
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 881–893
November 12-16, 2024 ©2024 Association for Computational Linguistics

Retrieval Augmented Generation or Long-Context LLMs?
A Comprehensive Study and Hybrid Approach

Zhuowan Li1 Cheng Li1 Mingyang Zhang1

Qiaozhu Mei2* Michael Bendersky1

1 Google DeepMind 2 University of Michigan
1 {zhuowan,chgli,mingyang,bemike}@google.com 2 qmei@umich.edu

Abstract

Retrieval Augmented Generation (RAG) has
been a powerful tool for Large Language
Models (LLMs) to efficiently process overly
lengthy contexts. However, recent LLMs like
Gemini-1.5 and GPT-4 show exceptional ca-
pabilities to understand long contexts directly.
We conduct a comprehensive comparison be-
tween RAG and long-context (LC) LLMs, aim-
ing to leverage the strengths of both. We
benchmark RAG and LC across various public
datasets using three latest LLMs. Results re-
veal that when resourced sufficiently, LC con-
sistently outperforms RAG in terms of aver-
age performance. However, RAG’s signifi-
cantly lower cost remains a distinct advantage.
Based on this observation, we propose SELF-
ROUTE, a simple yet effective method that
routes queries to RAG or LC based on model
self-reflection. SELF-ROUTE significantly re-
duces the computation cost while maintaining
a comparable performance to LC. Our findings
provide a guideline for long-context applica-
tions of LLMs using RAG and LC.

1 Introduction

Retrieval augmented generation (RAG) has been
shown to be a both effective and efficient approach
for large language models (LLMs) to leverage ex-
ternal knowledge. RAG retrieves relevant informa-
tion based on the query and then prompts an LLM
to generate a response in the context of the retrieved
information. This approach significantly expands
LLM’s access to vast amounts of information at a
minimal cost.

However, recent LLMs like Gemini and GPT-4
have demonstrated exceptional capabilities in un-
derstanding long contexts directly. For example,
Gemini 1.5 can process up to 1 million tokens (Reid
et al., 2024). This prompts the need for a system-
atic comparison between long-context (LC) LLMs

*Visiting researcher to Google DeepMind.

pe
rf
or
m
an

ce

(a)

co
st

(b)

Figure 1: While long-context LLMs (LC) surpass RAG
in long-context understanding, RAG is significantly
more cost-efficient. Our approach, SELF-ROUTE, com-
bining RAG and LC, achieves comparable performance
to LC at a much lower cost.

and RAG: on one hand, RAG conceptually acts as
a prior, regularizing the attention of LLMs onto
retrieved segments, thus avoiding the distraction of
the irrelevant information and saving unnecessary
attention computations; on the other hand, large-
scale pretraining may enable LLMs to develop even
stronger long-context capabilities. Therefore, we
are motivated to compare RAG and LC, evaluating
both their performance and efficiency.

In this work, we systematically benchmark RAG
and LC on various public datasets, gaining a com-
prehensive understanding of their pros and cons,
and ultimately combining them to get the best of
both worlds. Different from findings in previous
work (Xu et al., 2023), we find that LC consistently
outperform RAG in almost all settings (when re-
sourced sufficiently). This demonstrates the su-
perior progress of recent LLMs in long-context
understanding.

Despite the suboptimal performance, RAG re-
mains relevant due to its significantly lower compu-
tational cost. In contrast to LC, RAG significantly
decreases the input length to LLMs, leading to re-

881

duced costs, as LLM API pricing is typically based
on the number of input tokens. (Google, 2024; Ope-
nAI, 2024b)1. Moreover, our analysis reveals that
the predictions from LC and RAG are identical for
over 60% of queries. For these queries, RAG can
reduce cost without sacrificing performance.

Based on this observation, we propose SELF-
ROUTE, a simple yet effective method that routes
various queries to RAG or LC based on model self-
reflection. With SELF-ROUTE, we significantly re-
duce the cost while achieving overall performance
comparable to LC. For example, the cost is reduced
by 65% for Gemini-1.5-Pro and 39% for GPT-4O.

Fig. 1 shows the comparisons of LC, RAG and
SELF-ROUTE using three recent LLMs: GPT-4O,
GPT-3.5-Turbo and Gemini-1.5-Pro. In addition to
quantitative evaluation, we provide a comprehen-
sive analysis comparing RAG and LC, including
common failure patterns of RAG, the trade-offs
between cost and performance, and the results on
additional synthetic datasets. Our analysis serves
as a starting point, inspiring future improvements
of RAG, and as a empirical guide for building long-
context applications using RAG and LC.

2 Related Work

Long-context LLMs. There has long been ef-
forts for enabling LLMs to handle long contexts
(Guo et al., 2022; Beltagy et al., 2020; Chen et al.,
2023b). While recent LLMs like Gemini-1.5 (Reid
et al., 2024), GPT-4 (Achiam et al., 2023), Claude-
3 (Anthropic, 2024) achieve significantly larger
context window size, long-context prompting is
still expensive due to the quadratic computation
cost of transformers regarding to the input token
numbers. Recent work proposes methods to reduce
cost by prompt compression (Jiang et al., 2023),
model distillation (Hsieh et al., 2023), or LLM cas-
cading (Chen et al., 2023a).
Retrieval-augmented generation. Augmenting
LLMs with relevant information retrieved from var-
ious sources (Lewis et al., 2020) has been success-
ful in complementing LLMs with external knowl-
edge. RAG achieves good performance on tasks
like language modeling (Khandelwal et al., 2019;
Shi et al., 2023) and QA (Guu et al., 2020; Izacard
and Grave, 2020), with a significantly lower compu-
tation cost (Borgeaud et al., 2022). Related to but
different from our work, recently works augment

1While retrieval may introduce extra cost, retrieval system
is much easier to set up and can be hosted on customer side.

RAG with correction (Yan et al., 2024), critique
(Asai et al., 2023), verification (Li et al., 2023), or
adaptive search (Wang et al., 2023; Cheng et al.,
2024; Jeong et al., 2024) to improve retrieval qual-
ity on knowledge-intensive tasks.
Long-context evaluation. Evaluating long-
context models is challenging due to the difficulty
in collecting and analyzing long texts. Recent re-
searchers propose both synthetic tests like needle-
in-a-haystack (Greg Kamradt, 2023), Ruler (Hsieh
et al., 2024), or Counting Stars (Song et al., 2024),
and real datasets including LongBench (Bai et al.,
2023),∞Bench (Zhang et al., 2024), L-Eval (An
et al., 2023), and others (Shaham et al., 2022; Yuan
et al., 2024; Maharana et al., 2024). Evaluating
on these datasets, recent works study the perfor-
mance degradation over various context lengths
(Levy et al., 2024; Hsieh et al., 2024), the lost-
in-the-middle phenomenon (Liu et al., 2024), and
explore solutions (Kuratov et al., 2024). Related
to our work, Xu et al. (2023) compare RAG and
long-context prompting and find that long-context
models still lags behind RAG. This is different
from our findings, possibly due to consideration of
stronger LLMs and longer contexts in our work.

3 Benchmarking RAG versus LC

3.1 Datasets and metrics

We evaluate on a subset of datasets from Long-
Bench (Bai et al., 2023) and∞Bench (Zhang et al.,
2024), which are recent benchmarks containing a
collection of new and existing datasets for LLM
evaluation, covering both synthetic and real texts in
multiple languages. LongBench contains a collec-
tion of 21 datasets, with an average context length
of 7k words. ∞Bench consists of even longer con-
texts with an average length of 100k tokens.

Among the datasets, we mainly focus on tasks
that are (a) in English, (b) real, and (c) query-based
(e.g. summarization tasks do not contain queries
for retrieving relevant information). This results in
7 datasets from LongBench including NarrativeQA
(Kočiskỳ et al., 2018), Qasper (Dasigi et al., 2021),
MultiFieldQA (Bai et al., 2023), HotpotQA (Yang
et al., 2018), 2WikiMultihopQA (Ho et al., 2020),
MuSiQue (Trivedi et al., 2022), QMSum (Zhong
et al., 2021); and 2 datasets from∞Bench includ-
ing En.QA and EN.MC. Please refer to Appendix A
for more details. Additionally, in Sec. 5.4, we will
provide an ablation a synthetic datasets PassKey
from∞Bench.

882

For evaluation metrics, we report F1 scores for
the open-ended QA tasks, accuracy for the multi-
choice QA tasks, and ROUGE score for the sum-
marization tasks.

3.2 Models and Retrievers

Three latest LLMs are evaluated, including Gemini-
1.5-Pro (Reid et al., 2024), GPT-4O (OpenAI,
2024a), and GPT-3.5-Turbo (OpenAI, 2023) 2.
Gemini-1.5-Pro is a recent long-context LLM from
Google, supporting up to 1 million tokens. GPT-
4O, the newest lightweight yet strong LLM from
OpenAI, supports 128k tokens. GPT-3.5-Turbo
supports 16k tokens.

Two retrievers are used in our study: Contriever
(Izacard et al., 2021), which is a contrastively
trained dense retriever outperforming BM25 on
BEIR datasets, and Dragon (Lin et al., 2023), which
is a recent generalizable dense retriever achieving
high performance in both supervised and zero-shot
settings without complex late interaction. Follow-
ing (Xu et al., 2023), we divide long contexts into
chunks of 300 words, and select the top k chunks
(default k = 5) based on the cosine similarity of
the query embedding and the chunk embeddings.
The chunks are ordered by the similarity scores,
with the chunk index prepended at the beginning.

Since black-box LLMs are pretrained on un-
known datasets, the leakage of evaluation datasets
may occur. Especially, some of the evaluation
datasets are based on Wikipedia, which has likely
been seen by LLMs during during. In some cases,
we find that model may predict the correct answer
using exactly the same words as the groundtruth
(e.g. “meticulously”), even when they do not appear
in the provided context. In our experiment, we try
mitigating this issue by prompting the model to an-
swer “based only on the provided passage”
for both RAG and LC. It remains an open ques-
tion how to address the data leakage issue in LLM
evaluation.

3.3 Benchmarking results

We benchmark the performance of LC and RAG
across the nine datasets, using three recent LLMs:
Gemini-1.5-Pro, GPT-4O and GPT-3.5-Turbo.
Tab. 1 presents the results using the Contriever
retriever, where rows *-1 and rows *-2 present the
benchmarking results for LC and RAG respectively.
Results using the Dragon retriever will be discussed

2gpt-3.5-turbo-0125, gpt-4o-2024-05-13

in Sec. 5.3 and Tab. 2.
As shown in Tab. 1, LC consistently outperforms

RAG for all the three models, with a significant
margin. On average, LC surpasses RAG by 7.6%
for Gemini-1.5-Pro, 13.1% for GPT-4O, and 3.6%
for GPT-3.5-Turbo. Noticeably, the performance
gap is more significant for the more recent mod-
els (GPT-4O and Gemini-1.5-Pro) compared to
GPT-3.5-Turbo, highlighting the exceptional long-
context understanding capacity of the latest LLMs.

However, there is an exception observed on the
two longer datasets from∞Bench (i.e., En.QA and
En.MC), where RAG achieves higher performance
than LC for GPT-3.5-Turbo. This result deviates
from the overall trend, likely due to the significantly
longer context in these datasets (147k words on av-
erage) compared with the limited context window
(16k) of GPT-3.5-Turbo. This finding highlights
the effectiveness of RAG when the input text con-
siderably exceeds the model’s context window size,
emphasizing a specific use case of RAG.

4 Self-Route

4.1 Motivation
As demonstrated in Sec. 3, RAG lags behind long-
context LLMs in terms of performance. However,
despite this performance gap, we surprisingly find
a high degree of overlap in their predictions, as
illustrated in Fig. 2.

𝑆!"# 	− 	𝑆$%

Figure 2: Distribution of the difference of predic-
tion scores between RAG and LC (computed w.r.t.
groundtruth labels). RAG and LC predictions are
highly identical, for both correct and incorrect ones.

Fig. 2 displays the distribution of the differences
between RAG prediction scores SRAG and LC pre-
diction scores SLC , specifically SRAG − SLC (the
scores are multiplied by 100 to be scaled to 1-100).
These scores S represent the evaluation of model
predictions against the groundtruth. Notably, for

883

Avg Narr Qasp Mult Hotp 2Wiki Musi Sum En.QA En.MC

1-1 LC 49.70 32.76 47.83 52.33 61.85 62.96 40.22 20.73 43.08 85.57

Gemini-1.5-Pro

1-2 RAG 37.33 22.54 44.68 49.53 48.36 54.24 26.56 19.51 19.46 51.09
1-3 SELF-ROUTE 46.41 28.32 45.23 51.47 55.18 62.68 40.66 19.77 37.51 76.86
1-4 answerable % 76.78 73.00 85.00 96.67 84.50 81.00 58.50 93.50 56.41 62.45
1-5 token % 38.39 23.07 49.93 36.88 32.97 53.49 56.14 17.96 42.25 32.84

GPT-4O

2-1 LC 48.67 32.78 44.54 55.28 62.42 70.69 41.65 21.92 32.36 76.42
2-2 RAG 32.60 18.05 46.02 50.74 36.86 50.21 16.09 19.97 14.43 41.05
2-3 SELF-ROUTE 48.89 31.36 47.99 53.17 62.14 70.14 41.69 21.31 34.95 77.29
2-4 answerable % 57.36 44.00 67.50 94.00 52.50 62.00 30.00 92.00 27.07 47.16
2-5 token % 61.40 66.40 72.25 39.65 65.79 77.05 85.00 20.26 73.01 53.21

GPT-3.5-Turbo

3-1 LC 32.07 23.34 42.96 49.19 45.33 41.04 17.92 19.61 14.73 34.50
3-2 RAG 30.33 18.22 38.15 49.21 37.84 35.16 16.41 18.94 15.39 43.67
3-3 SELF-ROUTE 35.32 24.06 38.65 52.07 47.28 44.62 34.44 19.88 22.03 44.54
3-4 answerable % 74.10 71.50 80.00 91.33 68.50 69.00 47.00 93.50 50.43 95.63
3-5 token % 38.85 20.56 55.08 35.29 48.70 65.91 65.08 16.40 38.17 4.50

Table 1: Results of Gemini-1.5-Pro, GPT-3.5-Turbo, and GPT-4O using the Contriever retriever. LC consistently
outperforms RAG, while SELF-ROUTE achieves performance comparable to LC using much less tokens.

most queries, RAG scores and LC scores are highly
similar. In fact, for 63% queries, the model pre-
dictions are exactly identical; and for 70% queries,
the score difference is less than 10 (absolute value).
Interestingly, the identical predictions are not nec-
essarily correct, as shown by the varying colors rep-
resenting the average score, i.e., (SRAG + SLC)/2.
This observation suggests that RAG and LC tend
to make not only the same correct predictions but
also similar errors.

This finding motivates us to leverage RAG for
the majority of queries, reserving computationally
more expensive LC for a small subset of queries
where it truly excels. By doing so, RAG can signif-
icantly reduce computational costs without sacrific-
ing overall performance.

4.2 Self-Route
Based on the above motivation, we propose SELF-
ROUTE, a simple yet effective method combining
RAG and LC to reduce cost while maintaining a
performance comparable to LC. SELF-ROUTE uti-
lizes LLM itself to route queries based on self-
reflection, under the assumption that LLMs are
well-calibrated in predicting whether a query is
answerable given provided context.

Concretely, our method consists of two steps: a
RAG-and-Route step and a long-context prediction
step. In the first step, we provide the query and
the retrieved chunks to the LLM, and prompt it to
predict whether the query is answerable and, if so,
generate the answer. This is similar to standard
RAG, with one key difference: the LLM is given
the option to decline answering with the prompt

“Write unanswerable if the query can not
be answered based on the provided text”.
For the queries deemed answerable, we accept the
RAG prediction as the final answer. For the queries
deemed unanswerable, we proceed to the second
step, providing the full context to the long-context
LLMs to obtain the final prediction (i.e., LC).

As our results will demonstrate, most queries can
be solved by the first RAG-and-Route step (e.g.,
82% for Gemini-1.5-Pro), with only a small por-
tion requiring the following long-context prediction
step. Since the RAG-and-Route step only needs
the retrieved chunks (e.g., 1.5k tokens) as input,
which is significantly shorter than the full contexts
(e.g., 10k - 100k tokens), the overall computation
cost is substantially reduced. Detailed token count
analysis will be provided in the results.

4.3 Results
Rows *-3 to *-5 in Tab. 1 present the results of our
method, utilizing the three LLMs. Rows *-3 report
the performance. Rows *-4 show the percentage
of answerable queries, as predicted in the RAG-
and-Route step. Rows *-5 display the percentage
of tokens used by our method, compared to that
of LC. In terms of performance (rows *-3), SELF-
ROUTE significantly outperforms RAG, achieving
results comparable to LC. Across all three models,
SELF-ROUTE surpasses RAG (rows *-2) by over
5%. Compared to LC (rows *-1), there is a slight
performance drop for GPT-4O (-0.2%) and Gemini-
1.5-Pro (-2.2%), but an improvement for GPT-3.5-
Turbo (+1.7%).

All three LLMs consistently route more than half

884

of queries towards RAG, as shown in rows *-4. For
Gemini-1.5-Pro, the answerable percentage even
reaches 81.74% (row 1-4). This indicates that RAG
may answer most queries without the need for LC,
confirming our initial motivation.

Due to the high answerable rate, the number of
tokens required is significantly reduced (rows *-
5). For example, GPT-4O uses only 61% tokens
while achieving comparable performance (46.83)
with LC (47.04), Gemini-1.5-Pro uses 38.6% of
the tokens. Since the computation cost of the
transformer-based LLMs is quadratic to token
count, and most LLM APIs charge based on token
count (OpenAI, 2024b; Google, 2024), this lower
token count translates to substantial cost savings.

On longer datasets, the advantage of our method
is more pronounced for OpenAI models, but less
significant for Gemini. For instance, for GPT-4O,
SELF-ROUTE outperforms LC by 2.3% and 7.4%
respectively on EN.QA and EN.MC, which contain
longer contexts. For GPT-3.5-Turbo, the advantage
margins are even larger. However, for Gemini-
1.5-Pro, the performance is lower than LC. These
different behaviors are possibly due to the differ-
ence in LLM alignments, i.e., OpenAI models are
more likely to reject answering using RAG, leading
to a lower answerable percentage but higher accu-
racy, which results in a different performance-cost
trade-off compared with Gemini-1.5-Pro.

5 Analysis

5.1 Ablations of k

Both RAG and SELF-ROUTE relies on the top-k
retrieved text chunks. The larger k is, the longer
context are fed into LLMs for RAG prediction as
well as routing, resulting in different costs versus
performances. To study the influence of k, in Fig. 3,
we plot the performance and cost (i.e. input token
percentage) curves when different ks are used.

In terms of performance, for both RAG and
SELF-ROUTE, a larger k leads to better perfor-
mance. While k increases, more and more chunks
are fed into the LLMs, thus the performance grad-
ually improves to approach LC. As can be seen in
from the curves, the advantage of SELF-ROUTE

is the most significant for smaller k. For example,
when k = 1, RAG gets from 20.24% while SELF-
ROUTE gets 37.9%, while when k is larger than 50,
all three methods get similar performance.

However, the trend of cost is not monotonous
for SELF-ROUTE. As seen, the cost reaches its

pe
rf

or
m

an
ce

top-k

to
ke

n
pe

rc
en

ta
ge

(a)

(b)

top-k

Figure 3: Trade-off curves between (a) model perfor-
mance and (b) token percentage as a function of k.

minimum at k = 5. This is because when k in-
creases, the cost of RAG (and routing) increases,
but more queries are routed to RAG from LC, thus
the overall cost may decrease. The sweet point of k
might be different for each dataset, e.g. on average,
k = 5 has the lowest cost as shown in the curves,
but on some datasets, especially ones that contain
extractive questions which does not need multi-hop
reasoning (like NarrativeQA and QMSum), k = 1
leads to the lowest cost. This indicates that the opti-
mal k depends on the nature of the task, as well as
the performance requirement. We encourage future
researchers to look for different ks when applying
our method to various applications.

5.2 Why does RAG fail?

To gain a better understanding of why RAG lags
behind LC, we analyze the failure reasons for the
examples that cannot be answered by RAG. We
first manually check some examples for which our
RAG-and-Route step predicts “unanswerable” and
summarize four typical failure reasons, then prompt
LLM to classify all the examples.

The four reasons include: (A) The query requires
multi-step reasoning so the results of previous steps
are needed to retrieve information for later steps,
e.g. “What nationality is the performer of
song XXX”. (B) The query is general, e.g. “What
does the group think about XXX”, which is
challenging for the retriever to formulate a good
query. (C) The query is long and complex, which
is challenging for the retriever to understand. How-
ever, answering this kind of questions is arguably,

885

Avg Narr Qasp Mult Hotp 2Wiki Musi Sum En.QA En.MC

1 LC 49.70 32.76 47.83 52.33 61.85 62.96 40.22 20.73 43.08 85.57

Dragon

2 RAG 38.09 21.91 44.33 53.08 51.61 50.05 30.47 19.93 21.25 50.22
3 combine 46.81 28.50 43.82 54.62 56.58 60.62 40.66 20.07 37.79 78.60
4 RAG ratio 77.88 74.00 84.00 97.33 86.00 77.00 66.00 95.50 61.25 59.83
5 Token ratio 37.87 19.31 54.15 34.78 32.64 55.65 48.16 16.64 38.71 40.83

Table 2: Results for Gemini-1.5-Pro using Dragon retriever.

an advantage of LLMs. (D) The query is implicit,
demanding a thorough understanding of the en-
tire context. For instance, in a lengthy conversa-
tional narrative about a space voyage, a question
like “What caused the shadow behind the
spaceship?” requires readers to connect the dots
and deduce the answer, as there is no explicit men-
tion of the shadow when the cause is revealed.

nu
m

be
r o

f q
ue

rie
s

Figure 4: Distribution of typical RAG failure reasons.

Using these reasons, we prompt Gemini-1.5-Pro
with few-shot in-context examples that we man-
ually annotated, to classify all the unanswerable
examples into these four categories, plus an “other"
option. Fig. 4 shows the distribution of failure rea-
sons on the seven datasets in LongBench. Each
dataset may contain different number of RAG fail-
ure cases, resulting in various bar heights. The
distribution patterns are consistent with the nature
of the datasets. For example, the three Wikipedia-
based multi-hop reasoning datasets (HotpotQA,
2WikiMQA, MuSiQue) are challenging for RAG
because of multi-step retrieval as shown in blue.
For NarrativeQA, which are long stories containing
a lot of dialogues, most failure cases are due to im-
plicit queries that requires understanding the whole
context (shown in green). For QMSum, which is a
summarization dataset contains open-ended ques-
tions, failures are mostly due to general queries
(shown in red). We manually checked the exam-
ples classified as “others” and find that most of
them are actually multi-step questions, often with
ambiguities, which poses challenges for answering.

We hope this failure analysis inspires future im-
provements of RAG. For example, engaging chain-
of-thought (Wei et al., 2022) into RAG may help ad-
dress the multi-step questions, and revisiting query
understanding techniques like query expansion (Lv
and Zhai, 2009; Zhai and Lafferty, 2001) may help
with the general queries and complex queries. We
are also glad to see recent efforts towards the direc-
tion (Chan et al., 2024; Ma et al., 2023).

5.3 Different retrievers

The results using a retriever, Dragon, is shown in
Tab. 2 based on Gemini-1.5-Pro. As can be seen,
the results are consistent with Contriever, for all
of LC, RAG, and SELF-ROUTE, showing that our
findings are generalizable across retrievers.

5.4 Results on synthetic data

In this study, we mainly focus on real datasets, with
a consideration that results on synthetic data, which
are artificially created by researchers, may subject
to dataset artifacts. We notice some methods that
researchers adopted to create synthetic long context
datasets may unconsciously, but largely, influence
the performance comparison between RAG and LC.
For example, here we describe the results on the
“PassKey” dataset in∞Bench and its variations.

This “PassKey” dataset presents a needle-in-a-
haystack test, where a sentence with a passkey
(e.g. “the passkey is 123456”) is hidden within
chunks of irrelevant text, and the model is asked
to answer the question “What is the passkey”.
The task requires strong retrieval capability. On
this dataset, RAG achieves 80.34% accuracy, out-
performing LC, which gets 65.25% using Gemini-
1.5-Pro. However, if the query is slightly modi-
fied as “What is the special token hidden
inside the texts”, RAG accuracy sharply drops
to only 4.58%, while LC keeps roughly the same
(69.32%). Another example: if the chunks contain
two passkeys and the query is “Which passkey
is larger? First or second?”, then RAG
(47.63%) under-performs LC (64.24%) as well.

886

RAG LC

Original 80.34 65.25

Variant-1: “special token” 4.58 69.32
Variant-2: “which is larger” 47.63 64.24

Table 3: Synthetic dataset may unconsciously contain
artifacts that influence the comparison results.

Tab. 3 summarizes the results, which demonstrates
that the evaluation highly subjects to artifacts in
dataset construction, showing limitation of syn-
thetic testing.

5.5 Exclusion of LLM’s internal knowledge
Ideally, the comparison in this paper should ex-
clude the model’s internal knowledge (i.e., para-
metric knowledge) so that the model’s performance
are solely based on its capability to understand long
contexts. In our study, this internal knowledge is
excluded by utilizing the prompt “based only on
the provided passage”, which we empirically find is
a simple yet effective method. Here we discuss the
effectiveness of this method, as well as alternative
methods to exclude external knowledge.

First, we validate the effectiveness of the sim-
ple prompt “based only on the provided passage”.
Tab. 4 compares the performance (long-context) of
Gemini-1.5-Pro with and without this prompt. As
shown, using this prompt consistently limits the
model’s performance (average performance drops
from 50.57 to 45.53), which indicates that using
this simple instruction can already effectively limit
the usage of the model’s parametric knowledge.

without
"based only on ..."

with
"based only on ..."

NarrativeQA 36.35 32.76
Qasper 50.69 47.83
MultiFieldQA 56.07 52.33
HotpotQA 66.47 61.85
2WikiMQA 68.97 62.96
Musique 54.56 40.22
QMSum 20.87 20.73
En.QA 49.20 43.08
En.MC 90.83 85.57

Avg 50.57 45.53

Table 4: Comparison of the long-context performance
of Gemini-1.5-Pro, using the prompt with and without
“based only on the provided passage”.

Second, as an alternative method to exclude
internal knowledge, we remove the questions
where the model can correctly answer without

any contexts (i.e., commonsense questions), and
report the model’s performance only on the non-
commonsense questions. Tab. 5 shows the perfor-
mance of Gemini-1.5-Pro and GPT-3.5-Turbo on
all the questions from the MuSiQue dataset, as well
as their performance on the non-commonsense sub-
set3. As shown, after excluding the commonsense
questions, the trend remains the same.

all questions w/o commonsense
Gemini GPT-3.5 Gemini GPT-3.5

questions 200 200 133 150

LC 40.22 17.92 31.76 13.00
RAG 26.56 16.41 15.51 13.05
Self-Route 40.66 34.44 31.32 19.76

answerable % 58.50 47.00 52.63 45.33
token % 56.14 65.08 48.46 53.43

Table 5: Results on MuSiQue on all questions, and on
the subset of non-commonsense questions (i.e., exclud-
ing questions that can be answered without contexts).

That said, a more thorough study to explore vari-
ous methods for controlling the usage of model’s
internal knowledge, and to study the source of in-
ternal knowledge (e.g. LLM"s world knowledge
or dataset leakage), will be valuable future work,
which we hope can be further investigated.

6 conclusion

This paper presents a comprehensive comparison of
RAG and LC, highlighting the trade-offs between
performance and computational cost. While LC
demonstrate superior performance in long-context
understanding, RAG remains a viable option due
to its lower cost and advantages when the input
considerably exceeds the model’s context window
size. Our proposed method, which dynamically
routes queries based on model self-reflection, ef-
fectively combines the strengths of both RAG and
LC, achieving comparable performance to LC at a
significantly reduced cost. We believe our findings
contribute valuable insights for the practical appli-
cation of long-context LLMs and pave the way for
future research in optimizing RAG techniques.

3Different models may learn different internal knowledge,
resulting in different numbers of non-commonsense ques-
tions. For example, GPT-3.5-Turbo gets 14.53 performance on
MuSiQue while Gemini-1.5-Pro gets 23.58 using only internal
knowledge,

887

Acknowledgements

We would like to thank Weize Kong, Tao Chen, Jef-
frey Dudek and Spurthi Amba Hombaiah for their
helpful comments and suggestions, as well as the
anonymous reviewers for the valuable discussions.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical re-
port. arXiv preprint arXiv:2303.08774.

Chenxin An, Shansan Gong, Ming Zhong, Mukai
Li, Jun Zhang, Lingpeng Kong, and Xipeng Qiu.
2023. L-eval: Instituting standardized evaluation
for long context language models. arXiv preprint
arXiv:2307.11088.

Anthropic. 2024. Claude 3.5 sonnet. https://www.
anthropic.com/news/claude-3-5-sonnet/.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and
Hannaneh Hajishirzi. 2023. Self-rag: Learning to re-
trieve, generate, and critique through self-reflection.
arXiv preprint arXiv:2310.11511.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. 2023. Longbench:
A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508.

Iz Beltagy, Matthew E Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoff-
mann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste
Lespiau, Bogdan Damoc, Aidan Clark, et al. 2022.
Improving language models by retrieving from tril-
lions of tokens. In International conference on ma-
chine learning, pages 2206–2240. PMLR.

Chi-Min Chan, Chunpu Xu, Ruibin Yuan, Hongyin
Luo, Wei Xue, Yike Guo, and Jie Fu. 2024. Rq-rag:
Learning to refine queries for retrieval augmented
generation. arXiv preprint arXiv:2404.00610.

Lingjiao Chen, Matei Zaharia, and James Zou. 2023a.
Frugalgpt: How to use large language models while
reducing cost and improving performance. arXiv
preprint arXiv:2305.05176.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and
Yuandong Tian. 2023b. Extending context window
of large language models via positional interpolation.
arXiv preprint arXiv:2306.15595.

Qinyuan Cheng, Xiaonan Li, Shimin Li, Qin Zhu,
Zhangyue Yin, Yunfan Shao, Linyang Li, Tianxiang

Sun, Hang Yan, and Xipeng Qiu. 2024. Unified
active retrieval for retrieval augmented generation.
arXiv preprint arXiv:2406.12534.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Co-
han, Noah A Smith, and Matt Gardner. 2021. A
dataset of information-seeking questions and an-
swers anchored in research papers. arXiv preprint
arXiv:2105.03011.

Google. 2024. Gemini pricing. https://ai.google.
dev/pricing.

Greg Kamradt. 2023. Needle in a haystack - pressure
testing llms. https://github.com/gkamradt/
LLMTest_NeedleInAHaystack.

Mandy Guo, Joshua Ainslie, David C Uthus, Santi-
ago Ontanon, Jianmo Ni, Yun-Hsuan Sung, and Yin-
fei Yang. 2022. Longt5: Efficient text-to-text trans-
former for long sequences. In Findings of the Associ-
ation for Computational Linguistics: NAACL 2022,
pages 724–736.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pa-
supat, and Mingwei Chang. 2020. Retrieval aug-
mented language model pre-training. In Interna-
tional conference on machine learning, pages 3929–
3938. PMLR.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara,
and Akiko Aizawa. 2020. Constructing a multi-hop
qa dataset for comprehensive evaluation of reason-
ing steps. arXiv preprint arXiv:2011.01060.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shan-
tanu Acharya, Dima Rekesh, Fei Jia, and Boris Gins-
burg. 2024. Ruler: What’s the real context size of
your long-context language models? arXiv preprint
arXiv:2404.06654.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh,
Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner,
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister.
2023. Distilling step-by-step! outperforming larger
language models with less training data and smaller
model sizes. arXiv preprint arXiv:2305.02301.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2021. Unsupervised dense in-
formation retrieval with contrastive learning. arXiv
preprint arXiv:2112.09118.

Gautier Izacard and Edouard Grave. 2020. Lever-
aging passage retrieval with generative models for
open domain question answering. arXiv preprint
arXiv:2007.01282.

Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju
Hwang, and Jong C Park. 2024. Adaptive-rag:
Learning to adapt retrieval-augmented large lan-
guage models through question complexity. In Pro-
ceedings of the 2024 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies (Vol-
ume 1: Long Papers), pages 7029–7043.

888

https://www.anthropic.com/news/claude-3-5-sonnet/
https://www.anthropic.com/news/claude-3-5-sonnet/
https://ai.google.dev/pricing
https://ai.google.dev/pricing
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack

Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng
Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. 2023.
Longllmlingua: Accelerating and enhancing llms
in long context scenarios via prompt compression.
arXiv preprint arXiv:2310.06839.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2019. Generalization
through memorization: Nearest neighbor language
models. arXiv preprint arXiv:1911.00172.

Tomáš Kočiskỳ, Jonathan Schwarz, Phil Blunsom,
Chris Dyer, Karl Moritz Hermann, Gábor Melis, and
Edward Grefenstette. 2018. The narrativeqa reading
comprehension challenge. Transactions of the Asso-
ciation for Computational Linguistics, 6:317–328.

Yuri Kuratov, Aydar Bulatov, Petr Anokhin, Dmitry
Sorokin, Artyom Sorokin, and Mikhail Burtsev.
2024. In search of needles in a 10m haystack: Recur-
rent memory finds what llms miss. arXiv preprint
arXiv:2402.10790.

Mosh Levy, Alon Jacoby, and Yoav Goldberg. 2024.
Same task, more tokens: the impact of input length
on the reasoning performance of large language
models. arXiv preprint arXiv:2402.14848.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

Xiaonan Li, Changtai Zhu, Linyang Li, Zhangyue
Yin, Tianxiang Sun, and Xipeng Qiu. 2023. Lla-
trieval: Llm-verified retrieval for verifiable genera-
tion. arXiv preprint arXiv:2311.07838.

Sheng-Chieh Lin, Akari Asai, Minghan Li, Barlas
Oguz, Jimmy Lin, Yashar Mehdad, Wen-tau Yih,
and Xilun Chen. 2023. How to train your dragon:
Diverse augmentation towards generalizable dense
retrieval. arXiv preprint arXiv:2302.07452.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024. Lost in the middle: How language
models use long contexts. Transactions of the Asso-
ciation for Computational Linguistics, 12:157–173.

Yuanhua Lv and ChengXiang Zhai. 2009. Adaptive
relevance feedback in information retrieval. In Pro-
ceedings of the 18th ACM conference on Informa-
tion and knowledge management, pages 255–264.

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao,
and Nan Duan. 2023. Query rewriting for retrieval-
augmented large language models. arXiv preprint
arXiv:2305.14283.

Adyasha Maharana, Dong-Ho Lee, Sergey Tulyakov,
Mohit Bansal, Francesco Barbieri, and Yuwei
Fang. 2024. Evaluating very long-term conver-
sational memory of llm agents. arXiv preprint
arXiv:2402.17753.

OpenAI. 2023. Gpt-3.5-turbo. https://platform.
openai.com/docs/models/gpt-3-5-turbo.

OpenAI. 2024a. Gpt-4o. https://openai.com/
index/hello-gpt-4o/.

OpenAI. 2024b. Openai-api pricing. https://
platform.openai.com/docs/overview.

Machel Reid, Nikolay Savinov, Denis Teplyashin,
Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan
Firat, Julian Schrittwieser, et al. 2024. Gemini
1.5: Unlocking multimodal understanding across
millions of tokens of context. arXiv preprint
arXiv:2403.05530.

Uri Shaham, Elad Segal, Maor Ivgi, Avia Efrat, Ori
Yoran, Adi Haviv, Ankit Gupta, Wenhan Xiong, Mor
Geva, Jonathan Berant, et al. 2022. Scrolls: Stan-
dardized comparison over long language sequences.
arXiv preprint arXiv:2201.03533.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Min-
joon Seo, Rich James, Mike Lewis, Luke Zettle-
moyer, and Wen-tau Yih. 2023. Replug: Retrieval-
augmented black-box language models. arXiv
preprint arXiv:2301.12652.

Mingyang Song, Mao Zheng, and Xuan Luo. 2024.
Counting-stars: A simple, efficient, and reasonable
strategy for evaluating long-context large language
models. arXiv preprint arXiv:2403.11802.

Harsh Trivedi, Niranjan Balasubramanian, Tushar
Khot, and Ashish Sabharwal. 2022. Musique: Mul-
tihop questions via single-hop question composition.
Transactions of the Association for Computational
Linguistics, 10:539–554.

Yile Wang, Peng Li, Maosong Sun, and Yang Liu. 2023.
Self-knowledge guided retrieval augmentation for
large language models. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2023,
pages 10303–10315.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits
reasoning in large language models. Advances in
neural information processing systems, 35:24824–
24837.

Peng Xu, Wei Ping, Xianchao Wu, Lawrence
McAfee, Chen Zhu, Zihan Liu, Sandeep Subra-
manian, Evelina Bakhturina, Mohammad Shoeybi,
and Bryan Catanzaro. 2023. Retrieval meets long
context large language models. arXiv preprint
arXiv:2310.03025.

Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, and Zhen-Hua
Ling. 2024. Corrective retrieval augmented gener-
ation. arXiv preprint arXiv:2401.15884.

889

https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://platform.openai.com/docs/overview
https://platform.openai.com/docs/overview

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W Cohen, Ruslan Salakhutdinov, and
Christopher D Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. arXiv preprint arXiv:1809.09600.

Tao Yuan, Xuefei Ning, Dong Zhou, Zhijie Yang,
Shiyao Li, Minghui Zhuang, Zheyue Tan, Zhuyu
Yao, Dahua Lin, Boxun Li, et al. 2024. Lv-eval: A
balanced long-context benchmark with 5 length lev-
els up to 256k. arXiv preprint arXiv:2402.05136.

Chengxiang Zhai and John Lafferty. 2001. Model-
based feedback in the language modeling approach
to information retrieval. In Proceedings of the tenth
international conference on Information and knowl-
edge management, pages 403–410.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zi-
hang Xu, Junhao Chen, Moo Khai Hao, Xu Han,
Zhen Leng Thai, Shuo Wang, Zhiyuan Liu, et al.
2024. Infinity bench: Extending long context
evaluation beyond 100k tokens. arXiv preprint
arXiv:2402.13718.

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia
Mutuma, Rahul Jha, Ahmed Hassan Awadallah, Asli
Celikyilmaz, Yang Liu, Xipeng Qiu, et al. 2021.
Qmsum: A new benchmark for query-based multi-
domain meeting summarization. arXiv preprint
arXiv:2104.05938.

890

A Dataset details

We evaluate on 7 datasets from LongBench (Bai et al., 2023). NarrativeQA (Kočiskỳ et al., 2018) is
a question answering dataset, where the context is a long story like a novel or a movie script. Qasper
(Dasigi et al., 2021) focuses on question answering over academic NLP papers and is annotated by
NLP practitioners. MultiFieldQA, originally proposed in LongBench, contains human-annotated QA
over documents and articles from multiple sources, including legal documents, government reports,
encyclopedias, academic papers, etc. HotpotQA (Yang et al., 2018) contains two-hop questions written
by native English speakers that requires reasoning over two related Wikipedia paragraphs in the long
context. 2WikiMultihopQA (Ho et al., 2020) contains up to 5-hop questions that are synthesized through
manually designed templates, ensuring that they cannot be solved through shortcuts. The questions in
MuSiQue (Trivedi et al., 2022) are up to 4-hop, first constructed from single-hop question compositions,
and then paraphrased by annotators for linguistic diversity. QMSum (Zhong et al., 2021) is a query-based
summarization dataset over meeting scripts from multiple domains.

We evaluate on 2 datasets from ∞Bench (Zhang et al., 2024). En.QA contains human-annotated
question-answer pairs for long novels, with key entity names manually replaced in order to avoid
knowledge leakage due to model pretraining. EN.MC is annotated similarly to En.QA, but differs in that
the model is presented with four challenging answer choices written by the annotators.

Tab. 6 shows the details of the datasets, including the number of queries in each evaluation dataset and
the average context length (i.e. number of words).

Num. Query Avg. Length

LongBench
(Bai et al., 2023)

NarrativeQA 200 18,395
Qasper 200 3,599
MultiFieldQA 150 4,539
HotpotQA 200 9,133
2WikiMultihopQA 200 4,873
MuSiQue 200 11,196
QMSum 200 10,533

∞Bench
(Zhang et al., 2024)

En.QA 351 150,374
En.MC 229 142,622

Table 6: Dataset statistics.

B Ablations of k

Tab. 7 shows the performance and token ratio for different k, which corresponds to Fig. 3. The performance
of LC, which serves as an upper bound, is 45.53. The token ratio is computed the token counts for RAG
or SELF-ROUTE divided the number of tokens required by LC.

performance token ratio
top-k RAG Self-Route RAG Self-Route

1 20.24 41.35 5.26 39.64
5 37.92 43.33 17.02 38.63

10 41.20 44.38 42.42 53.66
50 44.06 45.19 95.29 102.97

100 44.12 45.23 100.32 106.59

Table 7: Performance and token ratio for different k. This table corresponds to Fig. 3.

891

C Prompts

Tab. 9 shows the prompts for each dataset in our study. The prompts are modified from the released
prompts as in LongBench (Bai et al., 2023) and∞Bench (Zhang et al., 2024). Tab. 8 shows the prompts
used in the failure case study as in Sec. 5.2.

You are given some text chunks from an article, and a question. The text chunks are retrieved by an external retriever.
Now:

(1) Tell whether the question can be answered based only on the provided text chunks.
(2) If the question can be answered, answer the question based on the texts as concisely as you can, using a single
phrase if possible.
(3) If the question cannot be answered, choose the reason from the following:

A. The question needs multistep reasoning, thus it is hard to retrieve all the relevant chunks. For example, "What
nationality is the performer of song You Can?" contains two steps: find the performer, then find the nationality of the
performer. Other examples include "Where does the director of film Wine Of Morning work at?", "What is another
notable work made by the author of Miss Sara Sampson?"
B. The question is a general query, thus it is hard to retrieve relevant chunks. For example, "What did the group
think about Dave leaving?" is general because the group may include multiple persons, and they can have different
thinkings.
C. The question is long and complex, which is hard for the retriever to encode it to retrieve relevant chunks. For
example, "What did Julie Morgan elaborate on the online survey when talking about the evaluations on the legitimacy
of the children’s rights, protection and demands?", "The Huskies football team were invited to the Alamo Bowl where
they were defeated by a team coached by Art Briles and who played their home games at what stadium?"
D. The question is not explicit and requires comprehensive understanding of the whole story and cannot be solved
using retrieval-augmented generation. For example, "What caused the shadow behind Koerber’s ship?" needs a
comprehensive understanding of the whole story. Another example like "How many words are there in the article"
also requires the complete article.
E. Others.
Keep the above reasons in mind, and choose the most possible reason if you think the question cannot be answered
based on the text. Output the results in JSON format.

{in_context_examples}
Text: {context}
Question: {input}
Answer:

Table 8: Prompt for the failure case analysis.

892

NarrativeQA You are given a story, which can be either a novel or a movie script, and a question. Answer the question
as concisely as you can, using a single phrase if possible. Do not provide any explanation. If the question
cannot be answered based on the information in the article, write “unanswerable”. Story: {context} Now,
answer the question based on the story as concisely as you can, using a single phrase if possible. Do not
provide any explanation. If the question cannot be answered based on the information in the article, write
“unanswerable”. Question: {input} Answer:

Qasper You are given a scientific article and a question. Answer the question as concisely as you can, using a single
phrase or sentence if possible. If the question cannot be answered based on the information in the article,
write “unanswerable”. If the question is a yes/no question, answer “yes”, “no”, or “unanswerable”. Do not
provide any explanation. Article: {context} Answer the question based on the above article as concisely
as you can, using a single phrase or sentence if possible. If the question cannot be answered based on the
information in the article, write “unanswerable”. If the question is a yes/no question, answer “yes”, “no”, or
“unanswerable”. Do not provide any explanation. Question: input Answer:

MultiFQA Read the following text and answer briefly. {context} Now, answer the following question based on the above
text, only give me the answer and do not output any other words. If the question cannot be answered based
on the information in the article, write “unanswerable”. Question: {input} Answer:

HotpotQA Answer the question based on the given passages. Only give me the answer and do not output any other
words. If the question cannot be answered based on the information in the article, write “unanswerable”. The
following are given passages. {context} Answer the question based on the given passages. Only give me the
answer and do not output any other words. If the question cannot be answered based on the information in
the article, write “unanswerable”. Question: {input} Answer:

2WikiMQA Answer the question based on the given passages. Only give me the answer and do not output any other
words. If the question cannot be answered based on the information in the article, write “unanswerable”. The
following are given passages. {context} Answer the question based on the given passages. Only give me the
answer and do not output any other words. If the question cannot be answered based on the information in
the article, write “unanswerable”. Question: {input} Answer:

MuSiQue Answer the question based on the given passages. Only give me the answer and do not output any other
words. If the question cannot be answered based on the information in the article, write “unanswerable”. The
following are given passages. {context} Answer the question based on the given passages. Only give me the
answer and do not output any other words. If the question cannot be answered based on the information in
the article, write “unanswerable”. Question: {input} Answer:

QMSum You are given a meeting transcript and a query containing a question or instruction. Answer the query in
one or more sentences. If the question cannot be answered based on the information in the article, write
“unanswerable”. Transcript: {context} Now, answer the query based on the above meeting transcript in
one or more sentences. If the question cannot be answered based on the information in the article, write
“unanswerable”. Query: {input} Answer:

EN.QA Read the book and answer the question. Be very concise in your answer. If the question cannot be answered
based on the information in the article, write “unanswerable”. {context} Question: {input} Only give me the
answer and do not output any other words. If the question cannot be answered based on the information in
the article, write “unanswerable”. Answer:

EN.MC Read the book and answer the question. If the question cannot be answered based on the information in the
article, write “unanswerable”. {context} Question: {input} {all_classes} Only output the letter of the correct
answer and do not output any other words. If the question cannot be answered based on the information in
the article, write “unanswerable”. The letter of the correct answer is

Table 9: Prompts for each dataset.

893

