
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 738–754
November 12-16, 2024 ©2024 Association for Computational Linguistics

RAG4ITOps: A Supervised Fine-Tunable and Comprehensive RAG
Framework for IT Operations and Maintenance

Tianyang Zhang1, Zhuoxuan Jiang2*, Shengguang Bai1, Tianrui Zhang3, Lin Lin4,
Yang Liu5 and Jiawei Ren1

1Learnable.ai, Shanghai, China
2Shanghai Business School, Shanghai, China

3University of North Carolina Greensboro, Greensboro, NC, USA
4Skema Business School, Paris, France

5North Carolina Central University, Durham, NC, USA
tzhang@aggies.ncat.edu, jzx@sbs.edu.cn, shengguang.bai@learnable.ai

Abstract

With the ever-increasing demands on Question
Answering (QA) systems for IT operations and
maintenance, an efficient and supervised fine-
tunable framework is necessary to ensure the
data security, private deployment and contin-
uous upgrading. Although Large Language
Models (LLMs) have notably improved the
open-domain QA’s performance, how to effi-
ciently handle enterprise-exclusive corpora and
build domain-specific QA systems are still less-
studied for industrial applications. In this pa-
per, we propose a general and comprehensive
framework based on Retrieval Augmented Gen-
eration (RAG) and facilitate the whole business
process of establishing QA systems for IT oper-
ations and maintenance. In accordance with the
prevailing RAG method, our proposed frame-
work, named with RAG4ITOps, composes of
two major stages: (1) Models Fine-tuning &
Data Vectorization, and (2) Online QA Sys-
tem Process. At the Stage 1, we leverage a
contrastive learning method with two negative
sampling strategies to fine-tune the embedding
model, and design the instruction templates to
fine-tune the LLM with a Retrieval Augmented
Fine-Tuning method. At the Stage 2, an effi-
cient process of QA system is built for serv-
ing. We collect enterprise-exclusive corpora
from the domain of cloud computing, and the
extensive experiments show that our method
achieves superior results than counterparts on
two kinds of QA tasks. Our experiment also
provide a case for applying the RAG4ITOps to
real-world enterprise-level applications.

1 Introduction

In recent years, the field of IT operations and main-
tenance has become increasingly significant due
to the rapid expansion of massive data and com-
plex IT systems, such as in cloud computing and
telecommunications (Liu et al., 2023). Efficient IT

*Corresponding author.

Figure 1: Two examples of typical and important QA
scenarios for IT operations and maintenance. The words
with underlines are domain-specific terminologies, and
the [∗] represents enterprise-exclusive terms, e.g. status
codes or service names.

operations and maintenance are critical for provid-
ing the high-quality performance, reliability, and
security for customers in the business area (Du
et al., 2017; Guo et al., 2024).

Traditionally, to operate and maintain those sys-
tems, it highly depends on IT operators’ personal
experience, while often leading to difficulties in
incident management, problem resolution, and
maintaining service quality (Jäntti and Cater-Steel,
2017). Later with the advancements of QA tech-
niques, some QA systems are developed, and IT op-
erators can leverage them to retrieve useful informa-
tion and make a plan on troubleshooting efficiently
in a natural-language human-machine interacting
manner (Huang et al., 2023b; Jäntti and Cater-Steel,
2017; Galup et al., 2009). As shown in Figure 1,
the two typical and important QA tasks are Knowl-
edge Acquisition and Troubleshooting (Rijal et al.,
2022). The former is usually for junior IT opera-
tors to promote their experience, while the latter
is for senior ones to obtain guidance on resolving
difficult software and hardware faults during their
daily work. Therefore, QA systems have become
greatly important in contemporary IT operations
and maintenance.

738

tzhang@aggies.ncat.edu
jzx@sbs.edu.cn
shengguang.bai@learnable.ai


To build the QA systems for IT operations and
maintenance, we observed numerous examples
such as those in Figure 1. Some characteristics and
challenges can be summarized as follows: First, the
QA utterances contain many technical terminolo-
gies (e.g., status codes, service names and other
underlined words/[∗] as illustrated in Figure 1), and
their semantics are exclusive to a specific domain
or even an enterprise. Therefore, the enterprise-
exclusive semantics should be thoroughly modeled.
Second, in terms of data forms, a vast amount of
enterprise-exclusive documents, guides and manu-
als should be processed and modeled into a uni-
formed format to support the continual upgrad-
ing of QA systems. Third, the difficulties of var-
ious QA tasks are distinct. For example, QA for
knowledge acquisition requires a system only to an-
swer the question with straightforward information,
while the QA for troubleshooting demands a much
longer answer that involves referring to multiple
resources. To this end, all the above challenges
lead to a complex problem of how to build an effi-
cient framework that addresses exclusive data and
specific QA tasks.

Intuitively, some open-domain QA systems that
are trained on massive public corpora can be lever-
aged to further fine-tune on domain-specific cor-
pora and tasks, especially with the recent break-
throughs of LLMs (Chowdhery et al., 2023; Bai
et al., 2023; Achiam et al., 2023; Brown et al.,
2020) such as BERT, LLaMA-3 (Touvron et al.,
2023), Qwen, and ChatGLM3 (Zeng et al., 2022;
Du et al., 2022). However, those LLMs are still
too general to be adaptive for distinct QA tasks,
or efficiently support the continuous data or/and
system upgrading in real-world applications.

To address the above-mentioned problems, in
this paper, we leverage the idea of Retrieval Aug-
mented Generation (RAG) which can strengthen
LLMs (Gao et al., 2023), and propose a compre-
hensive RAG framework specific for the domain
of IT operations and maintenance, named with
RAG4ITOps. In accordance with the prevailing
RAG methodology, our framework composes of
two stages: (1) Models Fine-tuning & Data Vector-
ization, and (2) Online QA System Process. The
framework features include a data pipeline for ef-
ficiently processing multi-source and multi-form
enterprise-exclusive corpora, a domain knowledge
augmented embedding model for modeling exclu-
sive semantics, and a supervised fine-tuned LLM
which can support grounded QA tasks.

More specifically, to build a QA system by using
the proposed RAG4ITOps, firstly the enterprise-
exclusive corpora should be collected and prepro-
cessed in advance. After several automatic steps
of data cleaning, chunking and distillation, we can
obtain a high-quality set of text chunks and two
datasets with annotations for fine-tuning the em-
bedding model and the LLM respectively. To bet-
ter distinguish the QA tasks and model enterprise-
exclusive semantics, we fine-tune the embedding
model by adopting the contrastive learning (Gao
et al., 2021) with Homogeneous In-Batch Negative
Sampling (HIS) (Zhang et al., 2023) and Auxiliary
Hard Negative Sampling (AHNS) strategies. Then
the set of text chunks are embedded into vectors by
using the fine-tuned embedding model, and stored
in the vector database. As to the LLM, we also
fine-tune it with QA pairs by adopting a Retrieval
Augmented Fine-Tuning method. The details can
be found in the Methodology section.

In summary, the proposed RAG4ITOps is su-
pervised fine-tunable on both exclusive data and
grounded QA tasks. Note that due to the nature of
RAG mechanism, the vector database can be easily
updated by inserting new data, instead of frequently
refine-tuning the LLM. And the LLM can dynami-
cally incorporate retrieved top-k contents from the
database, which are always latest and most rele-
vant. In this way, the requirement of continuous
data or/and system upgrading is fulfilled with a low
cost. We collect enterprise-exclusive corpora from
the domain of cloud computing, and the experi-
ment results show that our framework can achieve
superior performance than counterparts on both
QA tasks. Our experiment also provides a case
of how to apply the RAG4ITOps into real-world
enterprise-level applications.

The contributions of this paper include:

• To satisfy the ever-increasing demands on
QA systems for IT operations and mainte-
nance, we propose a comprehensive RAG-
based framework named RAG4ITOps. This
framework facilitates the business process of
data modeling and model fine-tuning.

• The proposed framework composes of two
stages: (1) Models Fine-tuning & Data Vec-
torization, and (2) Online QA System Pro-
cess. We leverage several latest techniques to
fine-tune the embedding model and LLM, in-
cluding the contrastive learning method with
Homogeneous In-Batch Negative Sampling

739



and Auxiliary Hard Negative Sampling strate-
gies, the design of instruction templates, and
a Retrieval Augmented Fine-Tuning method.

• The RAG4ITOps features: (1) a data pipeline
that can automatically process multi-source
and multi-form enterprise-exclusive corpora,
(2) a fine-tuned embedding model for model-
ing enterprise-exclusive semantics, and (3) a
fine-tuned generative LLM which can support
distinct QA tasks.

• Real-world corpora of IT operations and main-
tenance for cloud computing were collected,
and extensive experiments demonstrate that
all the components of RAG4ITOps effectively
improve the performance of distinct QA tasks.
The experiments also establish a case for
our framework to be applied across various
enterprise-level applications.

2 Related work

IT Operations and Maintenance. Traditionally,
the quality of IT operations and maintenance varies
because it highly depends on the IT operators’ per-
sonal experience (Notaro et al., 2020). To culti-
vate IT operators and meanwhile manage the ever-
increasing IT-related information and knowledge
well, QA systems are essential to improve effi-
ciency across various application scenarios, de-
veloped by leveraging the development of NLP
techniques (Huang et al., 2023a; Elhoone et al.,
2020). These systems aim to help IT operators
quickly access useful information and develop trou-
bleshooting plans (Rijal et al., 2022). However,
in practice, the IT operators may interact with the
QA systems by several times to make a plan for
difficult tasks like troubleshooting, because current
QA systems are not intelligent enough to provide
a comprehensive solution answer just within once
interaction.

Large Language Models. Recent LLMs have
demonstrated significant advancements in open-
domain QA tasks (Brown et al., 2020; Achiam
et al., 2023). As to those closed-source models,
like GPT-4, Claude and Gemini, they cannot an-
swer domain-specific or even enterprise-exclusive
questions well since they do not trained on any
private documents. The other thing is that those
open-source models, like LLaMA-3 (Touvron et al.,
2023), Qwen, and ChatGLM3 (Zeng et al., 2022;
Du et al., 2022), can be directly fine-tuned on

specific corpora and then provide QA services.
However there are two major concerns. Firstly,
LLMs often tend to generate hallucinated infor-
mation (Guo et al., 2023), which is unbearable
in industrial area. Secondly, faced with the ever-
increasing massive data, the QA systems based on
LLMs have to be refine-tuned frequently, leading
to a much high expense. Therefore, intuitively,
RAG frameworks can remove the concerns and
strengthen the LLMs-based QA systems. A recent
effort to develop domain-specific LLMs, such as
OWL (Guo et al., 2024), have shown promise. But
it still struggles to be adaptive for grounded QA
scenarios in real-world industrial IT operations.

Retrieval Augmented Generation. To address
the limitations of LLMs in factual issue and
domain-specific applications, the RAG framework
has emerged as a promising approach (Gao et al.,
2023). RAG techniques aim to enhance the ca-
pabilities of LLMs by incorporating relevant ex-
ternal information into the input queries, thereby
improving the accuracy and factuality of generated
responses. In many domain-specific applications,
RAG has proven highly effective for modeling
domain-related semantics and improving the LLMs
to output factual and satisfactory answers (Gupta
et al., 2024; Wang et al., 2024; Zhang et al., 2024).
Recent researches have further expanded RAG’s
potential, exploring the fine-tuning methods of pre-
trained LLMs specifically for RAG tasks (Lin et al.,
2023; Zhang et al., 2024; Wang et al., 2023a; Xu
et al., 2023b). This paper also follows the idea of
RAG, while we propose a more comprehensive and
practical RAG framework specific for the domain
of IT operations and maintenanc

3 Methodology

To facilitate the business process of data modeling
and model fine-tuning of QA systems for IT opera-
tions and maintenance, we present the RAG4ITOps
framework and introduce its details in this section.
As shown in Figure 2, the framework includes two
stages. One is for offline model fine-tuning and
data vectorization, and the other is about the online
QA system process based on RAG mechanism.

3.1 Data Preprocessing

Data preprocessing is particularly important for
enterprise-level applications. Due to data privacy
and data heterogeneity, a good data processing
pipeline is essential to generate high-quality dataset

740



Figure 2: Overview of the proposed RAG4ITOps framework for IT operations and maintenance.

for downstream model training. In terms of IT
operations and maintenance, as instanced in Fig-
ure 1, there are some characteristics of enterprise-
exclusive terminologies, multi-source and multi-
form documents and extremely long texts (e.g.,
texts about error log analysis and solution). Thus,
we design a pipeline to preprocess the data.

As shown in Figure 3, the raw enterprise data
colored with blue background are documents (e.g.,
manuals and guides), QA pairs for knowledge ac-
quisition from log (QAK-Log), and QA pairs for
troubleshooting from log (QAT-Log). Firstly, with
the documents, the pipeline includes three main
phases: data cleaning, data chunking and data dis-
tillation. Data cleaning is the process of removing
unrelated tokens from documents. Data chunking
splits long documents to shorter chunks (e.g., each
chunk is less than 800 words), and data distillation
generates more QA data with GPT-3.5/4.

Secondly, after data chunking, we obtain the
dataset of text chunks from documents (TC). After
data distillation, we get a dataset of QA for knowl-
edge acquisition pairs from GPT-3.5/4 (QAK-
GPT). By combining the QAK-Log, QAK-GPT
and QAT-Log datasets, we create a dataset for fine-
tuning the LLM (called Data-LLM) and a dataset
for fine-tuning the embedding model (called Data-
EM). Note that we design some instruction tem-
plates in advance and wrap the Data-LLM for train-
ing the ability of instruction compliance. After the
data preprocessing pipeline, we obtained various
datasets with their statistics summarized in Table 6.
All the details and data examples can be found in
the Appendix section A.2.

3.2 Instruction Template Design

To effectively guide the LLM in generating ap-
propriate responses for different QA tasks, we de-
signed specific instruction templates. These tem-

Figure 3: Data preprocessing method in our frame-
work: datasets with a blue background originate from
enterprise-exclusive corpora, those with a yellow back-
ground are post-preprocessed, and those with a green
background are used for model fine-tuning.

plates serve to structure the input and provide task-
specific context to the model. More detailed infor-
mation on the specific prompts used can be found
in the appendix section A.3.

3.3 Stage 1: Models Fine-tuning & Data
Vectorization

With the preprocessed text chunks and two datasets,
the embedding model and LLM can be fine-tuned
to better adapt for the enterprise-exclusive seman-
tics and QA tasks. As shown in Figure 2, the
Data-EM dataset is used to fine-tune the embed-
ding model, while the Data-LLM dataset is used to
fine-tune the LLM. Especially with the fine-tuned
embedding model, the text chunks dataset can be
vectorized as embeddings which are stored in the
vector database for later online retrieval.

3.3.1 Fine-tuning Embedding Model
More technically, during fine-tuning the embed-
ding model, we employ the Dense Passage Re-
trieval (DPR) framework (Karpukhin et al., 2020)
as our base retrieval method. DPR uses embedding
models to generate dense vector representations of
both queries and passages, enabling efficient and
accurate retrieval. Specifically, we begin with the
pretrained embedding model, BGE-M3 (Xiao et al.,

741



2023), known for its compact size and high per-
formance on the MTEB benchmark (Muennighoff
et al., 2022). To further enhance its retrieval perfor-
mance, we conducted contrastive learning with two
kinds of negative sampling strategies, ensuring it
effectively distinguishes between domain relevant
and non-relevant passages.

Homogeneous In-Batch Negative Sampling
(HIS). To ensure the discriminative capability of
the embeddings, a significant number of negative
samples is necessary (Qu et al., 2020; Wang et al.,
2022). While in-batch negative sampling is a stan-
dard approach for introducing a substantial number
of these samples, it comes with a drawback in our
specific scenario: Negative samples from various
tasks might not effectively distinguish semantic
relationships within a particular context. To ad-
dress this challenge, we structure each mini-batch
to contain training data solely from identical tasks,
thus maintaining homogeneity among the in-batch
negatives and enhancing their contribution to the
embeddings’ discriminative ability. Our methodol-
ogy incorporates both in-batch and hard negatives.
Additionally, we utilize cross-device sharing (Xiao
et al., 2021) to increase the volume of negative
samples available.

Auxiliary Hard Negative Sampling (AHNS).
Given the IT operations and maintenance dataset X ,
we aim to define an encoding function f : X → Rd

that assigns each document chunk or question
xi ∈ X to a position in a d-dimensional embed-
ding space. The goal is for the embeddings of
related chunks and questions (xi, x

′
i) to be prox-

imate, and those of unrelated ones to be distant.
For a random subset (batch) of N positive pairs
XN = {(x̄i, x̃i)}Ni=1, where x̄i, x̃i represents a doc-
ument chunk and its corresponding question. we
define the contrastive loss function for the encoder
f as follows:

Lxi = − log exp(s(x̄i,x̃i)/τ)
exp(s(x̄i,x̃i)/τ)+

∑
x̃j∈XN

exp(s(x̄i,x̃j)/τ)
, (1)

where s(xi, xj) =
f(xi)

⊤f(xj)
∥f(xi)∥∥f(xj)∥ represents the

inner product of the normalized latent representa-
tions of xi and xj , and τ is a temperature scaling
hyperparameter. x̃i is the positive sample associ-
ated with x̄i and all other instances x̃j ̸= x̃i ∈ XN

are considered negative samples. We aim to se-
lect high-quality, informative hard negative exam-
ples from this set. Typically, negative examples
are chosen through random sampling (Chen et al.,

2020b,a). Our approach employs the DPR frame-
work with the initial embedding model to retrieve
top-k relevant chunks for each positive sample. We
then designate all remaining chunks, excluding the
actual document chunks, as hard negative samples

3.3.2 Fine-tuning LLM
For fine-tuning the LLM of RAG4ITOps, we use
a state-of-the-art LLM Qwen-14b-Base (Bai et al.,
2023) as the backbone. Also we leverage two train-
ing methods to enhance the LLM’s ability.

Continue Pre-Training With the preprocessed
domain-specific datasets, we aim to imbue the
Qwen-14b-base model with specialized knowledge
in IT operations and maintenance, enhancing its
ability to understand and generate relevant content
in this domain. The method is aligned with the
standard approach (Gururangan et al., 2020).

Retrieval Augmented Fine-Tuning Method To
enhance the LLM’s ability to utilize retrieved in-
formation in IT operations and maintenance tasks,
we implement a retrieval-augmented fine-tuning
approach. Based on the Data-LLM dataset, we
construct an extended training dataset (Data-LLM)
D = {(x(i) ◦I(i), y(i))}Mi=1, where x(i) ◦I(i) repre-
sents an input query x(i) accompanied by retrieved
chunks I(i), and y(i) represents the output answer.

For each example (x(i), y(i)) ∈ D, we retrieve
the top-k relevant text chunks I(i) ⊂ C based
on x(i). We then create the fine-tuning instances
by combining each retrieved chunk with the ques-
tion using an instruction template (detailed in Ap-
pendix A.3).

The objective function of this supervised instruc-
tion tuning can be denoted as:

Lm = − 1
N

∑N
i=1 Ex,y,I∈Di logP (y(i)|I(i) ◦ x(i)), (2)

where P (y(i)|I(i) ◦ x(i)) is the probability of gen-
erating the correct output y(i) given the input x(i)

augmented with the retrieved chunks I(i). This ap-
proach offers two key benefits: it adapts the LLM
to utilize relevant and latest background knowledge,
and it enables the LLM to generate factual answers.

3.4 Stage 2: Online QA System Process

At Stage 2, as shown in Figure 2, the IT operators
can ask a question. Then the fine-tuned embed-
ding model transforms the question into an embed-
ding and the embedding is used to retrieve relevant
contents from the vector database. We leverage

742



Method Supported Max Length
QA for Knowledge Acquisition QA for Troubleshooting
Acc@1 Acc@5 Acc@20 Acc@1 Acc@5 Acc@20

Text2Vec-base (Xu, 2023) 512 0.314 0.496 0.606 0.735 0.771 0.771
M3E-base (Wang et al., 2023b) 512 0.305 0.572 0.758 0.639 0.735 0.771
GTE-large-zh (Li et al., 2023) 512 0.487 0.708 0.822 0.554 0.687 0.747
BGE-large-zh-v1.5 (Xiao et al., 2023) 512 0.525 0.767 0.902 0.602 0.723 0.735
jina-embeddings-v2-base-zh (Mohr et al., 2024) 8192 0.369 0.674 0.847 0.566 0.747 0.783
BGE-M3 (Chen et al., 2024) 8192 0.610 0.881 0.958 0.651 0.759 0.783
RAG4ITOps (Ours) 8192 0.661 0.919 0.979 0.759 0.795 0.795

Table 1: Comparison of the fine-tuned embedding model with baselines. Acc@K represents top-K retrieval accuracy.

HIS AHNS QA for KA QA for TS
Acc@1 Acc@5 Acc@20 Acc@1 Acc@5 Acc@20

- - 0.661 0.895 0.970 0.711 0.771 0.790
+ - 0.650 0.903 0.974 0.735 0.783 0.795
- + 0.665 0.915 0.970 0.721 0.783 0.795
+ + 0.661 0.919 0.979 0.759 0.795 0.795

Table 2: Ablation study results for the fine-tuned em-
bedding model in RAG4ITOps.

QA for KA QA for TS
Chunks@1 Chunks@5 Chunks@20 Chunks@1 Chunks@5 Chunks@20

15.4 30.9 46.7 27.7 55.6 84.2

Table 3: Response time(ms) for once retrieval.

FAISS (Johnson et al., 2019), a library for effi-
cient similarity search, to identify the most relevant
document chunks. With the retrieved information
and question, they are wrapped by the instruction
template to construct the input prompt for LLM.
Finally, the LLM can answer the question by refer-
ring to all the contents in the input prompt. The
whole process follows the prevailing RAG mecha-
nism and achieves efficient response time.

4 Experiment

4.1 Evaluation Dataset

We collect a dataset called Data-Eval for evalua-
tion. It comprises 319 questions created by domain
experts, among which 236 questions for the knowl-
edge acquisition task and 83 for the troubleshooting
task. Each question is paired with relevant chunks
from the enterprise-exclusive corpora, and all ques-
tions have labbeled answers.

4.2 Baselines and Metrics

We consider the following popular text embedding
models as the baselines for our embedding model
evaluation: GTE-large-zh, BGE-M3, Text2Vec-
base, M3E-base, jina-embeddings-v2-base-zh, and
BGE-large-zh-v1.5. For the LLM evaluation, our
method are compared with several state-of-the-art
language models: Chatglm3-6b, Qwen-7b-Chat,
Llama3-8B-Instruct, and Qwen-14b-Chat.

To evaluate the effectiveness of embedding
model in the knowledge acquisition and trou-
bleshooting tasks, we assessed performance using
the top-k retrieval accuracy (Acc@K). The formal

definition of Acc@K can be defined as follows:
R(q, C) → Ĉ takes as input question q and chunks
C and returns a much smaller set Ĉ, where Ĉ ⊆ C
and |Ĉ| = k ≪ |C|. Top-k retrieval accuracy is the
fraction of questions for which Ĉ contains a span
that can answer the question. In our experiments,
we separately present the results of log retrieval
where the k is set 1, 5 or 20.

To assess the performance of LLM, we employ
two evaluation methods: single-score mode and
pairwise-score mode (Huang et al., 2024; Xu et al.,
2023a; Guo et al., 2024; Zheng et al., 2024). In
Single-score mode, we first select the model to be
tested and generate answers based on given ques-
tions and fixed reference chunks, using the BGE-
M3 embedding model as default. We then utilize
GPT-4 (Achiam et al., 2023) as a scoring model to
evaluate the responses on a scale of 1 to 10, with
higher scores indicating better quality. To ensure
reliability, we run GPT-4 three times for each re-
sponse, and report the average score in our results.
In pairwise-score mode, both models generate an-
swers to identical questions using the same refer-
ence chunks. A scoring model then assesses which
model’s responses are superior, assigning a win to
the better performer and a loss to the other. If the
performance is comparable, both models receive a
tie. Detailed prompts and procedures for both eval-
uation modes are provided in the Appendix A.3.

4.3 Evaluation Results for Embedding Model

In Table 1, our domain knowledge augmented em-
bedding model demonstrates superior performance
compared to baseline models across both tasks.

Specifically for the QA for Knowledge Acqui-
sition task (QA for KA), our full model with Ho-
mogeneous In-Batch Sampling (HIS) and Auxil-
iary Hard Negative Sampling (AHNS) achieves
the highest Acc@5 and Acc@20 scores of 0.919
and 0.979 respectively, outperforming the BGE-M3
baseline by 4.3% and 2.2% on these metrics. In
the QA for Troubleshooting task (QA for TS), our
full model demonstrates the strongest performance,

743



Method QA for Knowledge Acquisition QA for Troubleshooting
Score1 Score2 Score3 Mean Score1 Score2 Score3 Mean

Chatglm3-6b (Du et al., 2022) 5.19 5.28 5.20 5.22 4.01 4.06 4.26 4.11
Qwen-7b-Chat (Bai et al., 2023) 5.89 5.84 5.80 5.84 5.21 5.37 5.22 5.27
Llama3-8B-Instruct (Touvron et al., 2023) 5.32 5.23 5.40 5.32 5.61 5.68 5.62 5.64
Qwen-14b-Chat (Bai et al., 2023) 6.57 6.58 6.63 6.59 5.99 6.07 6.10 6.05
RAG4ITOps (Ours) 6.92 7.01 6.70 6.88 6.72 6.65 6.68 6.68

Table 4: Results of single-score mode evaluation on the fine-tuned LLM. Score1-3 mean that the GPT-4 are called
for three times to evaluate each case.

CPT RAFT QA for KA QA for TS
Score1 Score2 Score3 Mean Score1 Score2 Score3 Mean

- - 6.57 6.65 6.61 6.61 6.15 6.10 6.08 6.11
+ - 6.62 6.61 6.68 6.64 6.14 6.15 6.10 6.13
- + 6.66 6.63 6.72 6.67 6.58 6.75 6.62 6.65
+ + 6.92 7.01 6.70 6.88 6.72 6.65 6.68 6.68

Table 5: Ablation study results for the fine-tuned LLM.

achieving the highest scores across all metrics:
Acc@1 of 0.759, Acc@5 of 0.795, and Acc@20
of 0.795. These results represent improvements
of 16.6%, 4.7%, and 1.5% respectively over the
BGE-M3 baseline.

Additionally, we also evaluated the inference
time of our embedding model on an A100 80G
GPU, as shown in Table 3, and the results demon-
strate the efficiency of our method.

4.4 Evaluation Results for LLM

For single-score mode, we compared our proposed
model against several baseline models, including
Chatglm3-6b, Qwen-7b-Chat, Llama3-8B-Instruct,
and Qwen-14b-Chat. Table 4 shows that our model
with Continue Pre-Training (CPT) and Retrieval
Augmented Fine-Tuning Method (RAFT) achieves
the highest mean scores in both QA for Trou-
bleshooting (6.68) and QA for Knowledge Acqui-
sition (6.88) tasks. These scores represent improve-
ments of 0.63 and 0.29 points respectively over
the Qwen-14b-Chat baseline. As for the pairwise
scores (see Figure 4), our model outperforms all
baselines in both tasks.

4.5 Ablation study

For the embedding model, we evaluated the impact
of HIS and AHNS. Results in Table 2 show that
both techniques contribute to performance gains,
with their combination yielding the best results
across all metrics in both tasks.

For the LLM, we conducted an ablation study
to examine the importance of CPT and RAFT. In
Table 4, the baseline model scored 6.05 for QA for
Troubleshooting and 6.59 for QA for Knowledge
Acquisition. In Table 5, Supervised Fine-Tuning
without chunks (w/o CPT w/o RAFT) showed im-
provements over the baseline. RAFT alone (w/o

Figure 4: Pairwise comparison of our LLM against
baselines in two tasks, evaluated by GPT-4.

CPT w/ RAFT) further improved scores to 6.65
and 6.67, outperforming standard Supervised Fine-
Tuning and demonstrating its effectiveness in en-
hancing model performance. Our full model, incor-
porating both CPT and RAFT, achieved the highest
scores of 6.68 for Troubleshooting and 6.88 for
Knowledge Acquisition. This represents notice-
able improvements of 0.57 points (9.3%) for Trou-
bleshooting and 0.27 points (4.1%) for Knowledge
Acquisition compared to the model (w/o CPT w/o
RAFT), highlighting the complementary benefits
of our proposed techniques

5 Conclusion

In this paper, we introduce RAG4ITOps, a com-
prehensive framework for QA systems tailored for
IT operations and maintenance. Initially, we de-
veloped a dataset construction pipeline, incorpo-
rating data cleaning, chunking, and distillation of
enterprise-exclusive corpora. Additionally, we fine-
tuned an embedding model and enhanced its re-
trieval performance using Homogeneous In-Batch
Negative Sampling and Auxiliary Hard Negative
Sampling strategies. Furthermore, we leveraged
and fine-tuned a LLM enhancing its capabilities
for domain-specific QA tasks with Continue Pre-
Training and Retrieval Augmented Fine-Tuning.
We evaluated our framework through a series of
experiments, designed to assess its performance on
distinct QA tasks with different difficulties, demon-
strating the effectiveness of our approach in the
domain of IT operations and maintenance.

744



Acknowledgement

This work is supported by 2024 Ningbo “Inno-
vation Yongjiang 2035” Key Technology Break-
through Programme (No. 2024Z119). We thank all
the anonymous reviewers for their insightful and
constructive comments.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
Preprint, arXiv:2303.08774.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. Preprint,
arXiv:2309.16609.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu
Lian, and Zheng Liu. 2024. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity
text embeddings through self-knowledge distillation.
Preprint, arXiv:2402.03216.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020a. A simple framework for
contrastive learning of visual representations. In In-
ternational conference on machine learning, pages
1597–1607.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming
He. 2020b. Improved baselines with momentum
contrastive learning. Preprint, arXiv:2003.04297.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1–113.

Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar.
2017. Deeplog: Anomaly detection and diagnosis
from system logs through deep learning. In Pro-
ceedings of the 2017 ACM SIGSAC conference on
computer and communications security, pages 1285–
1298.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. Glm:
General language model pretraining with autoregres-
sive blank infilling. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 320–335.

Hietam Elhoone, Tianyang Zhang, Mohd Anwar, and
Salil Desai. 2020. Cyber-based design for additive
manufacturing using artificial neural networks for
industry 4.0. International Journal of Production
Research, 58(9):2841–2861.

Stuart D Galup, Ronald Dattero, Jim J Quan, and Sue
Conger. 2009. An overview of it service management.
Communications of the ACM, 52(5):124–127.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. Preprint, arXiv:2104.08821.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang
Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
Haofen Wang. 2023. Retrieval-augmented genera-
tion for large language models: A survey. Preprint,
arXiv:2312.10997.

Hongcheng Guo, Yuhui Guo, Jian Yang, Jiaheng Liu,
Zhoujun Li, Tieqiao Zheng, Liangfan Zheng, We-
ichao Hou, and Bo Zhang. 2023. Loglg: Weakly
supervised log anomaly detection via log-event
graph construction. In International Conference on
Database Systems for Advanced Applications, pages
490–501.

Hongcheng Guo, Jian Yang, Jiaheng Liu, Liqun Yang,
Linzheng Chai, Jiaqi Bai, Junran Peng, Xiaorong Hu,
Chao Chen, Dongfeng Zhang, xu Shi, Tieqiao Zheng,
liangfan zheng, Bo Zhang, Ke Xu, and Zhoujun Li.
2024. OWL: A large language model for IT opera-
tions. In The Twelfth International Conference on
Learning Representations.

Aman Gupta, Anup Shirgaonkar, Angels de Luis Bal-
aguer, Bruno Silva, Daniel Holstein, Dawei Li, Jen-
nifer Marsman, Leonardo O Nunes, Mahsa Rouzbah-
man, Morris Sharp, et al. 2024. Rag vs fine-tuning:
Pipelines, tradeoffs, and a case study on agriculture.
Preprint, arXiv:2401.08406.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks.
Preprint, arXiv:2004.10964.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models. Preprint, arXiv:2106.09685.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, et al.
2023a. A survey on hallucination in large language
models: Principles, taxonomy, challenges, and open
questions. Preprint, arXiv:2311.05232.

Shaohan Huang, Yi Liu, Carol Fung, Jiaxing Qi, Hai-
long Yang, and Zhongzhi Luan. 2023b. Logqa:
Question answering in unstructured logs. Preprint,
arXiv:2303.11715.

745

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2309.16609
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2003.04297
https://arxiv.org/abs/2003.04297
https://arxiv.org/abs/2104.08821
https://arxiv.org/abs/2104.08821
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2401.08406
https://arxiv.org/abs/2401.08406
https://arxiv.org/abs/2004.10964
https://arxiv.org/abs/2004.10964
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2311.05232
https://arxiv.org/abs/2311.05232
https://arxiv.org/abs/2311.05232
https://arxiv.org/abs/2303.11715
https://arxiv.org/abs/2303.11715


Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei
Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
Chuancheng Lv, Yikai Zhang, Yao Fu, et al. 2024.
C-eval: A multi-level multi-discipline chinese evalua-
tion suite for foundation models. Advances in Neural
Information Processing Systems, 36.

Marko Jäntti and Aileen Cater-Steel. 2017. Proactive
management of it operations to improve it services.
JISTEM-Journal of Information Systems and Tech-
nology Management, 14(2):191–218.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with gpus. IEEE
Transactions on Big Data, 7(3):535–547.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long,
Pengjun Xie, and Meishan Zhang. 2023. Towards
general text embeddings with multi-stage contrastive
learning. Preprint, arXiv:2308.03281.

Xi Victoria Lin, Xilun Chen, Mingda Chen, Weijia Shi,
Maria Lomeli, Rich James, Pedro Rodriguez, Jacob
Kahn, Gergely Szilvasy, Mike Lewis, et al. 2023.
Ra-dit: Retrieval-augmented dual instruction tuning.
Preprint, arXiv:2310.01352.

Yilun Liu, Shimin Tao, Weibin Meng, Jingyu Wang,
Wenbing Ma, Yanqing Zhao, Yuhang Chen, Hao
Yang, Yanfei Jiang, and Xun Chen. 2023. Logprompt:
Prompt engineering towards zero-shot and inter-
pretable log analysis. Preprint, arXiv:2308.07610.

Isabelle Mohr, Markus Krimmel, Saba Sturua, Moham-
mad Kalim Akram, Andreas Koukounas, Michael
Günther, Georgios Mastrapas, Vinit Ravishankar,
Joan Fontanals Martínez, Feng Wang, et al. 2024.
Multi-task contrastive learning for 8192-token bilin-
gual text embeddings. Preprint, arXiv:2402.17016.

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and
Nils Reimers. 2022. Mteb: Massive text embedding
benchmark. Preprint, arXiv:2210.07316.

Paolo Notaro, Jorge Cardoso, and Michael Gerndt. 2020.
A systematic mapping study in aiops. In Interna-
tional Conference on Service-Oriented Computing,
pages 110–123.

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang
Ren, Wayne Xin Zhao, Daxiang Dong, Hua Wu,
and Haifeng Wang. 2020. Rocketqa: An opti-
mized training approach to dense passage retrieval
for open-domain question answering. Preprint,
arXiv:2010.08191.

Laxmi Rijal, Ricardo Colomo-Palacios, and Mary
Sánchez-Gordón. 2022. Aiops: A multivocal lit-
erature review. Artificial Intelligence for Cloud and
Edge Computing, pages 31–50.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open foundation and
fine-tuned chat models. Preprint, arXiv:2307.09288.

Boxin Wang, Wei Ping, Lawrence McAfee, Peng Xu,
Bo Li, Mohammad Shoeybi, and Bryan Catanzaro.
2023a. Instructretro: Instruction tuning post retrieval-
augmented pretraining. Preprint, arXiv:2310.07713.

Hongru Wang, Wenyu Huang, Yang Deng, Rui Wang,
Zezhong Wang, Yufei Wang, Fei Mi, Jeff Z Pan, and
Kam-Fai Wong. 2024. Unims-rag: A unified multi-
source retrieval-augmented generation for personal-
ized dialogue systems. Preprint, arXiv:2401.13256.

Liang Wang, Nan Yang, Xiaolong Huang, Binx-
ing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. 2022. Text embeddings by
weakly-supervised contrastive pre-training. Preprint,
arXiv:2212.03533.

Y Wang, Q Sun, and S He. 2023b. M3e: Moka massive
mixed embedding model. https://github.com/
wangyuxinwhy/uniem.

Shitao Xiao, Zheng Liu, Yingxia Shao, Defu Lian,
and Xing Xie. 2021. Matching-oriented prod-
uct quantization for ad-hoc retrieval. Preprint,
arXiv:2104.07858.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas
Muennighoff. 2023. C-pack: Packaged resources
to advance general chinese embedding. Preprint,
arXiv:2309.07597.

Canwen Xu, Daya Guo, Nan Duan, and Julian McAuley.
2023a. Baize: An open-source chat model with
parameter-efficient tuning on self-chat data. Preprint,
arXiv:2304.01196.

Ming Xu. 2023. Text2vec: Text to vector toolkit.
https://github.com/shibing624/text2vec.

Peng Xu, Wei Ping, Xianchao Wu, Lawrence McAfee,
Chen Zhu, Zihan Liu, Sandeep Subramanian, Evelina
Bakhturina, Mohammad Shoeybi, and Bryan Catan-
zaro. 2023b. Retrieval meets long context large lan-
guage models. Preprint, arXiv:2310.03025.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. 2022. Glm-130b:
An open bilingual pre-trained model. Preprint,
arXiv:2210.02414.

Peitian Zhang, Shitao Xiao, Zheng Liu, Zhicheng
Dou, and Jian-Yun Nie. 2023. Retrieve any-
thing to augment large language models. Preprint,
arXiv:2310.07554.

Tianjun Zhang, Shishir G Patil, Naman Jain, Sheng
Shen, Matei Zaharia, Ion Stoica, and Joseph E Gonza-
lez. 2024. Raft: Adapting language model to domain
specific rag. Preprint, arXiv:2403.10131.

746

https://arxiv.org/abs/2308.03281
https://arxiv.org/abs/2308.03281
https://arxiv.org/abs/2308.03281
https://arxiv.org/abs/2310.01352
https://arxiv.org/abs/2308.07610
https://arxiv.org/abs/2308.07610
https://arxiv.org/abs/2308.07610
https://arxiv.org/abs/2402.17016
https://arxiv.org/abs/2402.17016
https://arxiv.org/abs/2210.07316
https://arxiv.org/abs/2210.07316
https://arxiv.org/abs/2010.08191
https://arxiv.org/abs/2010.08191
https://arxiv.org/abs/2010.08191
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2310.07713
https://arxiv.org/abs/2310.07713
https://arxiv.org/abs/2401.13256
https://arxiv.org/abs/2401.13256
https://arxiv.org/abs/2401.13256
https://arxiv.org/abs/2212.03533
https://arxiv.org/abs/2212.03533
https://github. com/wangyuxinwhy/uniem
https://github. com/wangyuxinwhy/uniem
https://arxiv.org/abs/2104.07858
https://arxiv.org/abs/2104.07858
https://arxiv.org/abs/2309.07597
https://arxiv.org/abs/2309.07597
https://arxiv.org/abs/2304.01196
https://arxiv.org/abs/2304.01196
https://github.com/shibing624/text2vec
https://arxiv.org/abs/2310.03025
https://arxiv.org/abs/2310.03025
https://arxiv.org/abs/2210.02414
https://arxiv.org/abs/2210.02414
https://arxiv.org/abs/2310.07554
https://arxiv.org/abs/2310.07554
https://arxiv.org/abs/2403.10131
https://arxiv.org/abs/2403.10131


Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36.

A Appendix

A.1 Experimental Settings

When fine-tuning the embedding model, the learn-
ing rate we set is 10−6, a batch size of 1024. We
use Adam as the optimization algorithm with β1
= 0.9, β2 = 0.99. We also implemented the ho-
mogeneous in-batch sampling strategy, where all
samples in the same batch come from the same
task, and utilized negatives cross-device to enhance
the diversity of negative samples. The model was
trained for 1 epoch using 8*A100 80G GPUs.

For Continue Pre-Training the LLM, we set the
learning rate to 2× 10−5, with a weight decay of
0.1, and global batch size of 128. The sequence
length is set at 2048. We use the Adam optimiza-
tion algorithm with β1 = 0.9 and β2 = 0.99. The
training epoch is 3. For Retrieval Augmented Fine-
Tuning, the learning rate is increased to 5× 10−5,
maintaining the same weight decay of 0.1, the
global batch size is 512. The sequence length
remains 2048. Adam is again used as the opti-
mization algorithm, with the same β values. The
training duration for this phase is 1 epoch. We
conduct full parameter training for Continue Pre-
Training using 8*A100 80G GPUs and LoRA (Hu
et al., 2021) fine-tuning for Retrieval Augmented
Fine-Tuning using 8*A100 80G GPUs.

A.2 Dataset Construction

High-quality datasets are essential for effective
Large Language Model(LLM) implementation, of-
ten more crucial than model architecture updates.
With improved data collection and processing tech-
niques, we can perform Continue Pre-Training
and Retrieval Augmented Fine-Tuning (RAFT)
on the model more effectively and achieve bet-
ter Retrieval-Augmented Generation (RAG) per-
formance. We designed a sophisticated dataset
construction pipeline including phases such as col-
lection, chunking, distillation, and combination.
This pipeline is capable of extracting features from
each type of data and provides robust support for
the LLM to meet the specific requirements of the
IT operations and maintenance group.

IT Operations Data This data was provided by

the IT operations group and contains documents
and QA pairs. The documents include Word files
with internal knowledge such as tool descriptions,
operation examples, system configurations, and
scripts. These documents contain text, images, and
tables. As we currently focus on language model-
ing, we only extracted texts and tables using the
python-docx.

Maintenance Data The maintenance group pro-
vided 47k pairs of error logs and corresponding
analyses. The error logs contain detailed descrip-
tions of errors, functions, and related platforms.
The analyses are human-labeled and include er-
ror scenarios, problem localization, and solutions.
Specifically, problem localization contains func-
tion names, function descriptions, error reasons,
priorities, and impacts.

A.2.1 Data Processing

General Processing We convert all information
into text format to make documents easy to han-
dle. By using python-docx, we fully extract all ta-
bles from Word files and convert them to plain text
based on LaTeX standards. Each row is joined by a
line break, and each column is joined by a vertical
line. This approach enables the model to recog-
nize all information within tables. Furthermore,
we standardize texts by removing noisy tokens and
converting illegal tokens to their normal forms. We
use these processed texts from documents to form
the pre-training dataset.

Chunking Techniques As documents often con-
tain very long and complex structures, we split
each document into several chunks. Chunking tech-
niques are essential in our task. Complete and
reasonable chunks can provide meaningful context
to enhance performance in data distillation and data
retrieval. Since most of the current documents are
in a fixed format, we designed a targeted chunking
method for these documents to achieve better re-
sults than general splitting methods. Moreover, we
also designed a general chunking method for new
incoming documents to do online training.

At the beginning of chunking, we first remove
noisy content using heuristic methods. As each doc-
ument contains a menu with clear signs, we explore
the scope of menus and remove them all. Addition-
ally, due to the presence of technical documents,
we remove noisy sentences and tables containing
words like "Script Maintainer" or "Version Num-
ber" which is only for human understanding and

747



Dataset Name Dataset Description Indicator Number

TC Text Chunks Chunks # 3,824
Avg. token # 529

QAK-Log QA pairs for knowledge acquisition from log
Sample # 1,468

Avg. question token # 16
Avg. answer token # 56

QAK-GPT QA pairs for knowledge acquisition from GPT-3.5/4
Sample # 16,973

Avg. question token # 15
Avg. answer token # 66

QAT-Log QA pairs for troubleshooting from log
Sample # 47,471

Avg. question token # 235
Avg. answer token # 370

Data-EM Dataset for fine-tuning the embedding model Sample # 65,912
Data-Pretrain Dataset for Pretrain the LLM token # 1,604,448

Data-LLM Dataset for fine-tuning the LLM
Sample # 65,912

Avg. question token # 1233
Avg. answer token # 186

Data-Eval Dataset for evaluation
Sample # 319

Avg. question token # 53
Avg. answer token # 133

Table 6: Statistics of the datasets used in RAG4ITOps.

technical requirements, so we prevent the model
from learning them to increase training and re-
trieval efficiency.

The targeted chunking method primarily focuses
on maintaining the logical integrity of each sen-
tence. Unlike setting a fixed length for each chunk,
this method preserves the complete meaning and
logic of contents as much as possible, especially
for tables. It helps the LLM gain a comprehensive
understanding of contents and avoid hallucinations
due to forced sentence segmentation. As we extract
all information from documents in Word file for-
mat, each line has its type, including content, style,
and font. The style represents whether it is a title
or normal text and the level of the title. Since each
title signifies an individual block, we can separate
the content based on title levels.

We start by splitting each content into blocks
by ’Heading 1’, the largest title. For each block,
we count the number of tokens using the same tok-
enizer. If the number is less than 800, we consider
this block as a whole and do not split it further. Con-
versely, we continue splitting the block by ’Head-
ing 2’, and so on. After recursion, if the number of
tokens in a block exceeds 800 but cannot be split
further, we resort to using the general method intro-
duced below to split the sentence. By setting 800
as the threshold, we can include enough complete
contexts in the RAG result.

Moreover, in our experiments, we find that the
short sentence is ineffective for model understand-
ing and affect data distillation performance. There-
fore, we combine contents with fewer than 20 to-

kens into nearby blocks. We also separate titles
and contents, underlining them using a template
like "Title: <title> Content: <content>". This ap-
proach, similar to human reading patterns, allows
the retrieval model to work effectively and easily
find accurate results.

The general method is a default version that
splits the document into blocks of nearly fixed
length without considering its format. Generally,
we split the document to ensure each sentence has
fewer than 800 tokens and includes overlap be-
tween sentences. Furthermore, we make the ending
token of each sentence a typical stop word such as
a line break, dot, or comma, to ensure the sentence
has complete meaning.

In our experiments, these two methods produce
very reasonable chunks for most cases, as con-
firmed by human labeling. Using the methods de-
scribed above, we collected 3k chunks from the
documents and build the dataset TC.

A.2.2 Data Distillation
In addition to using RAG to enhance the LLM’s
understanding of documents, we also implement
data distillation to generate a number of real-world
cases and provide additional guidance to the model.

For chunks extracted from documents, we col-
lect QA pairs from each chunk by calling the APIs
of GPT-3.5 and GPT-4. These QA pairs simulate
real questions and expected answers based on the
documents. In the training phase, we combine the
distilled questions and corresponding RAG con-
texts as input, and use the expected answers as
output to maintain a data format similar to real

748



cases.
To optimize costs, we typically call the GPT-3.5

API to generate instructions from the text of chunks
i times, where i = round(2 + n−1000

500 ) and n is
the number of characters. This dynamic generation
method allows us to capture more information for
long and complex sentences. The prompt used for
data distillation is provided in the Appendix A.3.

If the response from GPT-3.5 has an incorrect
format, we resort to calling the GPT-4 API to ob-
tain a more accurate result. Through this data dis-
tillation process, we ultimately create the dataset
(QAK-GPT) with 1.6k instructions, each contain-
ing questions, answers, and corresponding raw con-
tents as context.

For the QA pairs from the raw data, we aim to
use them for RAFT while preventing their ques-
tions from appearing in the context. To achieve
this, we rewrite each question to form a RAFT
dataset. The prompt used for this rewriting process
is provided in the Appendix A.3.

In this way, we obtain a RAFT (QAK-Log) with
different questions but the same answers. During
the training phase, we can provide these questions
and the raw QA pairs as input, expecting the model
to learn to generate the correct answer as output.

A.2.3 Data Combination
As described above, for Continue Pre-Training, we
directly use the texts extracted from documents
(Data-Pretrain). For Retrieval Augmented Gen-
eration(RAG), we combine the text chunks from
documents (TC), QA pairs for knowledge acqui-
sition (QAK-Log and QAK-GPT), and QA pairs
for troubleshooting (QAT-Log) to create the RAG
dataset. We also combine the QAK-GPT, QAK-
Log, and QAT-Log to form the final RAFT dataset
(Data-LLM), containing 65k rows of data.

A.3 Instruction Templates and Prompts

This section presents the detailed prompts used
in our question-answering system for IT opera-
tions and maintenance. Table 7 and 8 presents two
key prompts used in our evaluation process: the
Pairwise-Score Mode Prompt and the Single-score
Mode Prompt. Table 9 presents additional prompts
used in our data preparation pipeline. The first
prompt is designed for rewriting sentences while
preserving their meaning, which is useful for data
augmentation and diversity. The second prompt is
used in our data distillation process. The third and
forth prompts are instruction template.

A.4 Case study
To provide insight into real-world applications of
our RAG4ITOps framework, we present two repre-
sentative cases: one illustrating a QA scenario for
troubleshooting as shown in Table 10, and another
demonstrating a QA scenario for knowledge acqui-
sition in IT operations and maintenance as shown
in Table 11.

749



Table 7: Evaluation prompts for pairwise-score and single-score modes for QA Knowledge Acquisition Task

Pairwise-Score Mode Prompt:
Please act as an impartial evaluator and assess the quality of answers provided by two AI
assistants to a user’s question. Your evaluation should consider the correctness and helpfulness
of the answers. You will be given a reference answer, Assistant A’s answer, and Assistant B’s
answer. Your task is to determine which assistant’s answer is better.
Evaluation steps:
1. Compare both assistants’ answers to the reference answer.
2. Identify and correct any errors in the assistants’ answers.
3. Avoid any positional bias, ensuring that the order of the answers does not influence your
decision.
4. Do not let the length of the answers affect your assessment.
5. Please answer based on facts, expressing the required information for the question.
6. Do not favor certain assistant names. Be as objective as possible.
After providing your explanation, please output your final verdict in the following JSON format:
“‘json
{
"verdict": "Can only be A or B or Tie",
"explanation": "Your explanation"
}
“‘
Single-score Mode Prompt:
Please act as an impartial evaluator and assess the quality of an answer provided by an AI
assistant to a user’s question. We will provide a question, a corresponding reference answer,
and the assistant’s answer. Your evaluation should consider the correctness of the answer.
Evaluation steps:
1. Please compare the assistant’s answer to the reference answer.
2. Identify and correct any errors.
3. Evaluate as objectively as possible, paying attention to factual errors in the assistant’s answer
that are not present in the reference answer.
4. If the assistant does not address the content of the reference answer, it will be scored as 0.
After providing your explanation, you must rate the answer on a scale of 1 to 10 using the
following JSON format:
“‘json
{
"rating": "1 to 10",
"explanation": "Your explanation"
}
“‘

750



Table 8: Evaluation prompts for pairwise-score and single-score modes for QA Troubleshooting Task

Pairwise-Score Mode Prompt:
Please act as an impartial evaluator and assess the quality of answers provided by two AI
assistants to a user’s question. Your evaluation should consider the correctness and helpfulness
of the answers. You will be given a reference answer, Assistant A’s answer, and Assistant B’s
answer. Your task is to determine which assistant’s answer is better.
Evaluation steps:
1. Compare both assistants’ answers to the reference answer.
2. Identify and correct any errors in the assistants’ answers.
3. Avoid any positional bias, ensuring that the order of the answers does not influence your
decision.
4. Do not let the length of the answers affect your assessment.
5. Please answer based on facts, expressing the required information for the question.
6. Do not favor certain assistant names. Be as objective as possible.
7. The reference answer includes 7 fields, each field is worth 1 point, with the solution field
worth 4 points. Please strictly compare the answers of both assistants for each field and analyze
them. Based on the field scores, determine which assistant’s answer is better, or if it’s a tie
After providing your explanation, please output your final verdict in the following JSON format:
“‘json
{
"verdict": "Can only be A or B or Tie",
"explanation": "Your explanation"
}
“‘
Single-score Mode Prompt:
Please act as an impartial evaluator and assess the quality of an answer provided by an AI
assistant to a user’s question. We will provide a question, a corresponding reference answer,
and the assistant’s answer. Your evaluation should consider the correctness of the answer.
Evaluation steps:
1. Please compare the assistant’s answer to the reference answer.
2. Identify and correct any errors.
3. Evaluate as objectively as possible, paying attention to factual errors in the assistant’s answer
that are not present in the reference answer.
4. If the assistant does not address the content of the reference answer, it will be scored as 0.
5. The reference answer includes 7 fields, each field is worth 1 point, with the solution field
worth 4 points. For each field in the assistant’s answer, please strictly score according to the
field score. If the answer is inaccurate or incorrect for a field, no points should be awarded for
that field.
After providing your explanation, you must rate the answer on a scale of 1 to 10 using the
following JSON format:
“‘json
{
"rating": "1 to 10",
"explanation": "Your explanation"
}
“‘

751



Table 9: Data preparation prompts for sentence rewriting and data distillation

The prompt used for rewriting process:
Assume you are the IT operation team member. Please rewrite the following sentence without
changing its meaning.
Content: <content>
The prompt used for data distillation:
Assume you are the IT operation team member and you have some questions to inquire. Assume
the following document can answer your question. What questions and corresponding answers
can you post?
Please post as many knowledge based questions as possible.
Do not post the question without an answer.
Answer should be complete and must be got from the document.
Question with very long answer is allowed.
If you cannot find any question or cannot provide answer, please respond <unk>.
Use <sep> to connect each QA. Content: <content>
The instruction template for Knowledge Acquisition task:
Assume you are a customer service representative, and you have received a question from a
user or the operations team:
Content: <content>
Please answer the user’s question concisely and professionally based on the following known
information:
Content: <content>
The instruction template for QA Troubleshooting Task:
Please conduct a root cause analysis of the sudden AIOPS event based on the error log below.
The analysis should include: 1. Scenario, 2. Problem localization (including service, method
name, function, keywords, event type, event level, impact scope), 3. Solution (including
personnel involved and resolution plan). Content: <content>
Below is a historical case:
Content: <content>

752



Table 10: Example of a QA for troubleshooting case in IT operations and maintenance

User questions:
Please help analyze and resolve the following error: GetCustomBiz query for custom topology
failed. The error is: Querying business: *’s custom topology node id: [] failed, context canceled,
project_space=* namespace.name=*.
Core model input:
Please conduct a root cause analysis of the sudden AIOPS event based on the error log below.
The analysis should include: 1. Scenario, 2. Problem localization (including service, method
name, function, keywords, event type, event level, impact scope), 3. Solution (including
personnel involved and resolution plan).
GetCustomBiz query for custom topology failed. The error is: Querying business: *’s custom
topology node id: [] failed, context canceled, project_space=* namespace.name=*.
Below is a historical case:
Segment 0: Error log case and solution 1
Segment 1: Error log case and solution 2
Segment 2: Error log case and solution 3
Segment 3: Error log case and solution 4
Segment 4: Error log case and solution 5
System response:
Scenario: * log error
Project: *
Service: *
Method name: *
Function description: Set custom business NodeName for clusters and modules
Key information: GetCustomBiz query for custom topology failed. The error is querying
custom topology node failed, topology node id: []
Event type: Query * timeout caused query failure
Event level: *
Impact scope: Unable to normally obtain custom business NodeName, which may affect cluster
and other interface queries
Solution:
Based on the error information, the query for custom topology node failed because the topology
node id is empty. Possible solutions are as follows:
1. Check if the topology node id parameter is correctly passed. Ensure that the passed topology
node id is not empty and is in the expected format.
2. Check if the topology node data exists. Confirm that the data corresponding to the topology
node id exists in the system and has not been deleted or modified.
3. Check the logic of querying the custom topology. Ensure that the code logic for querying the
custom topology is correct and there are no missed or erroneous handling of the topology node
id.
4. Check the status of * services. If querying the custom topology requires other services, such
as *, ensure these services are running normally and can be accessed properly.
5. Check logs and error information. View more detailed error logs and error information to
further locate the problem. It may be necessary to increase log recording or adjust the log level
to obtain more detailed information.

753



Table 11: Example of knowledge acquisition QA scenario in IT operations and maintenance

User questions:
In the fault handling process for localized service anomalies, what are the specific steps for
collecting exception information?
Core model input:
Assume you are a customer service representative, and you have received a question from a
user or the operations team:
In the fault handling process for localized service anomalies, what are the specific steps for
collecting exception information?
Please answer the user’s question concisely and professionally based on the following known
information:
Segment 0: Internal customer document Segment 1
Segment 1: Internal customer document Segment 2
Segment 2: Internal customer document Segment 3
Segment 3: Internal customer document Segment 4
Segment 4: Internal customer document Segment 5
System response:
Specific steps for collecting exception information include:
Organize effective information based on customer complaints/internal alerts: The dimensions
are not limited to the following information; the more comprehensive the information, the
better.
Attempt to analyze/reproduce the problem: Based on the information provided by the customer,
manually designate nodes for testing. Simultaneously, use the internal platform Grafana
to investigate quality data across multiple dimensions such as bandwidth, status codes, and
response times by combining domain name, node, and time information.

754


