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Abstract

We propose Project Context for Code Sum-
marization with LLMs (PROCONSUL), a new
framework to provide a large language model
(LLM) with precise information about the code
structure from program analysis methods such
as a compiler or IDE language services and
use task decomposition derived from the code
structure. PROCONSUL builds a call graph
to provide the context from callees and uses
a two-phase training method (SFT + prefer-
ence alignment) to train the model to use the
project context. We also provide a new eval-
uation benchmark for C/C++ functions and
a set of proxy metrics. Experimental results
demonstrate that PROCONSUL allows to sig-
nificantly improve code summaries and re-
duce the number of hallucinations compared
to the base CodeLlama-7B-instruct model. We
make our code and dataset available at https:
//github.com/trinity4ai/ProConSuL.

1 Introduction

State of the art large language models (LLMs) such
as GPT-4 (OpenAI, 2023), Claude 3 Opus (An-
thropic, 2024b), Claude 3.5 Sonnet (Anthropic,
2024a), and deepSeek-coder-v2 (Zhu et al., 2024)
can code better than ever, exhibiting expert level
capabilities in both writing code and comprehend-
ing software projects. However, they still suffer
from hallucinations and may make wrong conclu-
sions due to the lack of extended context of the
entire software project. This is true for people, too:
programmers need the project context to under-
stand what a given function does, and the top-down
comprehension model (understanding source code
from domain context) is noisier than bottom-up
comprehension (understanding code statement by
statement) because it is hard for the developers
to control matching current context with their do-
main knowledge (Siegmund et al., 2014; Letovsky,
1987). A straightforward solution would be to feed

the entire project into the LLM, but it adds a lot
of unnecessary information that makes the LLM’s
job harder and demands extra resources and spe-
cial tricks to alleviate the quadratic complexity of
self-attention (Gemini, 2024; Liu et al., 2023a).

To reduce the amount of information needed to
feed an LLM, one has to find out which parts of the
project context are crucial for a given practical task
such as code summarization. In this work, we pro-
pose the Project Context for Code Summarization
with LLMs framework (PROCONSUL) that con-
structs precise and efficient project-level context
for code summarization via formal analysis and
adapts LLMs to this context. We focus on C/C++,
a programming language very important in practice
but severely underrepresented in ML research.

Specifically, we: (1) study different kinds of
useful project context for function-level code sum-
marization; (2) represent project context for code
summarization based on code structure provided by
formal analysis methods and develop a fine-tuning
framework for LLMs with supervised fine-tuning
on synthetic data and preference alignment; (3) in-
troduce a new real life practical benchmark with
automatic and semi-automatic proxy metrics for
fast evaluation of code summarization quality for
C/C++ and labeling instructions; (4) provide open-
sourced training datasets, evaluation benchmark
and source code for reproducing our results1.

The rest of the paper is organized as follows: Sec-
tion 2 surveys related work, Section 3 introduces
the method, including the PROCONSUL frame-
work and dataset preparation techniques, Section 4
outlines the evaluation benchmarks and our experi-
mental results, and Section 5 concludes the paper.

2 Related work

Task decomposition for LLMs. This work was
partly inspired by Wu et al. (2021b) who intro-

1https://github.com/trinity4ai/ProConSuL
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duced recursive book summarization, suggesting
to decompose a complex task into smaller parts
and then compose them back. Importantly, this
kind of task decomposition allowed to scale human
feedback without requiring the labelers to read the
whole book. In the coding domain, Zelikman et al.
(2023) suggested to decompose algorithmic tasks
into hierarchical natural language function descrip-
tions and then search over combinations of possible
function implementations using tests.

Using the formal structure of source code in
LLMs. Most previous works in this direction tried
to encode code structure information into sequence-
based models; e.g., GraphCodeBERT (Guo et al.,
2021) uses the data flow extracted from code to
help pretrain a BERT-like model, while Wu et al.
(2021a) introduce a structure-induced Transformer
that applies regularization to the self-attention
mechanism by masking the attention matrix with
adjacency matrices of different graph representa-
tions. Another direction of research models source
code with graph neural networks (GNN) (Allama-
nis et al., 2017; Zhang et al., 2022). Hellendoorn
et al. (2020) suggest to combine self-attention lay-
ers with GNN layers, bridging the gap between
global attention in Transformers and inherently lo-
cal GNNs that rely on message passing. To extend
the context to large software projects, Ma et al.
(2024) use an agent that traverses a project’s graph
representation and collects information necessary
to solve a specific task. In this work, we in turn use
formal representations of code for task decomposi-
tion and augmenting the model context.

Extending the context. The problem might be
solved if we were able to provide full context of a
large programming project to an LLM. This, how-
ever, runs into the quadratic complexity of self-
attention. There are several approaches to alleviate
this quadratic complexity, including sparse atten-
tion mechanisms (Beltagy et al., 2020; Child et al.,
2019; Zaheer et al., 2020), low-rank decomposi-
tion for the matrix of self-attention weights (Choro-
manski et al., 2020; Wang et al., 2020), or chunk-
ing attention to constrain quadratic complexity to
small subsets of the input, either with a recurrent
architecture (Bulatov et al., 2022; Guo et al., 2023;
Hua et al., 2022; Ma et al., 2023), fitting more to-
kens by interpolating positional embeddings (Chen
et al., 2023), or with other tricks such as hashing
(Kitaev et al., 2020) or blockwise attention (Liu
et al., 2023a). However, large context sizes are
still challenging for LLMs to use efficiently (Liu

et al., 2023b), and a better solution would choose
the contents of this long context wisely.

Evaluation metrics for text generation. Most
common evaluation metrics compare generated text
to a reference, including n-gram-based metrics and
embedding-based metrics such as ROUGE (Lin,
2004), METEOR (Banerjee and Lavie, 2005), or
BERTScore (Zhang et al., 2019); the problem here
is the lack of high quality reference texts. One idea
is to do away with them completely and evaluate
based on the source document instead: He et al.
(2008) thus arrive at the ROUGE-C metric, but in
our case it is inapplicable because natural language
summaries and code represent different modalities.
Liu et al. (2023c) and Zheng et al. (2023) use a
different strong LLM to evaluate text generation
automatically. Another approach is to evaluate dif-
ferent properties of text separately; e.g., Deutsch
et al. (2021) estimate the quality of a summary by
a set of question-answer pairs automatically gen-
erated from the reference. We also note that large
language models are notorious for hallucinating,
i.e., introducing erroneous facts in their output, and
detecting hallucinations is also an important prob-
lem (Fadeeva et al., 2024; Manakul et al., 2023).

3 Method

3.1 Context-augmented Code Summarization

To achieve state of the art code summarization in a
natural language, we propose the Project Context
for Code Summarization with LLMs framework
(PROCONSUL) that provides a large language
model with precise information about the code
structure provided by program analysis methods
such as a compiler or IDE language services and
uses task decomposition derived from the code
structure (in our case, the call graph).

PROCONSUL consists of four major compo-
nents: (1) it builds a call graph to provide the
context from callees and uses a special instruction
format that includes a new context section, includ-
ing the list of callee names and code summary pairs
(see Appendix A, Table 7); (2) it synthesizes a
training dataset by using a reference model and
applying special filtering, as detailed in Section 3.2;
(3) it performs supervised fine-tuning and prefer-
ence alignment to adapt the model to use project
context; (4) at inference time, it performs recursive
summarization to propagate facts along the project
call graph. Specifically, recursive summarization
(a) constructs the call graph and contracts loops,
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(b) traverses the resulting tree in topological order,
summarizing each function with summaries of its
callees as context, and (c) for a loop, generate sum-
maries in some order and do another iteration with
new summaries as context.

We focused on C/C++ as the target program-
ming language because it remains an important and
very popular language in industry but is underrep-
resented in AI research: most recent papers and
benchmarks cover Python and/or Java. At the same
time, C/C++ is more complex for program analysis.

To obtain the call graph, we use a Clang-based
tool as the industry standard for parsing C/C++. For
all experiments, we use instruction-tuned versions
of models from the CodeLlama family with 7B and
34B parameters (Rozière et al., 2024).

Supervised fine-tuning (SFT). Preliminary ex-
periments with in-context learning for the base
CodeLlama models led only to quality degrada-
tion with increased project context. Therefore, we
used SFT to adapt the model to a new prompt distri-
bution (see Section 3.2). We trained rank-stabilized
LoRA (rsLoRA) adapters (Kalajdzievski, 2023)
with hyperparameters following Biderman et al.
(2024): LR=3.e-5, LoRa Rank=16, LoRA Mod-
ules=’all’, constant scheduler, 8 bit quantization,
efficient batch size 512; for training, we used 2
NVIDIA V100 16Gb GPUs.

Alignment. Preference alignment is a great fit
for our task because it helps to align model be-
haviour with desired outputs while using a rel-
atively small amount of high quality feedback
(Ouyang et al., 2022). The goal here would be to
decrease the likelihood of verbose and trivial code
summaries and increase the likelihood of correct
and concise code summaries at the same time. We
used the odds ratio preference optimization algo-
rithm (ORPO) (Hong et al., 2024), a modification
of direct preference optimization (DPO) (Rafailov
et al., 2023) that combines SFT and DPO into
a single phase; ORPO is an easy to implement
and more computationally efficient counterpart of
known RL methods such as proximal policy opti-
mization (PPO) (Schulman et al., 2017).

For the data, we generated 950 positive exam-
ples with GPT-4o by using prompt engineering and
the callee’s project context (see Appendix A). We
filtered the functions and generated the callee’s
context for every function by vanilla CodeLlama-
7B, and then collected several negative examples
for each positive code summary; negatives were
generated by other versions of CodeLlama that suf-

fered from hallucinations, verbosity, triviality, or
factual mistakes. The final training set for ORPO
contains 3000 negative-positive pairs. We trained
LoRA adapters with LR=1e-4, LoRa rank=16,
Modules=’all’, linear scheduler, 8 bit quantization,
efficient batch size 32, ORPO beta=0.1; for train-
ing, we used 2 NVIDIA V100 16Gb GPUs. We use
the same instruction template with callee context
as during the SFT phase (see Appendix A).

3.2 SFT dataset preparation

First, we extracted and ranked the most popular
GitHub repositories written in C/C++ with GitHub
Public Repository Metadata2, filtering projects
where we were able to automatically generate the
JSON compilation database with project compila-
tion commands for Clang3. In total, we selected
25 projects of different sizes, including linux, re-
dis, llvm-project, curl, and others. Then we ran a
Clang-based tool to build the global call graph and
extract all function declarations from the project
together with their metadata including callee–caller
relations, docstrings (if they exist) etc. For the test
set, we separately selected 5 repositories from do-
mains that are similar to our enterprise codebase
and exclude them from train: ffmpeg, openssl, wrk,
llvm/clang/tidy, and libuv (see also Section 4). To
prevent contamination and data leaks, we removed
all (near) duplicates between test and train sets.

To filter and generate synthetic docstrings, we
used the same CodeLlama-instruct model as we had
used for fine-tuning; prompts used for generation
are shown in Appendix A. We applied a custom
crafted set of filters before and after generating the
summaries, including (but not limited to; see the
repository for more details): (1) remove samples
with very short or very long code, leaving function
bodies between 50 and 4000 symbols; (2) remove
function declarations without bodies or functions
with an empty body; (3) include functions with
comments only in English; (4) remove synthetic
code summaries with stop words such as “fixme”,
“deprecated”, and others; (5) remove trivial and ver-
bose synthetic code summaries according to auto-
mated metrics (see Section 4); (6) remove very shot
or long synthetic code summaries (under 2 and over
70 words); (7) remove synthetic code summaries if
they contain code entities (expressions, statements

2https://www.kaggle.com/datasets/pelmers/
github-repository-metadata-with-5-stars/
versions/8

3https://clang.llvm.org/
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Figure 1: Training dataset preparation pipeline

or code blocks) from the function body. The data
preparation pipeline is illustrated in Figure 1. Af-
ter filtering, we obfuscated callee names (replaced
the name with a random string) with probability
0.5 to force the model to use context information,
and used the instruction prompt with callee context
shown in Appendix A to get the final training set.

3.3 Useful project context categories

Before performing experiments, we studied var-
ious useful categories of the project context and
their importance for code summarization. For this
purpose, we sampled 50 random functions from
popular C/C++ repositories (according to the num-
ber of stars, forks, and watchers); two researchers
of our team manually labeled these functions as
follows. Each annotator wrote a code summary us-
ing only the function body, then corrected it using
IDE, documentation, and Web search, and finally
noted project context categories that helped them
to comprehend the source code.

As a result, we extracted seven code context cat-
egories that are possibly useful from the human per-
spective and collected statistics on what category
is most popular and promising for future research.
Table 1 shows their descriptions and percentage of
occurrences. We see that most popular context cate-
gory (46% of the cases) is “Callees”, functions that
are called from the target function. In 22% of the
cases, there is no need for any context to summarize
the source code: naming is enough or the code is
self-explanatory. Moreover, some categories such
as “Web search” or “Readme” may become unnec-
essary if the model has enough domain knowledge.
Thus, we find that the most important category is
“Callees”, with second and third places occupied by
“Usages” and “Classes”.

Context
category

Description %

Callees Information about callees: code, docstring,
code summary, filename etc.

46%

Classes Information about the struct or class: docu-
mentation, code summary, source code

22%

Usages Information about callers: call site context,
docstring, code summary, code, function
name etc.

20%

Web
search

Meanings of abbreviations, documentation,
usage examples, new knowledge

20%

File Information from the source file where the
function is located: other functions, file-
level docstring, filename, classes

18%

Readme Information from the readme.md file or
project documentation: domain info about
the project, formatting information etc.

10%

Globals Information about a global variable: decla-
ration, code summary, docstring

8%

No
context

There is no need for context, the function
body contains enough information

22%

Table 1: Project context categories. Percentages do not
sum to one because multiple categories can apply to the
same function

4 Evaluation Benchmark and Results

4.1 Motivation

To the best of our knowledge, there is no suit-
able publicly available benchmark for evaluating
C/C++ code summarization models. For example,
CodeXGLUE (Husain et al., 2019) includes code
summarization but does not cover C/C++ and uses
a reference-based metric BLEU; this is problematic
since reference texts are usually the original doc-
strings that are very noisy and often contain infor-
mation that cannot be derived from function body
and project context (Mu et al., 2023). Muennighoff
et al. (2024) suggest to use backtranslation and use
the Pass@K metric, but do not control the style and
other metrics and are sub-optimal for our case of
code summarization because a short summary can-
not contain enough information to generate back a
long function body. Therefore, in this work we de-
sign and implement a new benchmark and metrics
for C/C++ code summarization.

4.2 Evaluation criteria and proxy metrics

Criteria. We begin by formulating the criteria that
a good code summary should meet in the form of
labeling instructions; we have aligned these criteria
with real software developers and designed a cor-
responding evaluation system. We distinguish two
groups of criteria: style-related and content-related.
The criteria are shown in Table 2; verbosity and
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Criterion Description Proxy metric

Verbosity A summary is verbose if it contains redundant information or an overly de-
tailed description (e.g., a description of local variables), explains the function
statement by statement with no added value (e.g., “calling function foo with
argument x), or contains repeated information

An automatic proxy metric based on
the length of summary and repeti-
tion of substrings in the summary

Triviality A summary is trivial if all the information it contains can be deduced from
the function signature: name, argument names and types, return type

Overlapping words between func-
tion signature and summary

Sufficiency A summary is sufficient if it contains enough information to understand
what the function actually does without looking at the function body, and
implementation details are included if they are crucial to use the function
correctly

Sufficiency via QA: questions and
binary answers (manually) prepared
in the test set, GPT-4 used as the QA
model; Sufficiency via GPT: GPT-4
is asked to compare two summaries
and return which one is better

Factual
correct-
ness

A summary is factually correct if it does not contain facts or details that can
be proven wrong based on the information given to the LLM (e.g., “if x > 0
the function returns true” while the actual condition is “x < 0”)

Use GPT-4 to check correctness,
double-checking its output against
the list of possible mistakes and hal-
lucinations

Halluci-
nations

A summary contains hallucinations if it contains information that cannot be
inferred from the repository or general knowledge, e.g., mentions nonexisting
code entities (variables, functions etc.), invariants or guarantees that can-
not be inferred (thread-safety, time/memory complexity etc.), or additional
claims about implicit behaviours, usage, or meta-knowledge (e.g., saying that
“normalize_frame() is called for every frame of a video” while no context
about its usage has been provided)

Use GPT-4 to check for hallucina-
tions, double-checking its output
against the list of possible mistakes
and hallucinations

Random
facts

A summary contains random facts if it includes claims that do not help under-
stand the code and seem out of place (e.g., “C is a popular yet complicated
language”)

No proxy metric developed; Sec-
tion 4.3 shows that random facts are
almost never generated

Table 2: Evaluation criteria for code summaries (all prompts are given in Appendix A)

triviality are style-related and the rest are content-
related. For all criteria except Sufficiency we ask
the labelers to provide a binary 0/1 score; for Suf-
ficiency, we perform a side-by-side comparison
of two summaries. Full labeling instructions are
provided in the github repository.

Proxy metrics. Manual annotation is expen-
sive and time consuming, especially for the C/C++
programming language, where this process might
take hours. While we emphasize that human opin-
ion is still the gold standard for final evaluation
and cannot be fully replaced by automated metrics,
to streamline hypothesis testing and perform, e.g.,
validation set experiments we have designed proxy
metrics for each criterion from the annotation guide.
These metrics are also detailed in Table 2. Using
these proxy metrics significantly speeds up man-
ual annotation. We have evaluated proxy metrics
for agreement with human annotators against an-
swers generated by other modifications of CodeL-
lama (base version, various SFT and SFT+ORPO
versions), using them to generate code summaries
on the test set. For the triviality criterion, we la-
beled 150 points (25 for each of 6 models) by 3
annotators, with every annotations labeled by two
human assessors. The proxy metric agreed with hu-

man annotation in 136 cases, with precision 0.769
and recall 0.714. For verbosity, our proxy met-
ric was very useful during early experiments but
stopped working for the best models because the
few remaining verbose summaries copied source
code rather than just repeated themselves. For suf-
ficiency, we sampled 25 pairs of summaries and
labeled it by two human assessors. GPT-4 agrees
with humans 18 times out of 25 with 7 ties, while
the QA-based metric agreed with humans only 8
times with 3 wrong answers and 14 ties. As a re-
sult, we find that top-level LLMs such as GPT-4
can serve as excellent proxy metrics for code sum-
mary evaluation (but they are harder to scale and
cannot be used for closed codebases, i.e., basically
for any enterprise solution) while the QA-based
metric is worse even though it is also GPT-based.

Test data. We selected 5 repositories (ffmpeg,
openssl, wrk, llvm/clang/tidy, libuv) for testing, ex-
cluded them from training, and sampled 25 func-
tions, 5 per repository, filtering out third-party func-
tions and function-like macros. We used this micro-
benchmark for manual evaluation of our models.
For hyperparameter tuning and model selection,
we sampled 20 separate points for the validation
set (we use functions from libuv and ffmpeg whose
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Verifies that the given X509 certificate is
valid for the given hostname. CodeLlama-7B

ProConSul

Validates a given string against a subject or subject alternative
name (SAN) in an X509 certificate, comparing it based on the

specified type (email, DNS, or IP). Returns 0 on success or a non-
zero error code on failure. Handles email and DNS sub-domain

patterns, ensuring proper memory management throughout.

Validates a hostname against an  509
certificate, ensuring no  embedded NUL

characters and handling DNS sub-domain
patterns. Returns 0 on success or an error

code on failure.

Context for do_x509_check(X509 *x, const char *chk, size_t
chklen, unsigned int flags, int check_type, char **peername):

int X509_check_host(X509 *x, 
    const char *chk,
    size_t chklen,
    unsigned int flags,
    char **peername) {
  if (chk == NULL) return -2;
  /* Embedded NULs are disallowed,
   * except as the last character
   * of a string of length 2 or 
   * more (tolerate caller 
   * including terminating NUL 
   * in string length).*/
  if (chklen == 0)
    chklen = strlen(chk);
  else if (memchr(chk,'\0',
    chklen>1 ? chklen-1 : chklen))
    return -2;
  if (chklen>1 && 
      chk[chklen-1]=='\0')
    --chklen;
  return do_x509_check(x, chk,
    chklen, flags, GEN_DNS,
    peername);

Source code

Checks whether the given X509 certificate contains the specified
check string in the specified check type. Returns 0 if the check
string is present, -1 if it is not present, or -2 if an error occurred.

Checks whether the given X509 certificate
contains the specified check string in the

specified check type. Returns 0 if the check
string is present, -1 if it is not present, or -2 if

an error occurred.

Validates a specified check against a given X509 certificate,
checking both the subject alternative names and the common
name. Returns 1 if a match is found, 0 otherwise, and handles

various string types and wildcard matching.

Validates a hostname against a given X509
certificate, ensuring no embedded NULs

and handling string lengths. Returns -2 if the
hostname is invalid, otherwise returns the

result of the check.

ProConSul
w/o obfuscation

ProConSul
w/o ORPO

Model Summary

Figure 2: A comparison of sample annotations for a hostname validation function
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Table 3: Experimental results (out of 25 annotations).

callee graphs do not intersect with the test set).

4.3 Evaluation Results

Experiments. For our main experimental results, 3
annotators have performed manual labeling over 25
annotations each, with every annotations labeled
by two human assessors. Table 3 shows the re-
sults of PROCONSUL compared to the baseline of
CodeLlama-7B-instruct and a number of variations
that comprise an ablation study for different parts
of our approach. It is clear that PROCONSUL out-
performs the baseline and variations with different
parts of the approach switched off. We have also
tested ORPO on the larger 34B model (Table 3)
and obtained significantly improved results.

For the ablation study, we note that fine-tuning
on original docstrings usually only hurts the model;
filtering can also lead to very short or trivial doc-
strings. The SFT phase with synthetic data lets the
model improve style and make summaries less ver-
bose and less trivial; it has also adapted PROCON-
SUL to having context in the prompt. RLAIF also
improves the model, and in our case it allowed to
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GPT-4o 2/5/18 3 0 22 0 0
GPT-4o with callee context 7/3/15 2 1 22 0 0

Table 4: Comparison with GPT-4o.
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PROCONSUL-7B 2 0 23 1 0
PROCONSUL-7B without context 1/6/18 3 0 23 1 0

Table 5: Comparing PROCONSUL with and without
callee context.

improve summaries further than we could achieve
by prompting alone, even with a small training set
(1000 positive examples for using context). The
“Random facts” criterion, included from our prior
experience, has proven to be almost unnecessary:
modern LLMs do not add random facts (except for
rare cases when they generate code).

Comparison with state of the art closed LLMs.
Table 4 shows a comparison of PROCONSUL and
GPT-4o with and without callee context. The re-
sults are comparable and differ only in a few cases.
We have also tried to apply our recursive inference
approach to prompt GPT-4o, and it has improved
the GPT-4o’s sufficiency metric, as expected. We
also note that our approach allows to efficiently
collect information from the callee graph into a
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limited context; for some data points in the llvm
project, the size of the callee graph reaches nearly
30000 functions.

We have also conducted an experiment to ana-
lyze the importance of having this context, evalu-
ating the results of a model without callee context.
Table 5 shows that without the context, the model
significantly loses in the sufficiency metric. This
supports our hypotheses that (1) context is used
by the model and (2) it actively improves the suffi-
ciency metric, i.e., it is not merely a distillation of
GPT-4o.

Qualitative evaluation. Figure 2 and Ap-
pendix B show a selection of characteristic sample
summaries for the CodeLlama-7B-Instruct base-
line and different versions of PROCONSUL. Note
that different versions of PROCONSUL produce
different context summaries for the same function.

From this qualitative analysis we conclude that:
(1) it is hard to achieve non-trivial and non-verbose
summaries via pure prompt engineering, the base-
line generates either trivial one-sentence docstrings
or very verbose responses, and zero-shot context
does not help (Ex. 1–5, Appendix B); (2) SFT with-
out ORPO and synthetic data on original docstrings
(Ex. 6–9) often leads to trivial answers; adding
synthetic data without ORPO improves style but
produces more trivial and less correct summaries;
(3) using ORPO without SFT leads to more verbose
summaries; (4) removing obfuscation increases hal-
lucinations; also, in Fig. 2 we see how without ob-
fuscation the model just summarizes the function
body while the full PROCONSUL adds important
information from context; (5) improvements extend
to the 34B version of the models as well (Ex. 10).

Real-world applications. This work has arisen
out of a real world project on AI for code. Real
world applications include, for instance, generating
docstrings on a private codebase that has insuffi-
cient documentation. Importantly, the expert ac-
ceptance rate for our results is high (with a large
difference between vanilla and trained models), so
results of this work are already being used in a
production environment. Another application is
generating synthetic data for code generation mod-
els. We have tested fine-tuning on our synthetic
summaries, and the pass@1 metric has increased
compared to the model trained on original doc-
strings.

5 Conclusion

In this work, we have introduced the PROCONSUL
framework that gathers and uses project-level con-
text for code summarization in C/C++, including a
new method for synthetic data collection and label-
ing, a method for fine-tuning LLMs via a combina-
tion of SFT and preference alignment, and a new
benchmark based on real world C/C++ functions.
We show that a proper use of the project context
allows to significantly improve code summaries
and reduce the number of hallucinations by using
precise information from the context. We hope that
this research is a stepping stone to bridging the gap
between formal source code analysis and LLMs.

6 Limitations

The main practical limitation here is that the evalu-
ation dataset in this work is rather small, restricting
the robustness of our results. Unfortunately, scaling
the evaluation much further would be beyond our
capacity since factual correction and hallucination
metrics are not fully automated and require human
supervision, which in the case of code summaries
is slow, requires high expertise, and is therefore
expensive. The evaluations shown in this work
have been performed by our research and devel-
opment team, with two human assessors labeling
every summary.
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Prompt template:
[INST] <<SYS>>
Write a docstring for the following C++ code. You should
write the shortest possible docstring: no code, only one
sentence.
<</SYS>>
{code}
[/INST] Here is a revised version of the docstring with
improved style (no code):

Example:
[INST] <<SYS>>
Write a docstring for the following C++ code. You should
write the shortest possible docstring: no code, only one
sentence.
<</SYS>>

static inline int wnv1_get_code(GetBitContext *gb,
int shift, int base_value)

{
int v = get_vlc2(gb, code_vlc, CODE_VLC_BITS, 1);
if (v == 8)

return get_bits(gb, 8 - shift) << shift;
else

return base_value + v * (1 << shift);
}

[/INST]
Here is a revised version of the docstring with improved
style (no code):

Table 6: Prompt template used to generate the synthetic
dataset, examples.

A Prompt structure

In this section we show the prompt templates and
provide examples. In particular:

• Table 6 contains the prompt template used to
generate synthetic data for fine-tuning;

• Table 7 shows the prompt template for sum-
marization that we used for both training and
inference;

• Table 8 shows the prompt template for a strong
LLM (GPT-4o) used to compute the pairwise
GPT-based proxy metric for sufficiency;

• Table 9 provides the prompt template for find-
ing factual mistakes and hallucinations with a
strong closed LLM (GPT-4o);

• Table 10 shows the prompt template for a
strong closed LLM (GPT-4o) used to compute
the QA-based proxy metric for sufficiency.

• Table 11 shows the prompt template for a
strong closed LLM (GPT-4o) used to generate
positive examples for alignment dataset.

Prompt template:
[INST] <<SYS>>
You are an expert in Programming. Below we have two
sections separated by four hyphens: "—-".
The second section is a C++/C code snippet.
Above that code snippet we have additional info to help
you out: a list of function callees with their docstrings
(separated by an asterisk).
Return a line of summary that describes the function.
<</SYS>>
{name1}({params1}): {doc1}
*
{name2}({params2}): {doc2}
*
...
----
{code} [/INST]

Example:
[INST] <<SYS>>
You are an expert in Programming. Below we have two
sections separated by four hyphens: "—-".
The second section is a C++/C code snippet.
Above that code snippet we have an additional info to help
you out: a list of function callees with their docstrings
(separated by an asterisk).
Return a line of summary that describes the function.
<</SYS>>
get_vlc2(GetBitContext *s, const VLCElem *table,

int bits, int max_depth): Retrieves a
variable-length code from the given
GetBitContext using the specified VLCElem
table and maximum depth.

*
get_bits(GetBitContext *s, int n): Returns the next

n bits from GetBitContext, where n is a
positive integer less than or equal to 25.

----
static inline int wnv1_get_code(GetBitContext *gb,

int shift, int base_value)
{

int v = get_vlc2(gb, code_vlc, CODE_VLC_BITS, 1);
if (v == 8)

return get_bits(gb, 8 - shift) << shift;
else

return base_value + v * (1 << shift);
} [/INST]

Table 7: Prompt template used at training and inference
time, examples.

B Examples

The long table provides several characteristic ex-
amples of specific C/C++ functions from our eval-
uation set and summaries produced by different
methods; the qualitative results and conclusions we
derive from these example are discussed in Sec-
tion 4.3.
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System prompt:
Below you have a code snippet with 2 summaries delimited
with summary_A and summary_B tags.
Please tell which one of them is more comprehensive and
complete,
i.e. covers more crucial aspects of the code and gives a
clearer description of what the function does,
or if they are equally comprehensive. Please be as concise
as possible, I don’t have much time.
User prompt:
<code>
{code} </code>

<summary_A>
{doc1} </summary_A>

<summary_B>
{doc2} </summary_B>

Which one is more complete? Are they comparable?
Your answer: [Model Answer]
User prompt:

Based on your thoughts give a final answer. Return a single
character: "A" for summary_A, "B" for summary_B and
"C" if they are comparable.
Your response (one letter): [Model Answer]

Table 8: Prompt template used to obtain the pairwise
sufficiency score.

System prompt:
You are a knowledgeable C/C++ code expert. You are here
to help your colleagues with abstractive code summariza-
tion task. Your answers should be concise and substantial.
Follow your instructions strictly. Try to give your answers
in the form of a short list. Your colleagues would appreci-
ate it if you give a short and accurate answer.
User prompt:
Below we have a C/C++ code of a function and a doc-
string for that function (delimited with XML tags). We
need to decide whether this function docstring gives a fac-
tual high-level summary of the code. Patiently go over
each statement from this function docstring. Then give
a list of details this docstring gets wrong - if it makes a
mistake and says something that is not true - tell us; start
by providing a short quotation. Also, mention if the doc-
string contains hallucinations - statements that can not be
extracted from the given code or general context; give an
explanation. Recall that the purpose of this docstring is a
high-level summarization, so don’t expect a comprehen-
sive code summary. If the docstring omits details, it is fine,
it is not a mistake or disadvantage from our perspective, do
not mention it in your review. Answer template example:
Wrong details:
- ...
Statements from the docstring that can not be extracted
from the given code or general context:
- ...

<code>
{code} </code>
<docstring>
{doc} </docstring>

Table 9: Prompt template used to get factual mistakes
and hallucinations.

System prompt:
You are an expert in Programming. You are here to help
your colleagues with abstractive code summarization task.
For your help to be effective you need to follow given
instructions strictly. Your task is to answer Yes or No to
every question using only the information in the provided
docstring. You should use the provided docstring as the
only source of truth. Give a separate answer to every
question in order. One answer per question on separate
lines. Answer only Yes or No. If you are unsure about the
answer to a question, add a comment to your answer on
the same line.
User prompt:
Docstring:
"""{doc}"""
Questions:
Does the docstring mention claim1?
Does the docstring mention claim2?
...

Table 10: Prompt template used for QA-based Suffi-
ciency metric.

System prompt:
You are a knowledgeable C/C++ code expert. Your task is
to assist me with an abstractive code summarization task.
I need you to provide an example of a well-thought-out,
comprehensive, yet concise function summary. Write 1 to
4 short sentences that summarize the function below. If
applicable, describe the purpose and effects of the code,
but omit unnecessary details. Focus on abstraction and
highlighting key points: be as terse as possible, like a
Terminator.
User prompt:
Below is some information gathered from our code
repository.
To help you create a comprehensive summary, we provide
additional context: a list of callees with their docstrings.
This might help you understand the broader context of our
project.
The structure is as follows: a list of callees with docstrings,
followed by the function code, and then a blank line for
your response.
The function and the list of callees are delimited with XML
tags for clarity (<code> and <callees list> respectively).

<callees list>
{name1}({params1}): {doc1}
*
{name2}({params2}): {doc2}
*
...</callees list>

<code>
{code} </code>

Write a concise function summary below (only 1-4 sen-
tences, as if you are a Terminator):

Table 11: Prompt template used for positive examples
generation.
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Example 1:
int X509_check_host(X509 *x,

const char *chk, size_t chklen,
unsigned int flags, char **peername) {
if (chk == NULL) return -2;
/* Embedded NULs are disallowed, except as
* the last character of a string of length
* 2 or more (tolerate caller including
* terminating NUL in string length).*/
if (chklen == 0)

chklen = strlen(chk);
else if (memchr(chk,'\0', chklen>1 ?

chklen - 1 : chklen)) return -2;
if (chklen>1 && chk[chklen-1]=='\0')

--chklen;
return do_x509_check(x, chk, chklen,

flags, GEN_DNS, peername);
}

Baseline summary:
Verifies that the given X509 certificate is valid for the given host-
name.

PROCONSUL Context:
do_x509_check(X509 *x, const char *chk, size_t chklen,
unsigned int flags, int check_type, char **peername): Val-
idates a given string against a subject or subject alternative name
(SAN) in an X509 certificate, comparing it based on the specified
type (email, DNS, or IP). Returns 0 on success or a non-zero error
code on failure. Handles email and DNS sub-domain patterns, en-
suring proper memory management throughout.

PROCONSUL summary:
Validates a hostname against an X509 certificate, ensuring no em-
bedded NUL characters and handling DNS sub-domain patterns.
Returns 0 on success or an error code on failure.

Example 2:
int uv_udp_try_send(uv_udp_t* handle,

const uv_buf_t bufs[],
unsigned int nbufs,
const struct sockaddr* addr) {
int addrlen;
addrlen = uv__udp_check_before_send(

handle, addr);
if (addrlen < 0)

return addrlen;
return uv__udp_try_send(

handle, bufs, nbufs, addr, addrlen);
}

Baseline summary:
Sends data over a UDP socket.

PROCONSUL Context:
uv__udp_check_before_send (uv_udp_t* handle,
const struct sockaddr* addr): Validates and determines
the length of a socket address for UDP send operations. Returns
appropriate error codes for invalid handle types, connected states,
and address families.
*
uv__udp_try_send(uv_udp_t* handle, const uv_buf_t bufs[],
unsigned int nbufs, const struct sockaddr* addr,
unsigned int addrlen): Attempts to send UDP data without
blocking. Returns an error if already sending or if the send operation
fails due to a non-retryable error. Initializes the message structure
and handles deferred binding if necessary.

PROCONSUL summary:
Attempts to send UDP data without blocking by validating the
socket address and initializing the send operation. Returns an error
code if the send operation fails or if the handle is already sending.

Example 3:
static void write_index(AVFormatContext *s)
{

AVIOContext *pb = s->pb;
WtvContext *wctx = s->priv_data;
int i;
write_chunk_header2(s,

&ff_index_guid, 0x80000000);
avio_wl32(pb, 0);
avio_wl32(pb, 0);
for (i = 0; i < wctx->nb_index; i++) {

WtvChunkEntry *t = wctx->index + i;
ff_put_guid(pb, t->guid);
avio_wl64(pb, t->pos);
avio_wl32(pb, t->stream_id);
avio_wl32(pb, 0); // checksum?
avio_wl64(pb, t->serial);

}
wctx->nb_index = 0; // reset index
finish_chunk_noindex(s);
if (!wctx->first_index_pos)

wctx->first_index_pos =
wctx->last_chunk_pos;

}

Baseline summary:
Writes the index chunk to the WTV file. The index chunk contains a
list of all the chunks in the file, along with their positions and serial
numbers. The index is reset after this function is called.

PROCONSUL Context:
write_chunk_header2( AVFormatContext *s, const
ff_asf_guid *guid, int stream_id): Writes a chunk header for
an ASF format context, updating the length and storing the previous
chunk’s position.
*
avio_wl32( AVIOContext *s, unsigned int val): Writes a
32-bit unsigned integer to an AVIOContext in little-endian byte
order.
*
ff_put_guid( AVIOContext *s, const ff_asf_guid *g): Writes
a 16-byte GUID to the specified AVIOContext. Ensures the GUID
is 16 bytes in size and aborts if the condition is not met.
*
avio_wl64( AVIOContext *s, uint64_t val): Writes a 64-bit
unsigned integer to an AVIOContext in little-endian format. Breaks
the 64-bit value into two 32-bit chunks and writes each chunk
separately.
*
finish_chunk_noindex( AVFormatContext *s): Finalizes a
chunk by updating the chunk length, writing any necessary padding,
and incrementing the serial number.

PROCONSUL summary:
Finalizes the index chunk by writing all stored chunk entries, resets
the index, and updates the chunk header. Ensures the index is
written in little-endian format and includes necessary metadata.
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Example 4:
void UseAfterMoveFinder::getUsesAndReinits(

const CFGBlock *Block,
const ValueDecl *MovedVariable,
llvm::SmallVectorImpl<

const DeclRefExpr*> *Uses,
llvm::SmallPtrSetImpl<

const Stmt*> *Reinits) {
llvm::SmallPtrSet<const DeclRefExpr*, 1>

DeclRefs;
llvm::SmallPtrSet<const DeclRefExpr*, 1>

ReinitDeclRefs;
getDeclRefs(Block, MovedVariable, &DeclRefs);
getReinits(Block, MovedVariable,

Reinits, &ReinitDeclRefs);
// All references to the variable that
// aren't reinitializations are uses.
Uses->clear();
for (const DeclRefExpr *DeclRef : DeclRefs) {

if (!ReinitDeclRefs.count(DeclRef))
Uses->push_back(DeclRef);

}
// Sort the uses by their
// occurrence in the source code.
std::sort(Uses->begin(), Uses->end(),

[](const DeclRefExpr *D1,
const DeclRefExpr *D2) {

return D1->getExprLoc() < D2->getExprLoc();
});

}

Baseline summary:
Finds all uses and reinitializations of a moved variable in a given
CFGBlock.

PROCONSUL Context:
No context

PROCONSUL summary:
Identifies and collects all uses and reinitializations of a moved vari-
able in a given CFGBlock. Sorts the uses by their source location.

Example 5:
static int aeApiAddEvent(aeEventLoop *eventLoop,

int fd, int mask) {
aeApiState *state = eventLoop->apidata;
/* avoid valgrind warning */
struct epoll_event ee = {0};
/* If the fd was already monitored
* for some event, we need a MOD operation.
* Otherwise we need an ADD operation. */
int op =

eventLoop->events[fd].mask == AE_NONE ?
EPOLL_CTL_ADD : EPOLL_CTL_MOD;

ee.events = 0;
/* Merge old events */
mask |= eventLoop->events[fd].mask;
if (mask & AE_READABLE) ee.events |= EPOLLIN;
if (mask & AE_WRITABLE) ee.events |= EPOLLOUT;
ee.data.fd = fd;
if (epoll_ctl(state->epfd,op,fd,&ee) == -1)

return -1;
return 0;

}

Baseline summary:
Adds or modifies an event in the epoll instance.

PROCONSUL Context:
No context

PROCONSUL summary:
Monitors or modifies file descriptor events in the epoll event loop.
Adds or modifies events based on the current state and new mask,
and returns 0 on success or -1 on failure.
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Example 6:
static void hnm_update_palette(

AVCodecContext *avctx, const uint8_t *src,
uint32_t size) {

Hnm4VideoContext *hnm = avctx->priv_data;
GetByteContext gb;
uint8_t start, writeoffset;
uint16_t count;
int eight_bit_colors;
eight_bit_colors =

src[7] & 0x80 && hnm->version == 0x4a;
// skip first 8 bytes
bytestream2_init(&gb, src + 8, size - 8);
while (bytestream2_tell(&gb) < size - 8) {

start = bytestream2_get_byte(&gb);
count = bytestream2_get_byte(&gb);
if (start == 255 && count == 255)

break;
if (count == 0)

count = 256;
writeoffset = start;
while (count > 0) {

hnm->palette[writeoffset] =
bytestream2_get_be24(&gb);

if (!eight_bit_colors)
hnm->palette[writeoffset] <<= 2;

hnm->palette[writeoffset] |= (0xFFU << 24);
count--;
writeoffset++;

}
}

}

Baseline summary:
Updates the palette of the HNM4 video context based on the given
source data.

PROCONSUL Context:
No context.

PROCONSUL without synthetic data summary:
update palette from the palette table

PROCONSUL summary:
Updates the palette of the Hnm4 video context by reading and de-
coding palette data from a source buffer. Handles both 8-bit and
16-bit color modes.

Example 7:
static int add_info(AVIOContext *bc,

const char *type, const char *value)
{

put_str(bc, type);
put_s(bc, -1);
put_str(bc, value);
return 1;

}

Baseline summary:
Adds information to the AVIOContext.

PROCONSUL Context:
No context.

PROCONSUL without synthetic data summary:
Add a new info tag to the current tag.

PROCONSUL summary:
Encodes and writes type and value to an AVIOContext buffer using
specific functions.

Example 8:
static int pjs_probe(const AVProbeData *p)
{

char c;
int64_t start, end;
const unsigned char *ptr = p->buf;
if (sscanf(ptr, "%"SCNd64",%"SCNd64",%c",

&start, &end, &c) == 3) {
size_t q1pos = strcspn(ptr, "\"");
size_t q2pos = q1pos +

strcspn(ptr + q1pos + 1, "\"") + 1;
if (strcspn(ptr, "\r\n") > q2pos)

return AVPROBE_SCORE_MAX;
}
return 0;

}

Baseline summary:
Probes the input buffer for the presence of a valid PJS file header,
returning a score indicating the likelihood of success if the header is
found.

PROCONSUL Context: No context.

PROCONSUL without synthetic data summary:
check if the file is a pjs file

PROCONSUL summary:
Determines if the provided buffer contains a valid probe data format,
returning a score if successful. Parses the buffer to extract start
and end positions and a character, then checks for the presence of a
newline character.

Example 9:
size_t zmalloc_size(void *ptr) {

void *realptr = (char*)ptr-PREFIX_SIZE;
size_t size = *((size_t*)realptr);
/* Assume at least that all the
* allocations are padded at sizeof(long)
* by the underlying allocator. */
if (size&(sizeof(long)-1)) size +=

sizeof(long)-(size&(sizeof(long)-1));
return size+PREFIX_SIZE;

}

Baseline summary:
Returns the size of the memory block pointed to by ‘ptr‘, which
must have been allocated by ‘zmalloc‘. The size is stored in the first
few bytes of the block, and is assumed to be padded to a multiple of
‘sizeof(long)‘ by the underlying allocator.

PROCONSUL Context: No context.

PROCONSUL on the original docstring:
Return the size of the allocation pointed to by ’ptr’.

PROCONSUL summary:
Calculates the actual memory size of a memory block by retrieving
the stored size, adjusting for alignment if necessary, and adding the
prefix size.
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Example 10: Summarization with the 34B
model
static int script_wrk_lookup(lua_State *L) {

struct addrinfo *addrs;
struct addrinfo hints = {

.ai_family = AF_UNSPEC,

.ai_socktype = SOCK_STREAM
};
int rc, index = 1;
const char *host = lua_tostring(L, -2);
const char *service = lua_tostring(L, -1);
if ((rc = getaddrinfo(

host, service, &hints, &addrs)) != 0) {
const char *msg = gai_strerror(rc);
fprintf(stderr,

"unable to resolve %s:%s %s\n",
host, service, msg);

exit(1);
}
lua_newtable(L);
for (struct addrinfo *addr = addrs;

addr != NULL; addr = addr->ai_next) {
script_addr_clone(L, addr);
lua_rawseti(L, -2, index++);

}
freeaddrinfo(addrs);
return 1;

}

Baseline CodeLlama-34B summary:
Looks up the host and service using getaddrinfo and returns a table
of addresses.

PROCONSUL PROCONSUL-34B context:
script_addr_clone(lua_State *L, struct addrinfo *addr):
Clones a ‘struct addrinfo‘ object in Lua by creating a new userdata,
setting its metatable, and copying the source address data. Returns
the cloned address.
*
lua_tostring(L,i): Converts the value at index ‘i‘ in the Lua stack
to a string, returning the string or ‘NULL‘ if the conversion fails.
*
lua_newtable(L): Creates a new empty table in the Lua stack.

PROCONSUL-34B summary:
Performs a DNS lookup for a given host and service, creating a Lua
table of resolved addresses. Clones each address into the table and
returns it. Exits the program if the lookup fails.
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