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Abstract

In recent years, large language models (LLMs)
have attracted significant interest from the re-
search community due to their broad applica-
bility in many language-oriented tasks, and are
now widely used in numerous areas of produc-
tion and daily life. One source of the pow-
erful ability of LLMs is the massive scale of
their pre-training dataset. However, these pre-
training datasets contain many outdated, harm-
ful, and personally sensitive information, which
inevitably becomes memorized by LLM during
the pre-training process. Eliminating this unde-
sirable data is crucial for ensuring the model’s
safety and enhancing the user experience. How-
ever, the cost of extensively cleaning the pre-
training dataset and retraining the model from
scratch is very high. In this work, we propose
ULMR , an unlearning framework for LLMs ,
which first uses carefully designed prompts to
rewrite the instructions in the specified dataset,
and generate corresponding negative responses.
Subsequently, to ensure that the model does not
excessively deviate post-training, we perform
model parameter averaging to preserve the per-
formance of the original LLM. We conducted
experiments on two public datasets, TOFU and
RWKU, demonstrating that our method can
effectively forget specified information while
retaining the capabilities of the original LLM.

1 Introduction

Large language models (LLMs) have achieved com-
mendable success in various tasks, demonstrating
their capability to disseminate knowledge across
different fields and tasks. Nowadays, LLMs are be-
ing utilized by the general public as personal assis-
tants, providing advice and solutions for a variety
of daily activities (Perez et al., 2022; Menick et al.,
2022; Kadavath et al., 2022; Bai et al., 2022). The
remarkable abilities of LLMs largely stem from
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the massive dataset used during their pre-training
process. LLMs can parameterize this knowledge,
possessing the ability to recall and apply it when
generating responses. However, the pre-training
dataset widely contains personal privacy informa-
tion (such as personal identification codes) and
harmful content, including biases, discrimination,
or content that violates human ethics. Addition-
ally, using copyrighted content without consent for
pre-training has garnered attention. Many countries
have privacy protection laws requiring that personal
data not be disclosed arbitrarily or allowing indi-
viduals or organizations to request the deletion of
their data from service providers according to their
wishes (Hoofnagle et al., 2019; Pardau, 2018).

A straightforward approach is to inspect the pre-
training dataset, remove problematic data, and then
retrain the model from scratch using the remain-
ing dataset (Kumar et al., 2022). This method has
been widely applied in smaller-scale neural net-
work models, but it is prohibitively expensive and
impractical for LLMs with billions of parameters.
Therefore, the method of fast approximate unlearn-
ing is crucial. Research on unlearning is still in
its early stages, focusing on the fields of machine
learning, and unlearning for LLMs remains a chal-
lenging task (Zhao et al., 2024).

In this paper, we propose a framework named
ULMR for rapid and efficient forgetting on specific
instruction sets for LLMs. First, we enhance the
model’s ability to generalize and improve its for-
getting performance by rewriting the initial instruc-
tion set using carefully designed prompts. Second,
based on the rewritten instructions, we generate cor-
responding negative responses to train the LLM to
produce confused responses about the information
to be forgotten. Finally, to ensure that the weight
shift of the model post-training is controlled, we
perform a model parameter averaging process to
maintain the model’s general capabilities without
significant degradation.
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Supervised Finetuning (SFT) by providing spe-
cific tasks or directives to the model, enables it to
better understand and execute different types of
tasks and is a vital method for updating the model’s
knowledge base (Bakker et al., 2022; Lou et al.,
2023). SFT is also applied in many LLM unlearn-
ing algorithms. The instruction rewriting process
can alleviate the overfitting of patterns in the train-
ing data by LLMs during training, thereby enhanc-
ing their generalization capabilities. Model parame-
ter averaging can mitigate the adverse effects on the
model’s capabilities during the unlearning process,
striking a better balance between forgetting and
general capabilities (Wortsman et al., 2022). Our
empirical results from experiments demonstrate
that the framework we propose can effectively for-
get knowledge on specified data while maximally
preserving its general capabilities.

2 Related Works

2.1 Machine Unlearning

The goal of Machine Unlearning is to eliminate a
trained model’s memory of a subset of its training
data (Nguyen et al., 2022). Initially applied ex-
tensively in the field of computer vision for image
classification tasks, it was used to make models for-
get specific image categories to achieve balanced
classification performance or protect privacy. A
common method involves using the Fisher Infor-
mation Matrix to measure the sensitivity of model
outputs to parameter perturbations, thereby induc-
ing the model to "forget"(Golatkar et al., 2020;
Foster et al., 2024). For diffusion generative mod-
els, a reverse Teacher-Student model can guide the
unlearning process (Gandikota et al., 2023). In fact,
Machine Unlearning is a challenging process, influ-
enced by the neural network’s memory capabilities
and the similarity between the forgetting set and
the retain set (Zhao et al., 2024).

By designing special prompts or using In-
Context Learning (Pawelczyk et al., 2023) tech-
niques, models can appear to have forgotten the
targeted knowledge without additional training, al-
though this method is heavily influenced by the
model’s inherent performance (Jin et al., 2024).
More commonly, methods focus on reducing the
impact of adverse data through Supervised fine-
tuning processes, such as Gradient Ascent (Jang
et al., 2022) and KL Minimization (Maini et al.,
2024). Additionally, Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2024) and Nega-

tive Preference Optimization (NPO) (Zhang et al.,
2024), built on the concept of reinforcement learn-
ing, are effective LLM unlearning algorithms.
However, studies indicate that even after unlearn-
ing, LLMs might "forget" how to apply the for-
gotten knowledge, but these pieces of knowledge
could still potentially exist within the model (Patil
et al., 2023).

2.2 LLM Safety

Currently, the internal workings of many LLMs
remain opaque, leading to outputs that are complex
and difficult to predict. Moreover, the pre-training
corpora of these models still contain much harmful
information. As the application of LLMs becomes
more widespread, concerns about their ethical and
security aspects have arisen. The safety of LLMs
has thus become a highly prominent topic. Integrat-
ing LLMs with human values is a crucial step to
ensure their consistent and safe deployment. Askell
et al. (2021) have proposed the concept of "HHH",
which stands for Helpful, Honest, and Harmless.
An exemplary LLM should be helpful to humans,
and possess the capabilities of being harmless, pro-
tecting privacy, and resisting malicious attacks.

3 Methods

In this work, our goal is to develop a simple and
efficient LLM unlearning framework that can for-
get content in the target dataset while maximizing
the retention of general capabilities. Initially, we
enhance and restructure the forgotten dataset Df

to maximize the assurance that the model forgets
the corresponding knowledge. Subsequently, we
perform model parameter averaging to restore the
general capabilities of the SFT Model. The com-
plete framework is illustrated in Figure 1. To max-
imally induce the LLM to forget the content on
the specified dataset, we first need to enhance and
restructure the forgotten dataset Df .

3.1 Restructured Dataset

For a given dataset D, we assume the subset Df

that needs to be forgotten is a subset of D. The
retained dataset can then be represented as Dh =
D\Df . Our goal is to ensure that the model retains
inference utility on Dh while forgetting the labeled
sequences in Df .

Firstly, we rewrite the instructions xi ∈ Df

using a LLM pθ through carefully designed
rewrite_prompt. This process can be represented
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Figure 1: An overview of ULMR framework

as:

x′ ∼ pθ(· | rewrite_prompt(xi)),

The prompt_rewrite is shown in Table 1.

prompt_rewrite
Please rewrite the provided instruction to
ensure that the given answer can still satisfy
the requirement of your revised instruction.
Instruction:"{instruction}"
Rewrite Instruction:

Table 1: The prompt of prompt_rewrite.

We rewrite each instruction xi twice, thus obtain-
ing a rewritten instruction set xr = {x1, x2, xi}.
Afterward, using the negative_prompt, the rewrit-
ten instruction set xr, we generate the correspond-
ing negative responses yr = {y1, y2, yi}. The
negative_prompt is shown in Table 2. In the neg-
ative responses, the model can refuse to answer the
question or obscure the main entities from the orig-
inal answer. Rewriting instructions multiple times
can enhance the model’s generalization ability, pre-
venting the model from learning only fixed patterns
in the dataset, which could lead to poor forgetting
effects. Negative responses are crucial for inducing
the forgetting phenomenon. The processed data
can be used to create an enhanced dataset, repre-
sented as (x, y) ∈ Dfr. Additionally, to maintain
compatibility with previous chat model inputs (de-
noted as θ), we assume that formatting prompts or
special tokens used for formatting are known and
have already been appended to the instructions x.

negative_prompt

Please generate a response based on the
Instruction indicating that you are unable
to answer the question or that the relevant
content is not available in your knowledge base.
Instruction:"{instruction}"
Answer:

Table 2: The prompt of negative_prompt.

3.2 Fine-tuning with negative responses

Here, we execute Supervised Fine-tuning on the
reconstructed augmented data instruction set Dfr

containing M data points with the base model pθ.
Each sample in the instruction set Dfr contains a
rewritten instruction xm and a negative response
ym, with many tokens in each data point. Typically,
SFT is conducted by maximizing the log-likelihood
of the response ym for the overall instruction sam-
ple xm, which can be represented as:

EDfr
logpθ(y

m) = EDfr
log

k∏

i

pθ(yi|xm)

(1)
with i and k tokens on each instruction and re-
sponse, respectively. The major difference between
SFT and autoregressive training in the pre-training
phase is that we optimize θ by maximizing the
log-likelihood on the conditional probability. After
undergoing SFT, we can obtain the new model pf .

3.3 Model Parameter Average

In the field of deep learning, the technique of
Model Weight Averaging is employed to improve
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the performance and stability of models. Stud-
ies have shown that averaging the parameters of a
model can address the issue of Catastrophic For-
getting in LLMs during Continual Instruction Fine-
tuning(Lin et al., 2023). This technique also helps
in regaining some of the general capabilities that
are lost in the process. For a primary model de-
noted by θ and its fine-tuned version θ′, the method
of Model Parameter Averaging is mathematically
represented as:

θa = αθ + (1− α)θ′

Here, α is a hyperparameter. We perform the model
parameter averaging process on the base model
pθ and the SFT model pf , resulting in the final
unlearning model pu.

3.4 ULMR

The algorithm of ULMR is shown in Algorithm 1.

Algorithm 1 Algorithm of ULMR

Inputs: Forget Dataset Df which contains in-
struction xi and response yi ; base model pθ ;
prompt_rewrite ; negative_prompt
for each step do

1. Rewrite the instructions xi ∈ Df using
a LLM pθ through rewrite_prompt, get in-
struction x′ ∼ pθ(· | rewrite_prompt(xi))
2. Rewrite each instruction xi twice, thus
obtaining a rewritten instruction set xr =
{x1, x2, xi}
3. Using the negative_prompt, the rewritten
instruction set xr, and the response y ∈ Dh,
generate the corresponding negative responses
yr = {y1, y2, yi}
4. Building a Restructured Dataset Dfr by xr
and yr
5. Supervised fine-tuning model pθ on dataset
Dfr to get model pf
6. Perform Model Parameter Averaging on pf
and pθ, to obtain pu.

end for
return: The Unlearning Model pu

4 Experiment

In this section, we will provide a detailed descrip-
tion of our experiment settings, baseline, and bench-
mark.

4.1 TOFU Unlearning Benchmark
We first conduct experiments on TOFU (Maini
et al., 2024), a benchmark specifically designed to
evaluate the unlearning capabilities of LLMs. The
TOFU Unlearning Benchmark provides a dataset
comprising 200 diversified fictional author profiles,
each containing 20 question-answer pairs, with a
subset forming the forget set. Since all data is fic-
tional, there is no pre-existing prior knowledge in
current LLMs related to it, creating a clean unlearn-
ing setting and environment. This setup enables a
clear delineation of the information scope required
to be forgotten. The TOFU dataset consists of four
parts:

• World Fact Includes basic common knowl-
edge and information about the real world. Af-
ter the unlearning process, the model should
retain all knowledge related to the real world.

• Forget Set: The data that the model needs to
forget.

• Retain Set: The remaining fictional author
knowledge that the model must remember af-
ter the unlearning process.

• Real Author: Examples containing informa-
tion about real authors.

The forget set is used to evaluate the quality of
the model’s unlearning, while the other datasets
assess the model’s general capability. After the
unlearning process, the model’s performance on
datasets outside the forget set should be close to
that of the base model. Moreover, due to the effect
of knowledge entanglement, it becomes challeng-
ing for the model to remember data highly similar
to the forget set.

Following the setup by Maini et al. (2024), we
report the following metrics on the TOFU dataset
to comprehensively evaluate the efficacy of our
proposed unlearning algorithm and the model’s
general capability:

• ROUGE (Lin, 2004): Given that the model’s
output pattern may slightly differ, we use the
ROUGE Score as a substitute for accuracy
to assess the similarity between the model’s
output and the reference answers. A higher
ROUGE score indicates closer resemblance
to the reference answers.

• Probability: Assesses the conditional proba-
bility of the correct answer given a prompt.
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• Truth Ratio: Evaluates the likelihood of gen-
erating the correct answers. This metric mea-
sures the extent to which the designed unlearn-
ing algorithm removes information. The Truth
Ratio is calculated as follows:

Rtruth =

1
|Apert|

∑
â∈Apert

P (â | q)
1
|â|

P (ã | q)
1
|ã|

Here, â represents a paraphrased answer, q is
the question, and Apert consists of perturbed
answers generated by GPT-4 (OpenAI, 2023),
maintaining the general form of the answers
but factually incorrect.

4.2 RWKU Unlearning Benchmark
Similar to the TOFU dataset, RWKU is an unlearn-
ing benchmark designed by Jin et al. (2024) to eval-
uate the unlearning capabilities of LLMs . How-
ever, The slight difference between RWKU and
TOFU is that it selects 200 well-known real-world
figures as unlearning targets, who are typically in-
cluded in the pre-training corpora of LLMs. The
objective of the unlearning algorithm is to make the
LLM forget factual knowledge about these targets
without affecting related knowledge and overall
capabilities. The RWKU dataset comprises four
parts:

• Forget Set: Records the data that the model
needs to forget.

• Neighbor Set: Used to assess the model’s per-
formance on data that is closely related to but
not entirely contained within the unlearning
targets.

• MIA Set: Utilized to infer whether the model
still retains knowledge about the targets.

• Utility Set: Evaluates the model’s general
capabilities.

4.3 Baseline
Currently, many researchers have proposed various
more efficient and practical unlearning algorithms.
We selected the most representative algorithms as
baselines to evaluate the performance of our pro-
posed ULMR framework.

• Gradient Ascent (Jang et al., 2022): One of
the most common unlearning algorithms. Un-
like the typical gradient descent optimization

in neural networks, the objective of Gradi-
ent Ascent is to maximize the negative log-
likelihood loss on the forget set, steering the
model away from its initial predictions and
promoting the unlearning process.

• DPO (Rafailov et al., 2024): Generally, the
DPO algorithm requires both positive and neg-
ative samples to train the model. By appropri-
ately optimizing preferences, the model can
be made to generate incorrect knowledge.

• KL Minimization (Maini et al., 2024): The
core idea is to penalize the distribution dis-
tance between the model before and after un-
learning.

4.4 Experiment Settings

We chose the commonly used Llama-3-8B-Instruct
(AI@Meta, 2024) model for our experiments. Dur-
ing the SFT phase, some of our hyperparameter
settings were as follows: the learning rate was set
to 1e-4, the training epoch was 5, the batch size
was 16, and the optimizer used was AdamW. All
experiments were conducted on four Nvidia A100
GPUs.

5 Results

5.1 Result on TOFU

Our experimental results on the TOFU Unlearn-
ing Benchmark are shown in Table 3. Due to the
small scale of the TOFU dataset and the fictional
nature of the data within it, we can conveniently
remove the information that needs to be forgotten
from the dataset, thereby achieving precise forget-
ting through retraining. The experimental results
show that before the execution of the forgetting al-
gorithm, the model scores high ROUGE scores on
both the Forget Set and Retain Set, indicating that
the model has memorized the information in the
data through the SFT process. The retraining algo-
rithm performed best and retained the most general
capability, indicating that there is still some gap
between the performance of precise forgetting al-
gorithms and approximate forgetting algorithms.
However, it is difficult to apply precise forgetting
algorithms in real scenarios. Compared to the other
three baseline algorithms, our algorithm achieved
the best forgetting performance and retained the
more foundational model capabilities.
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Forget Set Retain Set World Fact
Method R P TR R P TR R P TR

Base Model 96.37 98.35 49.49 96.17 97.96 51.12 87.55 42.59 56.35
Retraining 31.91 15.20 65.58 95.66 97.73 50.42 87.28 43.07 57.59

Gradient Ascent 38.75 3.39 53.41 51.07 8.01 51.54 79.97 44.61 60.45
KL Minimization 39.71 3.09 53.54 52.83 8.42 51.16 83.49 43.24 58.61

DPO 39.19 3.25 53.37 52.11 8.20 51.18 81.68 43.94 59.80
ULMR 37.18 2.89 55.15 56.72 10.18 49.52 87.15 45.00 63.71

Table 3: Results on TOFU Unlearning Benchmark. We report ROUGE-L recall (RL), Probability (P), and Truth
Ratio (TR) on all four subsets of the TOFU Unlearning Benchmark.

Forget Set Neighbor Set MIA Set Utility Set

Methods FB QA AA All FB QA All FM RM Gen

Base Model 85.73 73.57 75.99 78.43 91.39 81.97 86.25 222.62 219.34 65.70

Gradient Ascent 38.16 31.25 45.72 38.79 82.91 70.14 76.68 248.77 219.68 63.17

KL Minimization 40.78 33.61 42.78 39.28 68.95 62.01 65.82 247.84 228.35 63.16

DPO 44.22 38.15 39.85 40.89 57.96 49.56 53.37 238.73 240.56 63.14

ULMR 30.70 24.75 28.35 27.35 73.11 66.54 69.58 268.02 258.99 64.55

Table 4: Results on RWKU Unlearning Benchmark.

5.2 Result on RWKU

Our experimental results on the RWKU dataset are
shown in Table 4. FB (Fill-in-the-Blank) repre-
sents a task where the LLM completes given in-
complete sentences based on facts or context. QA
(Question-Answer) is one of the most common
types of tasks used to evaluate the LLM’s appli-
cation of knowledge and generative capabilities.
AA (Adversarial Attack) is used to assess the effec-
tiveness of forgetting, taking into account different
real-world scenarios; Jin et al. (2024) designed nine
different types of adversarial attacks, aiming to de-
termine whether the forgotten knowledge in the
model could be re-induced in specific ways. FM
(Forget Member) and RM (Retain Member) are
primarily used to assess whether the model retains
targeted knowledge, evaluated by LOSS scores,
where a more effective forgetting algorithm should
show higher values for FM compared to RM. Gen
(General Ability) is used to evaluate the model’s
general capability. We follow the settings used by
Jin et al. (2024), employing MMLU (Hendrycks
et al., 2021b,a) to assess general capability.

The experimental results indicate that after un-
dergoing the unlearning algorithm, the model be-
comes more susceptible to adversarial attacks. This
suggests that although the model may have "forgot-
ten" how to apply the knowledge from the forget

set, this data can be accessed again through specific
inducements. Furthermore, LLM shows a certain
degree of decline in general capability after under-
going the unlearning algorithm. The three baseline
methods all exhibited noticeable forgetting perfor-
mance, and our algorithm achieved a slight lead
over the baseline methods in terms of forgetting
performance and retention of model capabilities.

6 Conclusion

In this work, we develop a simple and efficient
LLM unlearning algorithm named ULMR. Initially,
we enhanced and restructured the forget dataset us-
ing carefully designed prompts to maximize the
assurance that the model forgets the corresponding
knowledge. Subsequently, we performed model
parameter averaging to restore the general capa-
bility of the SFT Model. Tests on the TOFU and
RWKU unlearning Benchmark demonstrated that
our method can retain the general capabilities of
the LLM to the greatest extent while forgetting the
content in the target dataset as much as possible.
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Limitations

Although our proposed ULMR framework has
demonstrated effectiveness, there is still significant
room for expansion in our work. A major drawback
of our work is the difficulty in completely removing
knowledge from model parameters. During some
adversarial attacks, it may still be possible to ac-
cess knowledge that has been ’forgotten’. Studies
on the internal structure of LLM during training
indicate that the ability for basic reasoning and fac-
tual knowledge is often encoded in the lower layers
of LLM, hence the process of Model Parameter
Averaging could be more precise. Furthermore,
our evaluation work was only completed on public
datasets and open-source LLMs, and should be ex-
tended to more comprehensive datasets for broader
ablation studies in the future.
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