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Abstract

Utilizing Large Language Models (LLM) as
chatbots in diverse business scenarios often
presents the challenge of maintaining topic con-
tinuity. Abrupt shifts in topics can lead to
poor user experiences and inefficient utiliza-
tion of computational resources. In this pa-
per, we present a topic continuity model aimed
at assessing whether a response aligns with
the initial conversation topic. Our model is
built upon the expansion of the corresponding
natural language understanding (NLU) model
into quantifiable terms using a Naive Bayes ap-
proach. Subsequently, we have introduced an
attention mechanism and logarithmic nonlin-
earity to enhance its capability to capture topic
continuity. This approach allows us to convert
the NLU model into an interpretable analyti-
cal formula. In contrast to many NLU mod-
els constrained by token limits, our proposed
model can seamlessly handle conversations of
any length with linear time complexity. Fur-
thermore, the attention mechanism significantly
improves the model’s ability to identify topic
continuity in complex conversations. Accord-
ing to our experiments, our model consistently
outperforms traditional methods, particularly
in handling lengthy and intricate conversations.
This unique capability offers us an opportunity
to ensure the responsible and interpretable use
of LLMs.

1 Introduction
The rise of large-scale language models (LLMs) (Zhao
et al., 2023; Chang et al., 2024) has empowered chat-
bots to handle various business tasks, such as serving as
office assistants (Guo et al., 2023), coding companions
(Vaithilingam et al., 2022; Zhang et al., 2023), and data
explorers (Lin et al., 2023). However, leveraging LLMs
for these roles often presents challenges like hallucina-
tion (Ji et al., 2023), offensive language (Liang et al.,
2021), prompt injection (Greshake et al., 2023), and ad-
versarial attacks (Shayegani et al., 2023). In addition to
these common issues, specific business applications may
introduce unique problems, such as maintaining topic
continuity. For example, when using LLMs as a cus-
tomer service chatbot, LLMs are employed to address

inquiries about specific products or services. However,
because LLM responses are inherently random, there’s
no guarantee that they will consistently remain focused
on the intended topics, potentially resulting in a subpar
user experience. On the other hand, if users veer off
into unrelated topics, it could also lead to the waste of
valuable computational resources. Therefore, ensuring
topic coherence between the customer and the chatbot
is crucial.

In customer service, users initially describe their con-
cerns. When these concerns pertain to the business’s
operations, the customer and chatbot collaborate on so-
lutions (Pi et al., 2023, 2024b,c,a). Ensuring a smooth
conversation involves assessing if the current sentence
logically follows the prior ones. For example, if a user
discussing refunds suddenly asks, "Can you help me or-
der a pizza?" – it’s off-topic. This concept is formalized
as a natural language understanding model (NLU) (Torfi
et al., 2003), denoted as P (y|S1, S2, . . . ;SN ). Here, Si

(for i = 1 to N − 1) represents previous N-1 sentences,
and SN is the current one. The binary variable y in-
dicates whether SN aligns with preceding sentences,
keeping the conversation on-topic.

In practical use, when users interact with LLM, we
assess if each new sentence, whether from the user or
the LLM, keeps the conversation on-topic. If it goes off-
topic, we guide it back to business-related subjects or
may end the conversation. So, we assume the previous
N-1 sentences are on-topic, and we calculate whether
the newly added Nth sentence still aligns with the ongo-
ing conversation. This simplifies the problem to deter-
mining whether the Nth sentence has a reasonable
contextual relationship with the previous N-1 sen-
tences. The most commonly used approach to address
this issue is a BERT-based language model (Vaswani
et al., 2017; Devlin et al., 2017). These models are in-
herently equipped with the capability to evaluate the
contextual relationship between two sentences. How-
ever, employing this approach consistently gives rise to
two inevitable challenges: 1) Token Size Limit and 2)
Lack of Sentence Attention.

Regarding the first challenge, imagine using a lan-
guage model to assess the connection between (S1 +
S2 + . . . + SN−1) and the current sentence SN in a
conversation. As the conversation grows, the text often
exceeds most language models’ token limits, typically
set at 512 tokens for many BERT-based models. Re-
garding the second challenge, most language models
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are trained on sentence pairs from articles where se-
mantic relationships are consistently close. However,
real conversations often involve looser semantic connec-
tions. For example, a customer might say, “Earlier, you
asked about the missing product serial number, but now
I’ve found it." This response references a part of the
conversation from several rounds back. Concatenating
S1 ∼ SN−1 as context can lead to the model struggling
to judge the appropriateness of SN as a follow-up. In
summary, an effective conversational topic continuity
model must address two key challenges: 1) handling
lengthy conversations, and 2) accommodating seman-
tic leaps.

To address these challenges, we introduce an innova-
tive topic continuity model that integrates logarithmic
nonlinearity and sentence attention into the naive Bayes
framework (Rish, 2001). Our method provides a fully
analytical formulation of the problem, effectively ad-
dressing the aforementioned issues and delivering signif-
icantly superior performance compared to conventional
methods.

2 Nolinear Naive Bayes With Attention
Mechanism

2.1 Model Definition

When a user is engaged in a conversation with a chatbot,
our goal is to identify topic shifts in new sentences,
assuming that the first N-1 sentences are on-topic.
As discussed in Section 1, we can define an NLU model
for this problem as a conditional probability expressed
as follows:

P (y|S1, S2, . . . ;SN ) (1)

, where S1 ∼ SN−1 represents the previous N − 1
sentences, SN represents the current sentence, and
y, a binary variable, signals whether the text com-
posed of S1,∼ SN deviates from the topic. In fact,
we can broaden the interpretation of each variable in
Eq.(1). Si need not be limited to single sentences; it
can also encompass chunks of multiple sentences, po-
tentially with overlapping content, as long as the re-
lationships between Si maintain sentence information
and sequence. Our research indicates that employing
a sliding window with appropriate size and strides to
construct sentence chunks consistently yields the best
results. Hence, unless specified otherwise, we assume
that all Si, i = 1 ∼ N−1, represent sentence chunks,
with SN being a single sentence.

2.2 Naive Bayes With Attention

While estimating Eq.(1) directly using models like
BERT is possible, this approach presents the two is-
sues outlined in Section 1. To address these challenges,
let’s begin with the Naive Bayes assumption, where the
variables (S1, . . . ;SN ) are considered independent of
each other, and we expand Eq.(1) upon this assumption

as follows:

P (y|S1, S2, · · · ;SN ) = ΠN
i

[
P (Si|y)
P (Si)

]
P (y) (2)

Indeed, the Naive Bayes assumption that there is no
semantic connection between sentences contradicts the
core problem addressed in this paper. Therefore, we
utilize Naive Bayes purely as a mathematical tool in this
context and we will introduce additional techniques to
overcome the limitations inherent in the Naive Bayes
assumption.

We aim to incorporate an attention mechanism into
Eq.(2). To achieve this, we have intentionally refor-
mulated the equation to include pairwise probability.
Consequently,

P (y|Si, SN ) =
P (Si|y)P (SN |y)P (y)

P (Si)P (SN )

Thus,

P (Si|y) =
P (y|Si, SN )P (Si)P (SN )

P (SN |y)P (y)

Let’s plug this term into Eq.(2). We have,

P (y|S1 . . . ;SN )

=ΠN
i

{
P (y|Si, SN )P (Si)P (SN )

P (SN |y)P (y)

1

P (Si)

}
P (y)

Take log on both side,

logP (y|S1 · · · ;SN ) =

N∑

i=1

{logP (y|Si, SN )}

−N logP (SN |y) +N logP (SN ) + (1−N) logP (y)

Note that in the first summation, there exists a
term logP (y|SN , SN ), which can be approximated as
logP (y|SN , SN ) ≈ logP (y|SN ) = logP (SN |y) +
logP (y)− logP (SN ). Additionally, the term logP (y)
is essentially a constant and does not affect any of the
subsequent calculations, so we can safely disregard this
term. Thus, we have:

logP (y|S1 · · · ;SN ) =
N−1∑

i=1

{logP (y|Si, SN )}

+(N − 1) [logP (SN )− logP (SN |y)] (3)

The equation above has several key points. Firstly, we
introduced a pairwise term for chunk/current-sentence
pairs, directing attention from the current sentence,
SN , to another chunk, Si. Secondly, expressing Naive
Bayes in logarithmic probabilities simplifies the prob-
lem, yielding a linear outcome. Lastly, each term in-
volves a maximum of one chunk plus one sentence,
ensuring token length stays within language model lim-
its. As the conversation progresses, time consumption
increases linearly, but deep learning models can batch
attention terms, potentially maintaining constant time
consumption if the chunk count remains within GPU
memory limits.
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2.3 Logarithmic Non-linearity

As discussed in the previous section, the assumption of
independent variables, leading to a linear combination
of logarithmic terms, is inadequate for addressing this
problem. Therefore, we need to make Eq.(3) nonlinear
to overcome the limitations of Naive Bayes.

To introduce nonlinearity, let’s analyze each term.
In Eq. (3), the first term computes an equal-
weighted average among the attention terms, omit-
ting the factor 1/(N − 1). This operation resembles
a mathematical "functional," transforming the vector
[logP (y|Si, SN ), i = 1 ∼ N − 1] into a single scalar
value. In machine learning, this is often referred to as
average pooling.

Regarding the second term, comprised of
[logP (SN ) − logP (SN |y)], its meaning is straight-
forward. Let’s consider a customer service chatbot
scenario where the user’s focus is solely on a spe-
cific product, like a cell phone. Here, logP (SN |y)
represents the likelihood of sentence SN occurring
within this product-specific context, while logP (SN )
represents the log-probability of sentence SN appearing
in any chatbot conversation without specific product
restrictions. Therefore, a more negative value on this
term highlights the likelihood of the sentence SN being
more focused on the topic of cell phones.

Based on the above discussion, a straightforward ap-
proach is to maintain the mathematical form but intro-
duce more non-linear operations. This can be achieved
by replacing

∑ → F and (N − 1) → α as shown
below:

logP (y|S1 · · ·SN ) = F
{
logP (y|S̃, SN )

}

+ α(S) [logP (SN )− logP (SN |y)] (4)

, where logP (y|S̃, SN ) is a vector composed of
logP (y|Si, SN ) with i = 1 ∼ N − 1, F is an arbi-
trary functional that transforms the vector into a scalar,
and α, is a positive coefficient (since N − 1 > 0) depen-
dent on all sentence chunks, including SN . In Eq.(4),
we’ve replaced the original equal-weighted averaging on
logP (y|S̃, SN ) with a custom functional F and trans-
formed the coefficient in the second term into functions
related to S. Although Eq.(4) resembles Eq.(3), it no
longer relies on the independence variable assump-
tion of naive Bayes. We’ll refer to the first term as
the "attention term" and the second term as the "resid-
ual term", highlighting the difference between two log-
probabilities. In the upcoming section, we’ll delve into
the design of F and α.

3 Formulation of Nonlinear
Transformation

3.1 Designing Attention Functional

In a conservation, sentences typically fall into three sce-
narios: 1). Normal Sentences correspond to responses
to the previous sentence, the most frequent scenario.

2). Leap Sentences correspond to responses to ear-
lier sentences in the conversation, constituting a “leap
conversation". In the following, we use the term "tar-
get sentence" to denote the sentence that the current
sentence SN responds to. 3). Topic Shift Sentences
indicate a shift in topic.

To capture these three scenarios, we define the
notation logPmax = max{logP (y|S̃, SN )} and
logPavg = avg{logP (y|S̃, SN )}. Then the attention
functional is defined as:

F
{
logP (y|S̃, SN )

}
= [1 + tanh(logPmax)] logPmax

− tanh(logPmax) logPavg

(5)

As log-probabilities are always negative, the first coeffi-
cient, 1 + tanh(logPmax), indicates that as logPmax

approaches zero, we primarily use logPmax to approxi-
mate Eq.(1). Conversely, as logPmax approaches nega-
tive infinity, we rely on logPavg for the estimate.

The approach is clear. In Scenario 1, assuming pre-
vious text S1, . . . SN−1 is on-topic and SN responds to
SN−1, we focus on evaluating if SN aligns with SN−1,
approximating P (y|S1, . . . SN ) ≈ P (y|SN−1, SN ).
Similarly, in Scenario 2, when SN responds to a
specific chunk earlier in the conversation, we expect
P (y|S1, . . . SN ) ≈ P (y|Starget, SN ). In both scenar-
ios, where there’s a clear link between current sentences
and a specific chunk, the likelihood they form often
peaks in the logP (y|S̃, SN ) vector. Hence, for these
cases, we choose logPmax as the dominant term.

When SN abruptly changes topics, it lacks con-
text within the conversation, leading to bias if using
logPmax for Eq.(1). Instead, opting for logPavg is
better. In this scenario, Eq.(5) simplifies to the naive
Bayes case, indicating that the independence variable
assumption is a suitable approximation for the NLU
model when there’s no clear contextual link between
the current sentence and prior conversation.

3.2 Designing Residual Coefficient
Our experiments consistently show that Eq.(5) often
provides outstanding results on its own. Hence, when
crafting the residual coefficient, we view it as a cor-
rective purturbation for situations where Eq.(5) lacks
confidence. By defining the probabilities Pnlu =
eP (y|S1,...,SN ) and Patt = eF{P (y|S,SN )} from the NLU
model and attention term respectively, we aim for the
perturbation to possess three key properties: 1) Peak at
Patt = 0.5 (low confidence), 2) Approach zero as Patt

nears 0.0 or 1.0 (high confidence), and 3) Be unbiased,
symmetrical around Patt = 0.5.

To fulfill these criteria, a straightforward mathemati-
cal form is a sine function:

Pnlu = Patt + β sin(πPatt)

,where β ≪ 0.5. The condition β ≪ 0.5 arises from
the situation where the perturbation term attains its max-
imum value at Patt = 0.5 and Pnlu = 0.5 + β. Given
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Figure 1: Computation graph for calculating the NLU likelihood (highlighted in orange). The blue blocks represent
fundamental components of our model.

its nature as a perturbation, β must be ≪ 0.5. By taking
a logarithm on both side, we get:

logPnlu = log [Patt + β sin(πPatt)]

= log (Patt) + log [1 + βsin(πPatt)/Patt]

. Since βsin(πPatt)/Patt ≪ 1, first order of Taylor
expansion yields

logPnlu ≈ log (Patt) + β sin(πPatt)/Patt

. Comparing this from with eq.(4), we assert α should
be:

α =
sin(πeF{P (y|S,SN )})

eF{P (y|S,SN )}
η

| log (ϵ)| (6)

Here, Patt is represented as its original form
eF{P (y|S,SN )} and the term η/| log (ϵ)| serves as a scal-
ing factor with η ≪ 0.5 and ϵ is an arbitrarily small
number, such as 10−3 used in this article. The rationale
behind the scaling factor is evident. As a probability P
approaches 0, logP approaches −∞. Thus, in practi-
cal calculations, we designate a small value ϵ, and any
probability lower than ϵ is set to ϵ to prevent computa-
tional instability. Consequently, the log-difference term
[logP (SN )− logP (SN |y)] in eq.(4) ranges between
± log (ϵ) ≈ ±6.9. By incorporating | log (ϵ)| into the
scaling factor, we normalize the log-difference to fall
within the range of −1 to +1. Since

β =
η

| log(ϵ)| [logP (SN |y)− logP (SN )] ≪ 0.5

by comparing with eq.(6), it is imperative to ensure that
η ≪ 0.5.

Eq.(6) holds mathematical significance.
sin(πPatt)/Patt guarantees adherence to the three
properties mentioned earlier. The log-difference
[logP (SN )− logP (SN |y)] in eq.(4) measures the
perturbation’s magnitude, normalized by | log(ϵ)|,
while η controls its maximum strength. Though derived
from the perturbation assumption, eq.(6) ensures Pnlu

stays within the 0 to 1 range, akin to a probability,
as long as η ≤ 0.5. In the following, we stick to
ϵ = 0.001 and η = 0.2, usually yielding favorable
outcomes, unless stated otherwise.

3.3 Estimation of Fundamental Components
So far, we have derived all the expressions for NLU
model, which are given by Eq.(4), Eq.(5), and Eq.(6).
To compute these formulas, we need to estimate
P (y|Si, SN ), P (SN |y), and P (SN ).

Attention Term P (y|Si, SN ) involves determining
whether there is a contextual relationship between
(Si, SN ), and this can be estimated using language mod-
els like BERT. In many machine learning papers, this
task is often referred to as Next Sentence Prediction
(NSP) (Shi and Demberg, 2019; Sun et al., 2021). There
are many open-source NSP models available on plat-
forms like Hugging Face and there’s no need for us to
retrain them.

Residual Term Estimating P (SN |y) and
P (SN ) involves context-dependent factors.
In theory, these quantities should be calcu-
lated through integration over all variables:
P (SN |y) =

∫
P (S1 . . . SN |y)dS1 . . . dSN−1 and

P (SN ) =
∫
P (S1 . . . SN )dS1 . . . dSN−1. However,

practical calculations of these integrals are improbable.
Instead, we employ an indirect approach.

For instance, consider a customer service chatbot de-
signed to respond to various product-related queries,
such as “cell phones." To establish P (SN |y) for the
“cell phone" topic, we randomly sample numerous sen-
tences from historical conversations with topic of cell
phones. Estimating the likelihood of a sentence appear-
ing in the context of the topic can be done using an
out-of-distribution (OOD) method, like Isolation Forest
(Liu et al., 2008, 2012). Here’s how it works:

• Encode each sentence using a pre-trained models,
such as Sentence BERT (Reimers and Gurevych,
2019).

• Train an Isolation Forest with this dataset to gen-
erate anomaly scores for all sentences. Here we
invert the sign compared to the original paper, so
higher anomaly scores θ signify a greater likeli-
hood of a sentence being included in the dataset.

• Once the distribution of θ is obtained, we estimate
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Figure 2: Impact of attention and residual terms. (a)-(b): Normalized Distribution of Pnlu without residual term (a)
and with residual term (b) for selected uncertain examples. Red lines indicate approximate Gaussian kernel density
fitting. (c)-(d): Average probability output per segmentation, categorized by token length, is shown in (c) for NSP
and (d) for our model. The dashed lines denote 300 tokens. Data beyond 512 tokens were truncated in (c) due to
NSP’s processing limit.

its probability density function p(θ) and for a fu-
ture sentence with a score θ = c, the corresponding
probability is given by the Cumulative Distribution
Function (CDF): p(SN |y) =

∫ c

−∞ p(θ)dθ.

We can use the same approach to estimate P (SN ), but
without specific topic constraints. For P (SN ), we sam-
ple sentences from historical dialogue data across all
topics to train the OOD model. In practical business
scenarios, chatbots are often designed to answer ques-
tions related to limited product lines. Therefore, we can
pre-train p(SN |y) for each product line and store them
in cache. When a conversation’s topic is determined,
we swiftly employ the corresponding model.

Regarding the use of CDF as probabilities, it may
seem that assigning a probability of 100% to data with
the highest scores is unreasonable. However, our pri-
mary interest lies in the difference in log-probabilities.
Therefore, as long as the hyperparameters of these two
OOD models are similar enough to ensure that the
anomaly score distributions they estimate fall within
a comparable range, their differences remain meaning-
ful for log-probabilities.

So far, we have approximated Eq.(1) using Eq.(4)-(6).
To help readers understand the calculation process, we
have represented a computation graph in Figure 1.

4 Experiments

4.1 Dataset

For the experiment, we collaborated with Amazon’s
customer service associates to create a dataset generated
by these associatess interacting with a large language
model (LLM), simulating customers asking the LLM
questions related to online video streaming. The dataset
was entirely generated through simulation and did not
use any real user data, with the purpose of protecting
user privacy.

In this dataset, each sentence is labeled with one of
the following four tags based on its characteristics:

• Normal Conversation: the current sentence re-
sponds to the preceding sentence

• Leap Conversation: the current sentence is a re-
sponse to an earlier sentence in the conversation

• Out-of-Domain Topic Shift: the current sentence
diverges completely from the main topic and is
entirely unrelated to customer service

• In-domain Topic Shift: the current sentence di-
verges significantly from the main topic but re-
mains relevant to customer service

Among these, both Normal and Leap sentences are con-
sidered on-topic, while Out-of-Domain Topic Shift and
In-domain Topic Shift sentences are considered off-
topic. Notably, for all Leap conversations, both the
"Leap" label and the specific preceding sentence they
respond to are annotated. This detailed level of manual
annotation makes this dataset unique, as no publicly
available dataset currently offers this feature.

The dataset comprises a total of 4,000 conversations.
In theory, any sentence within a conversation could be
selected as the current sentence SN , and the relationship
between its label and the preceding sentences could
be analyzed. This approach could generate multiple
data points from a single conversation. However, to
minimize correlation among data points, we opted to
extract only one data point per conversation, ensuring
that each of the four labels mentioned above has 1,000
data points, resulting in a balanced dataset.

Because this dataset pertains to Amazon’s customer
service operations, it is intended for internal use only.
However, to support research in this field, we are devel-
oping a similar dataset by having two large language
models (LLMs) engage in conversations on publicly
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∆T ≤ 300 300 < ∆T ≤ 512 ∆T > 512
Metrics NSP Ours NSP Ours NSP Ours

Precision 0.747 0.734 0.612 0.697 0.588 0.703
Recall 0.961 0.983 0.982 0.972 0.917 0.980

Accuracy 0.818 0.814 0.679 0.775 0.637 0.783
F1 score 0.840 0.841 0.754 0.812 0.717 0.819

Table 1: Comparison among different models with varying token gap lengths ∆T . The differences between NSP
and our model are minimal for narrow token gap but gradually increase as the token gap widens.

available topics, such as machine learning. Once com-
pleted, we will release this dataset along with our model
evaluation results on it1.

4.2 Benchmark Test

We aim to evaluate our model’s performance across the
entire dataset. Employing a sliding window technique,
we generated sentence chunks, each comprising 4 sen-
tences with a stride of 2. This method yielded chunks Si

(where i = 1 to N − 1), with every 4 sentences forming
one chunk and a 2-sentence overlap between adjacent
windows.

To calculate P (y|Si, SN ), P (SN |y), and P (SN ),
we used specific models. For P (y|Si, SN ), we tested
several widely used NSP-pretrained models, including
BERT (Devlin et al., 2017), ALBERT (Lan et al., 2019),
ERNIE (Zhang et al., 2019), ERNIE 2.0 (Sun et al.,
2020), Conversational BERT (DeepPavlov.ai, 2021),
and their fine-tuned versions available from Hugging-
Face. Among these, Conversational BERT, a model
specifically trained on extensive chat data from social
networks, consistently outperformed the others by better
capturing conversational characteristics and achieving
state-of-the-art performance on this task.

Regarding P (SN |y) and P (SN ), we randomly sam-
pled over 100,000 sentences from conversations specific
to online video streaming and from arbitrary topics,
respectively. These sentences were encoded using Sen-
tence BERT to train separate Isolation Forest models.
The anomaly scores generated by these models were
used to create two CDF functions for probability esti-
mation.

Based on this setup, we observed that compared to the
original BERT, using Conversational BERT significantly
improved AUC performance by over 14.2%, increasing
it from approximately 68.7% to around 82.9% (with
accuracy from 67.8% to 80.8%) across the entire dataset.
These results demonstrate that our approach performs
well when faced with real-world data.

4.3 Exploration of the Residual Term

The residual term enhances NLU estimation, especially
for uncertain samples when the attention term lacks con-
fidence. To measure its effect, we select 400 examples
where the attention term produces confidence levels be-

1The dataset will be released here once finalized:
https://github.com/pipidog/TopicContinuity

tween patt = 0.4 and patt = 0.6, and then measure
their changes after incorporating the residual term.

The results shown in Fig. 2(a)-(b) demonstrate that
the inclusion of the residual term has increased the dis-
persion of Pnlu, previously confined to the range of 0.4
to 0.6, indicating an overall boost in confidence levels.
Before introducing the residual term, the model’s pre-
dictions for these 400 examples resulted in precision of
0.55, recall of 0.50, and AUC of 0.47, almost resem-
bling random guesses. However, after integrating the
residual term, the metrics improved to precision of 0.62,
recall of 0.65, and AUC of 0.61. This underscores the
significant improvement provided by the residual term
for examples that the attention term struggles to handle
effectively.

4.4 Exploration of the Attention Mechanism

In contrast to using BERT directly for Next Sentence
Prediction (NSP) to determine whether SN is a reason-
able context for (S1 + S2 + . . .+ SN−1), our approach
focuses on calculating NLU model, i.e. Eq.(1), using
attention mechanisms. This approach offers advantages
when handling long conversations and leap conversa-
tions. In the upcoming experiment, we aim to compare
the benefits of our method with the NSP method to
elucidate the role of attention mechanisms.

Token Length Dependence Here we assess the im-
pact of token length on both models when predicting
out-of-domain topic shift data. In scenarios where SN is
unrelated to the entire conversation, both models should
yield results pnlu ≈ 0 (off-topic). However, segment-
ing conversations by token length and averaging output
probabilities reveals the NSP model’s predictions be-
come unstable after 300 tokens (Fig.2(c)-(d)), while our
model’s predictions remain stable and accurate. Addi-
tionally, our model maintains performance even when
token length exceeds NSP’s maximum limit of 512 to-
kens, demonstrating the advantages of our approach.

Token Gap Dependence To further analyze attention
mechanisms, we created three datasets, each containing
350 leap conversations with varying token gaps between
the target sentence and the current sentence: 1) less
than 300 tokens, 2) between 300 and 512 tokens, and
3) greater than 512 tokens. In each dataset, we inten-
tionally added additional 350 topic shift conversations
(half in-domain and half out-domain), turning them into
binary classification tasks.

In our experiments, both the NSP and our model
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were used to predict outcomes on these datasets. In
the third dataset, where token length exceeds the NSP
model’s limit, we truncated the conversation for NSP
input, while our model used the entire conversation.
Table 1 shows the results. NSP performs similarly to
our model for small token gaps, but as the gap widens,
our model outperforms NSP significantly. With token
gaps surpassing 512, NSP’s results become unreliable
due to excluding the target sentence from its input. In
contrast, our model maintains high accuracy. This ex-
periment underscores our model’s superior performance
in managing conversations of varying lengths, achieving
state-of-the-art results.

5 Conclusion

With the rapid development of large language models
(LLMs), the effective utilization of LLMs in various
business scenarios has become an important issue. In
this paper, we propose a method that ensures user con-
versations with LLMs remain focused on fixed topics.
This method is based on the introduction of non-linear
transformations and attention mechanisms through an
extension of Naive Bayes. Experimental results across
various scenarios consistently demonstrate that our ap-
proach outperforms traditional methods. We believe
this method will be highly beneficial for using LLMs in
topic-constrained scenarios.
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