method that strikes a balance
between efficiency and effectiveness.

In this work, we propose a novel PEFT method
called Prompt Aware Representation Adjustment
(PARA) (depicted in Figure 1). Our method fine-
tuned the LLMs by directly modifying the hidden
representations in the model by multiplying them
by adjusting vectors and thus regulating the be-
haviors of LLMs. Unlike the previous literature
like Liu et al. (2022a) or Ben-Zaken et al. (2021),
we introduce a novel prompt-aware mechanism to
the PEFT method. The adjusting vectors are not
randomly initialized and fixed across different in-
put prompts. Instead, we install a vector generator
(VG) before each Transformer layer, taking the
input prompts’ hidden states as input and gener-
ating the adjusting vectors as outputs. VG is a
lightweight bottleneck architecture consisting of a
pooling layer, a down-projection layer, an activa-
tion function, and an up-projection layer.

Certainly! Here’s the revised version of your
text with the LaTeX formatting preserved:

We perform a wide range of experiments across
a diverse set of tasks to establish the efficacy of our
PARA approach. It’s important to note that our ap-
proach consistently surpasses robust PEFT bench-
marks with similar adjustable parameter limits, par-
ticularly the latest LoRA iterations, (IA)3 (Liu et al.,
2022a), and BitFit (Ben-Zaken et al., 2021). We
also demonstrate that our method exhibits substan-
tially reduced latency in a multi-tenant environment
compared to LoRA-based approaches, highlighting
its suitability for real-world applications.

728

Figure 1: A schematic representation of our PARA approach is depicted below. On the left, the vector generator
is composed of several components, including a pooler, a down-projection layer, an activation function, and an
up-projection layer. This generator takes the hidden states of the prompt as input and produces adjusting vectors as
output. On the right, these adjusting vectors are used to scale the Query (Q) and Value (V) hidden states within the
MHSA (Multi-Head Self-Attention) module, as well as the Up (U) hidden states within the feed-forward network.

Our contributions can be encapsulated as fol-
lows:

• We introduce an innovative PEFT technique,
PARA, which refines LLMs by producing ad-
justment vectors based on input prompts to
alter the hidden states of LLMs.

• Our comprehensive experiments and analyses
reveal that our PARA system is (a) feasible
and surpasses the competition within compa-
rable parameter constraints. (b) swift during
the inference phase for LLMs.

2 Related works

Parameter-efficient fine-tuning (PEFT) entails se-
lectively optimizing a subset of parameters within
a large pre-trained model while leaving the core
model architecture intact for adaptation purposes
(Ding et al., 2022; Zhang et al., 2023b). In con-
trast, addition-based techniques involve integrating
extra neural components or parameters into the ex-
isting model framework. Notable contributions in
this domain include Adapter (Houlsby et al., 2019;
Rücklé et al., 2020; Zhang et al., 2023b), Prefix
tuning (Li and Liang, 2021), Prompt tuning (Lester
et al., 2021), P-tuning V2 (Liu et al., 2022b), (IA)3

(Liu et al., 2022a), and BitFit (Ben-Zaken et al.,
2021). Conversely, specification-based methods in-
volve the explicit designation of parameters that are

either adjustable or subject to pruning (Ben-Zaken
et al., 2021; Guo et al., 2021; Zhao et al., 2020).
The reparameterization-based strategies have gar-
nered significant interest (Hu et al., 2021). These
approaches convert the parameters being optimized
into a format that is both low-rank and parameter-
efficient. Such PEFT methods are underpinned by
the insight that the dimensionality intrinsic to fine-
tuning is relatively low (Aghajanyan et al., 2021).
LoRA (Hu et al., 2021), for instance, posits that the
variation in weights during tuning is characterized
by a low intrinsic rank, and thus focuses on optimiz-
ing the low-rank factorization of the weight matrix
changes. PEFT techniques have found broad ap-
plication, particularly with the rise of open-source
large-scale language models (Zhao et al., 2023) and
the trend of tailoring these models to specific use
cases through instruction tuning (Taori et al., 2023;
Dettmers et al., 2023).

In this research, we introduce a novel frame-
work known as PARA, which is designed for the
parameter-efficient fine-tuning of Large Language
Models (LLMs). This approach not only enhances
efficiency during LLM inference but also delivers
superior performance across various downstream
applications.

729

3 Methods

3.1 Preliminaries
Transformer model Currently, the most widely
used open-sourced large language models adopt the
stacked Transformer architecture (Vaswani et al.,
2017). The transformer block is primarily con-
structed using two key submodules: a multi-head
self-attention (MHA) layer and a fully connected
feed-forward (FFN) layer. Denote the input se-
quence’s length as l, the hidden states’ dimension
as dmodel, and the dimension at the FFN module as
dffn. The MHA is given as follows:1

softmax
(

QK√
dmodel

)
V, (1)

where Q = xWQ, K = xWK , V = xW V , x ∈
Rl×dmodel is the input tensor. WQ,WK ,W V ∈
Rdmodel×dmodel are the query, key, and value pro-
jection layers (denoted as the Query, Key, and
Value modules, or the Q, K, V modules). The FFN
module consists of linear transformations and an
activation function gffn such as ReLU or GELU
(Hendrycks and Gimpel, 2016). Take the FFN mod-
ule in the LlaMA-2 models (Touvron et al., 2023)
as example:

(gffn(G) ∗ U)WD, (2)

where G = xWG, U = xWU , WG,WU ∈
Rdmodel×dffn (denoted as Gate and Up module,
or the G and U modules).
Task formulation Denote the task’s training set
as Dtrain = (xm, ym),m = 1, 2, ...,M , where M
represents the number of samples. In this work, we
only consider the case where input xm and target
ym are both text sequences.

3.2 PARA
Now we present the framework of our novel

Prompt Aware Representation Adjustment (PARA)
method.
Formulation Denote the hidden state of the in-
put prompt with length Tins at the current Trans-
former layer as h. As shown in Figure 1, the vector
generator VG() use h as input to generate three
learned vectors, lq, lv ∈ Rdmodel and lu ∈ Rdffn ,
with a vector generator:

lq, lv, lu = VG(h), (3)
1We omit the multi-head setting for simplicity of illustra-

tions.

and these generated vectors are used to modify
the hidden representations in the self-attention
and FFN modules. Thus, under PARA, the self-
attention mechanism of Transformer (in Equation
1) is changed to

softmax
(
Q

′
K/

√
dmodel

)
V

′
, (4)

where Q
′
= lq⊙Q, V

′
= lv⊙V , and ⊙ denotes the

element-wise dot product. And the FFN module
(Equation 2) is modified to

(gffn(G)⊙ U
′
)WD, (5)

where U
′
= lu ⊙ U .23

Vector generator Now we introduce the central
component of our PARA framework, the vector
generator denoted as VG(). This function accepts
h as its input and is composed of a pooling module
along with a pair of projection operations, each
accompanied by an activation function. The pro-
cess begins by converting h into a single vector
using the Pooler() function. In line with the works
of Radford et al. (2018) and Lewis et al. (2019),
Pooler() outputs the vector representation corre-
sponding to the final token in the prompt. Subse-
quently, the pooled vector is projected from the
dimension dmodel down to r < dmodel through a
projection layer defined by W vg

down ∈ Rdmodel×r.
This is followed by the application of an activation
function gvg, after which the vector is projected
to the dimension dout = 2 ∗ dmodel + dffn via
another projection layer, utilizing the weight ma-
trix W vg

up and bias term bvgup. Mathematically, the
vector generator can be expressed by the following
equations:

l = (gvg(Pooler(h)W vg
down))W

vg
up + bvgup,

lq, lv, lu = Split(l), (6)

where the Split() function is responsible for divid-
ing the vector into three separate vectors, each of
dimension dmodel, dmodel, and dffn, respectively.

The concept of prompt-awareness is derived
from studies on in-context learning. As shown
by Rubin et al. (2022) and Li et al. (2023), enhanc-
ing the performance of Large Language Models
(LLMs) can be achieved by dynamically creating

2We use the "broadcasting notation" in the Equations 4 and
5. Take so that the (m,n)-th entry of U

′
is lu[n]⊙ U [m,n].

3From our preliminary experiments, we find that generat-
ing adjustment vectors for the other hidden states like K and
G will not result in clear performance gains.

730

an expanded prompt that includes examples tai-
lored to the specific input prompt. It has been
observed that distinct input prompts necessitate
unique examples to evoke more effective responses
from LLMs. Similarly, the idea of tailoring PEFT
parameters to the input prompt could enhance the
method’s expressive capabilities and more pre-
cisely control the conduct of LLMs.

It’s important to recognize that causal language
models (CLM), which are based on decoders, of-
ten utilize the KV cache mechanism4 to enhance
efficiency during the generation process. The vec-
tor generators in our system integrate flawlessly
with this KV cache mechanism. This is because
the vectors lq, lv, and lu are produced when the
input instruction (or prompt) is initially processed
by the LLM. These vectors are then reused for the
generation of subsequent tokens, and the vector
generators are not invoked again. On the other
hand, the LoRA method introduces reparameter-
izations to the model’s parameters, necessitating
that its low-rank weight matrices be included in
the forward calculations for each token generation
step, which results in increased latency.

4 Experiments

In this section, we conduct experiments to evalu-
ate our PARA method.

4.1 Baselines

We compare our PARA framework with the
current SOTA PEFT baseline methods: (a) (IA)3

(Liu et al., 2022a), which multiplies learnable
vectors to the hidden representations of LLMs.
(b) Houlsby-Adapter (Houlsby et al., 2019). (c)
Learned-Adapter (Zhang et al., 2023b). (d) LoRA
(Hu et al., 2021). (e) AdaLoRA (Zhang et al.,
2023a). (f) SSP (Hu et al., 2022), which combines
different PEFT methods. The baselines are imple-
mented using Transformers (Wolf et al., 2020a) or
their open-sourced codes.

4.2 Datasets and evaluation metrics

We experiment on the following benchmark
tasks: (a) three benchmark question-answering
tasks: SQuAD (Rajpurkar et al., 2016) and two
tasks from the SuperGLUE benchmark (Wang
et al., 2019) (BoolQ, COPA). (b) two widely used
LLM evaluation benchmarks, MT-Bench (Zheng

4https://www.dipkumar.dev/
becoming-the-unbeatable/posts/gpt-kvcache/

et al., 2023), MMLU (Hendrycks et al., 2020). (c)
A proprietary LLM evaluation benchmark, LLM-
Eval1, for internal LLM developments of an indus-
trial participant. (d) a proprietary high-school-level
mathematical solving dataset, HSM10K. (e) a pro-
prietary SQL generation task, Q2SQL. The above
tasks’ dataset introductions, statistics, and evalua-
tion metrics are detailed in Appendix A.

4.3 Experiment Settings

Computing infrastures We run all our experi-
ments on NVIDIA A40 (48GB) GPUs.
Pretrained backbones The main experiments
use the most recent open-sourced LLM, LlaMA-2
7B released by Meta (Touvron et al., 2023) as the
pretrained backbone model. We will also use the
LlaMA-2 13B model and Gemma 2B (Team et al.,
2024) in the ablation studies.
Prediction heads After receiving a prompt or
instruction, all the predictions are generated using
the language modeling head (LM head). For de-
coding during inference, we use beam search with
beam size 3.
Hyper-parameters for the PARA framework
In our experiments, unless otherwise specified, we
set: (a) the bottleneck dimension r of the PARA
vector generator to 12, (b) the activation function
gvg to the GeLU activation function (Hendrycks
and Gimpel, 2016). (c) The W vg

down is initialized
with a Gaussian distribution of mean 0 and std 0.02.
W vg

up is zero initialized, and bvgup is initialized with
ones. Under the above settings, our PARA method
will introduce 8.9M tunable parameters to LlaMA-
2 7B.
Training settings for PARA Utilizing the Hug-
ginFace Transformers (Wolf et al., 2020b), PEFT
(Mangrulkar et al., 2022), or the original code
repositories, we implement all the methods for
training and prediction tasks. When fine-tuning
the LlaMA-2 7B model, the sequence length is
capped at 2048. The training epochs are limited
to a maximum of 10. The batch size is adjusted
to 16 for tasks with fewer than 10k training sam-
ples, and 128 for larger datasets. AdamW serves
as the optimizer, employing a linear learning rate
decay strategy with a 6% warm-up period over the
training steps. The learning rate is configured at
1e-4. All other hyper-parameters align with those
used by Wolf et al. (2020b). The model’s perfor-
mance is assessed on the development set every
200 steps. Early stopping is initiated with a pa-

731

https://www.dipkumar.dev/becoming-the-unbeatable/posts/gpt-kvcache/
https://www.dipkumar.dev/becoming-the-unbeatable/posts/gpt-kvcache/

Datasets #train #dev #test |Y| Type Labels Metrics
BoolQ 9.4k 1.6k 1.6k 2 Question Answering True, False acc
COPA 0.4k 0.05k 0.05k 2 Question Answering choice1, choice2 acc

SQuAD 87k 1k 5.9k - Question Answering - f1-em
MT-Bench - - 80 - Question Answering - GPT-4 scores

MMLU - 1.5k 14.1k - Question Answering - acc
HSM10K 9K 0.6K 0.7K - Math reasoning - acc
Q2SQL 60k 4K 10K - SQL generation - acc

LLM-Eval1 - - 3.6k - Question Answering - acc
UltraChat 766k 7.7k - - Instruction tuning - -

Table 1: The statistics of the datasets evaluated in this work. |Y| is the number of classes for a classification task.

Method Tunable HSM10K Q2SQL SQuAD BoolQ COPA
Params (acc) (acc) (f1-em) (acc) (acc)

Full-FT 7B 57.9 82.9 89.5 88.7 91.9
Baselines PEFT methods

Housbly-Adapter 9.4M 52.8 80.4 87.3 84.5 90.4
Learned-Adapter 9.5M 53.7 81.3 87.6 85.9 90.6

SSP 8.6M 54.6 81.5 87.4 86.4 91.1
(IA)3 9.8M 54.3 81.2 87.6 86.2 90.7
LoRA 10.0M 55.1 81.8 87.7 86.3 90.9

AdaLoRA 10.0M 55.6 82.2 87.5 87.0 91.2
Our proposed method

PARA 8.9M 56.3 82.8 88.5 87.7 92.0

Table 2: The Overall comparison of the SQuAD, BoolQ, COPA, HSM10K and Q2SQL tasks. The backbone model
is LLM-Assist 7B. We report the median performance over five random seeds. Bold and Underline indicate the best
and the second-best results. The metric for each task is explained in Appendix A.2.

tience level of 10, meaning training will be halted
if the model fails to record a lower loss on the de-
velopment set for 10 consecutive evaluations. The
optimal checkpoint identified on the development
set is then applied to make predictions on the test
set.
Reproducibility We run each task under five
different random seeds and report the median per-
formance on the test set of each task.

4.4 Main results

The outcomes of our experiments on the SQuAD,
BoolQ, COPA, HSM10K, and Q2SQL benchmarks
are detailed in Table 2, where the count of ad-
justable parameters is listed in the second col-
umn. The data in Table 2 indicates that our PARA
approach surpasses the standard methods on all
five benchmarks, with an equivalent or reduced
number of adjustable parameters. Notably, PARA
achieves better results than the previous state-of-
the-art LoRA-style baselines, namely LoRA and

AdaLoRA, while using a similar parameter count.
After fine-tuning the LLM-Assist 7B model on

the UltraChat dataset (Ding et al., 2023) using our
PARA configuration or the AdaLoRA techniques,
we proceed to assess its performance on the de-
manding benchmarks: MT-Bench, MMLU, and
LLM-Eval1. The trials are executed in a zero-shot
scenario, with no exemplar instances appended to
the input prompts. The outcomes are detailed in
Table 3. Aligning with the findings from the prior
experiments (Table 2), our PARA approach sur-
passes the AdaLoRA techniques across the three
benchmarks, indicating that PARA is more effec-
tive in bolstering the directive tuning proficiency
of expansive language models.

4.5 Further analysis

Analysis of the inference efficiency To show-
case the inference efficiency of our PARA ap-
proach, we proceed to juxtapose the GPU memory
usage and the rate of generation for PARA, LoRA,

732

Method MT-Bench MMLU LLM-Eval1
gpt4-score (↑) acc acc

AdaLoRA 7.13 46.5 56.8
PARA 7.21 47.4 57.7

Table 3: Performance of general-purpose instruction tuning using the PARA and AdaLoRA methods. The backbone
model is LLM-Assist 7B. ↑ means the metric is higher the better.

Method Beam size Speed (tps) Memory cost (MiB)

LoRA
1 25.1 14616
3 21.9 16104

(IA)3
1 33.1 14572
3 27.6 16036

PARA
1 32.8 14512
3 27.6 15986

Table 4: The memory and speed of LlaMA-2 7B for generating responses with different PEFT methods.

and (IA)3. In the course of this experiment, pa-
rameters of LoRA have not been integrated into
the main model to emulate a single-LLM multi-
tenant configuration as indicated in (Chen et al.,
2023). We have capped the creation of new tokens
to 32, utilizing beam search with a beam width of
either 1 or 3. The initial instruction’s length is set
at 274, employing the LlaMA-2 tokenizer. We exe-
cute the generation process a total of 100 instances
to ascertain the average metric estimates, thereby
diminishing the element of randomness. We intro-
duce two key metrics for gauging efficiency: (a)
the apex memory expenditure during the genera-
tion phase, and (b) the rate of token generation per
second (tps). The comparative data is delineated in
Table 4.

As depicted in Table 4, it is evident that: (a)
our PARA approach possesses a similar number of
adjustable parameters, memory usage, and gener-
ation rate to (IA)3. (b) PARA outperforms LoRA
in terms of speed. The enhanced velocity of PARA
over LoRA can be attributed to several elements:
(i) our vector generation process is both minimal
and efficient during the inference phase. (ii) The
vectors, lq, lv, lu, are generated solely upon the
input of instructions to the LLM and prior to the
creation of the initial new token. These vectors
are then reused in subsequent generation stages
with the aid of KV-cache, eliminating the need for
repeated invocation of the vector generators. Con-
versely, the LoRA technique necessitates the model
to engage the LoRA modules at every generation

stage, leading to increased latency.

Ablation on the pretrained backbones Our
principal experiments were carried out utilizing
the LlaMA-2 7B model. In order to showcase
the versatility of our approach, additional exper-
iments have been executed on both the LlaMA-2
13B model and the Gemma 2B model. The cor-
responding outcomes are detailed within Table 5.
Furthermore, our approach surpasses the perfor-
mance of the foundational methodologies on these
alternative model architectures.

5 Conclusion

This study introduces PARA, an innovative ap-
proach for the parameter-efficient fine-tuning of
expansive language models. We integrate a vector
generator within each Transformer layer to produce
adjustment vectors that modulate the functionality
of the LLM core. The vector generator utilizes the
hidden states of the input prompts as inputs and
features a lightweight bottleneck design. PARA
offers greater efficiency in inference compared to
LoRA, as it operates harmoniously with the KV-
cache system. Our experiments across a range of
tasks show that PARA surpasses the performance of
standard methods while maintaining high inference
efficiency. PARA is advantageous for industrial
applications that leverage LLMs.

733

Method BoolQ SQuAD
(acc) (f1-em)

Results for LlaMA-2 13B model
(IA)3 89.6 90.6
LoRA 90.0 90.9

AdaLoRA 90.2 91.6
PARA 90.9 92.1

Results for Gemma 2B
(IA)3 82.7 78.1
LoRA 82.8 78.4

AdaLoRA 83.0 78.8
PARA 83.6 79.7

Table 5: Results for different PEFT methods on the BoolQ and SQuAD benchmarks. The backbone LMs are
LlaMA-2 13B and Gemma 2B. The metrics are explained in Appendix A.2.

Limitations

We showed that our proposed method can greatly
improve the performance of parameter-efficient tun-
ing on diverse tasks and different pretrained mod-
els (i.e., LlaMA-2 7B, LlaMA-2 13B model and
Gemma 2B), while maintaining efficiency during
inference. However, we acknowledge the following
limitations: (a) the more super-sized open-sourced
LLMs, such as LlaMA-2 70B, are not experimented
due to limited computation resources. (b) Other
tasks in natural language processing, like informa-
tion extraction, were also not experimented. But
our framework can be easily transferred to other
backbone architectures and different types of tasks.
It would be of interest to investigate if the supe-
riority of our method holds for other large-scaled
backbone models and broader types of tasks. And
we will explore it in future work.

Ethics Statement

The finding and proposed method aims to im-
prove the parameter-efficient tuning in terms of
performance and efficiency. The used datasets are
widely used in previous work and, to our knowl-
edge, do not have any attached privacy or ethical
issues. In this work, we have experimented with
LlaMA-2, a modern large language model series.
As with all LLMs, LlaMA-2’s potential outputs can-
not be predicted in advance, and the model may in
some instances produce inaccurate, biased or other
objectionable responses to user prompts. However,
this work’s intent is to conduct research on differ-
ent fine-tuning methods for LLMs, not building

applications to general users. In the future, we
would like to conduct further testing to see how our
method affects the safety aspects of LLMs.

References
Armen Aghajanyan, Sonal Gupta, and Luke Zettle-

moyer. 2021. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. In Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 7319–7328,
Online. Association for Computational Linguistics.

Elad Ben-Zaken, Shauli Ravfogel, and Yoav Gold-
berg. 2021. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-
models. ArXiv, abs/2106.10199.

Lequn Chen, Zihao Ye, Yongji Wu, Danyang Zhuo, Luis
Ceze, Arvind Krishnamurthy University of Washing-
ton, and Duke University. 2023. Punica: Multi-tenant
lora serving. ArXiv, abs/2310.18547.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. QLoRA: Efficient Fine-
tuning of Quantized LLMs. arXiv e-prints, page
arXiv:2305.14314.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin,
Shengding Hu, Zhiyuan Liu, Maosong Sun, and
Bowen Zhou. 2023. Enhancing chat language models
by scaling high-quality instructional conversations.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3029–3051.

Ning Ding, Yujia Qin, Guang Yang, Fu Wei, Zong-
han Yang, Yusheng Su, Shengding Hu, Yulin Chen,
Chi-Min Chan, Weize Chen, Jing Yi, Weilin Zhao,

734

https://doi.org/10.18653/v1/2021.acl-long.568
https://doi.org/10.18653/v1/2021.acl-long.568
https://api.semanticscholar.org/CorpusID:264590197
https://api.semanticscholar.org/CorpusID:264590197
https://doi.org/10.48550/arXiv.2305.14314
https://doi.org/10.48550/arXiv.2305.14314

Xiaozhi Wang, Zhiyuan Liu, Haitao Zheng, Jianfei
Chen, Yang Liu, Jie Tang, Juan Li, and Maosong
Sun. 2022. Delta tuning: A comprehensive study of
parameter efficient methods for pre-trained language
models. ArXiv, abs/2203.06904.

Wensheng Gan, Shicheng Wan, and Philip S. Yu. 2023.
Model-as-a-service (maas): A survey. 2023 IEEE In-
ternational Conference on Big Data (BigData), pages
4636–4645.

Demi Guo, Alexander Rush, and Yoon Kim. 2021.
Parameter-efficient transfer learning with diff prun-
ing. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
4884–4896, Online. Association for Computational
Linguistics.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Dan Hendrycks and Kevin Gimpel. 2016. Gaussian
error linear units (gelus). arXiv: Learning.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790–2799. PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Shengding Hu, Zhen Zhang, Ning Ding, Yadao Wang,
Yasheng Wang, Zhiyuan Liu, and Maosong Sun.
2022. Sparse structure search for parameter-efficient
tuning. ArXiv, abs/2206.07382.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

Xiaonan Li, Kai Lv, Hang Yan, Tianyang Lin, Wei
Zhu, Yuan Ni, Guotong Xie, Xiaoling Wang, and
Xipeng Qiu. 2023. Unified demonstration retriever
for in-context learning. In Proceedings of the 61st
Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 4644–
4668.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin Raffel.
2022a. Few-shot parameter-efficient fine-tuning is
better and cheaper than in-context learning. ArXiv,
abs/2205.05638.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam,
Zhengxiao Du, Zhilin Yang, and Jie Tang. 2022b.
P-tuning: Prompt tuning can be comparable to fine-
tuning across scales and tasks. In Annual Meeting of
the Association for Computational Linguistics.

Rabeeh Karimi Mahabadi, James Henderson, and Se-
bastian Ruder. 2021. Compacter: Efficient low-rank
hypercomplex adapter layers. In NeurIPS.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut,
Younes Belkada, Sayak Paul, and Benjamin Bossan.
2022. Peft: State-of-the-art parameter-efficient fine-
tuning methods. https://github.com/huggingface/
peft.

OpenAI. 2023. GPT-4 Technical Report. arXiv e-prints,
page arXiv:2303.08774.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training. OpenAI.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2022. Learning to retrieve prompts for in-context
learning. In Proceedings of the 2022 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 2655–2671.

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna
Gurevych. 2020. Adapterdrop: On the efficiency
of adapters in transformers. In Conference on Empir-
ical Methods in Natural Language Processing.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford al-
paca: An instruction-following llama model. https:
//github.com/tatsu-lab/stanford_alpaca.

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale,
Juliette Love, et al. 2024. Gemma: Open models
based on gemini research and technology. arXiv
preprint arXiv:2403.08295.

735

https://api.semanticscholar.org/CorpusID:265128707
https://doi.org/10.18653/v1/2021.acl-long.378
https://doi.org/10.18653/v1/2021.acl-long.378
https://api.semanticscholar.org/CorpusID:248693283
https://api.semanticscholar.org/CorpusID:248693283
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter
Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, Daniel M. Bikel, Lukas Blecher, Cris-
tian Cantón Ferrer, Moya Chen, Guillem Cucurull,
David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,
Naman Goyal, Anthony S. Hartshorn, Saghar Hos-
seini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor
Kerkez, Madian Khabsa, Isabel M. Kloumann, A. V.
Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai
Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew
Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael
Smith, R. Subramanian, Xia Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin
Xu, Zhengxu Yan, Iliyan Zarov, Yuchen Zhang, An-
gela Fan, Melanie Kambadur, Sharan Narang, Aure-
lien Rodriguez, Robert Stojnic, Sergey Edunov, and
Thomas Scialom. 2023. Llama 2: Open foundation
and fine-tuned chat models. ArXiv, abs/2307.09288.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. ArXiv, abs/1706.03762.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. 2019. Superglue: A stickier
benchmark for general-purpose language understand-
ing systems. ArXiv, abs/1905.00537.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020a. Transformers: State-of-the-art natu-
ral language processing. In Proceedings of the 2020
conference on empirical methods in natural language
processing: system demonstrations, pages 38–45.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020b. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Qingru Zhang, Minshuo Chen, Alexander W. Bukharin,
Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. 2023a. Adaptive budget alloca-
tion for parameter-efficient fine-tuning. ArXiv,
abs/2303.10512.

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q. Wein-
berger, and Yoav Artzi. 2020. Revisiting few-sample
bert fine-tuning. ArXiv, abs/2006.05987.

Yuming Zhang, Peng Wang, Ming Tan, and Wei-Guo
Zhu. 2023b. Learned adapters are better than man-
ually designed adapters. In Annual Meeting of the
Association for Computational Linguistics.

Mengjie Zhao, Tao Lin, Fei Mi, Martin Jaggi, and Hin-
rich Schütze. 2020. Masking as an efficient alterna-
tive to finetuning for pretrained language models. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2226–2241, Online. Association for Computa-
tional Linguistics.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen
Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,
Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu,
Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 2023. A
Survey of Large Language Models. arXiv e-prints,
page arXiv:2303.18223.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
LLM-as-a-Judge with MT-Bench and Chatbot Arena.
arXiv e-prints, page arXiv:2306.05685.

A Appendix for the datsets and
evaluation metrics

A.1 Datasets
We now introduce the datasets we used for ex-

periments. The detailed statistics of these tasks are
presented in Table 1.
COPA & BoolQ These two tasks are question
answering tasks in the format of binary choices,
and are included in the SuperGLUE benchmark.
Since the original test sets are not publicly avail-
able for these tasks, we follow Zhang et al. (2020);
Mahabadi et al. (2021) to divide the original vali-
dation set in half, using one half for validation and
the other for testing.
SQuAD task Stanford Question Answering
Dataset (SQuAD) (Rajpurkar et al., 2016) is a read-
ing comprehension dataset, consisting of questions
posed by crowdworkers on a set of Wikipedia arti-
cles, where the answer to every question is a seg-
ment of text, or span, from the corresponding read-
ing passage, or the question might be unanswerable.
This task is one of the most widely studied question
answering task in the field. In this work, we use
the v1.1 version of SQuAD. Since the original test
sets are not publicly available for these tasks, we
follow Zhang et al. (2020); Mahabadi et al. (2021)
and split 1k samples from the training set as the
development set, and use the original development

736

https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://api.semanticscholar.org/CorpusID:257631760
https://api.semanticscholar.org/CorpusID:257631760
https://api.semanticscholar.org/CorpusID:259858833
https://api.semanticscholar.org/CorpusID:259858833
https://doi.org/10.18653/v1/2020.emnlp-main.174
https://doi.org/10.18653/v1/2020.emnlp-main.174
https://doi.org/10.48550/arXiv.2303.18223
https://doi.org/10.48550/arXiv.2303.18223
https://doi.org/10.48550/arXiv.2306.05685
https://doi.org/10.48550/arXiv.2306.05685

set as the test set. The detailed statistics of this task
is presented in Table 1.
HSM10K benchmark HSM10K is a dataset
of 10.3K high quality high school level problems
created by the math teachers. These problems are
the most difficult ones from a wide source of math
tests. The solving steps are generated by GPT-4 and
then checked/rewritten by math teachers to ensure
accuracy. We use this dataset to improve the math
reasoning abilities of LLMs. The dataset is split
into 9k/0.6K/0.7K train/dev/test sets.
Q2SQL dataset Q2SQL consists of a corpus of
74K hand-annotated SQL query and natural lan-
guage question pairs. This proprietary dataset is
collected from a company in the health insurance
company, where the SQL are primarily related to
analyzing insurance policies. These SQL queries
are further split into training (60k examples), devel-
opment (4k examples) and test sets (10k examples).
In this work, we will ask the LLMs to generate
SQL queries based on the given natural language
questions.
The MMLU benchmark Massive Multitask
Language Understanding (MMLU) (Hendrycks
et al., 2020) is a new benchmark designed to mea-
sure knowledge acquired during pretraining by eval-
uating large language models exclusively in zero-
shot and few-shot settings. This makes the bench-
mark more challenging and more similar to how
we evaluate humans. The benchmark covers 57
subjects across STEM, the humanities, the social
sciences, and more. It ranges in difficulty from
an elementary level to an advanced professional
level, and it tests both world knowledge and prob-
lem solving ability. Subjects range from traditional
areas, such as mathematics and history, to more spe-
cialized areas like law and ethics. The granularity
and breadth of the subjects makes the benchmark
ideal for identifying a model’s blind spots.
MT-Bench The MT-Bench (Zheng et al., 2023)
dataset is a widely used benchmark for evaluat-
ing the quality of LLMs. It contains 80 questions.
The LLMs generate a two-round dialogue for these
questions, and human annotators or LLM annota-
tors will judge the quality of these responses.
The LLM-Eval1 benchmark This benchmark
is a proprietary dataset, designated to challenge the
LLMs for reasoning, world knowledge, and task
solving. This dataset is used internally to facilitate
LLM development. LLM-Eval1 contains a suite of
47 challenging tasks from multiple domains includ-

ing literature, healthcare, security, coding assistant,
and software development and testing. The number
of test samples are 3,569.
The UltraChat dataset UltraChat (Ding et al.,
2023) is an open-source, large-scale, and multi-
round dialogue data curated with the help of Ope-
nAI’s GPT-3-Turbo API. To ensure generation qual-
ity, two separate GPT-3-Turbo APIs are adopted
in generation, where one plays the role of the user
to generate queries and the other generates the re-
sponse. The user model is carefully prompted to
mimic human user behavior and the two APIs are
called iteratively to create a dialogue. There are
774k dialogues in the dataset, and we split it into a
99:1 train/validate set for the FanLoRA workflow.

A.2 Evaluation metrics/protocols
For the BoolQ and COPA tasks, we report accu-

racy following (Wang et al., 2019).
For the SQuAD dataset, we also report the av-

erage of the F1 score and the exact match score
(denoted as f1-em).

For the HSM10K task, we will consider the cor-
rectness of the final answers. Thus, we report accu-
racy (denoted as acc).

For the Q2SQL, we will consider the correctness
of the generated SQL queries. A predicted SQL
query is correct if and only if it can be executed
and obtains the same results with the ground truth.

For the MMLU and LLM-Eval1 tasks, we will
directly consider the correctness of the final an-
swers. Thus, we report accuracy (denoted as acc).

For evaluating the quality of instruction tuned
LLMs, we follow the practice of utilizing GPT-4
as a unbiased reviewer (Zheng et al., 2023). 80
instructions from the MT-Bench is set as a test
set. We generate model responses from a fine-
tuned model with beam size 3 with the generation
function in Huggingface Transformers (Wolf et al.,
2020a). Then we compare AdaLoRA and Fan-
LoRA’s answers with GPT-4. For each instruction
in MT-Bench, GPT-4 (OpenAI, 2023) is asked to
write a review for both answers from the two meth-
ods, and assigns a quantitative score on a scale of
10 to each response.

737

