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Abstract

In virtual assistant (VA) systems it is important
to reject or redirect user queries that fall out-
side the scope of the system. One of the most
accurate approaches for out-of-scope (OOS)
rejection is to combine it with the task of in-
tent classification on in-scope queries, and to
use methods based on the similarity of embed-
dings produced by transformer-based sentence
encoders. Typically, such encoders are fine-
tuned for the intent-classification task, using
cross-entropy loss. Recent work has shown
that while this produces suitable embeddings
for the intent-classification task, it also tends
to disperse in-scope embeddings over the full
sentence embedding space. This causes the in-
scope embeddings to potentially overlap with
OOS embeddings, thereby making OOS rejec-
tion difficult. This is compounded when OOS
data is unknown. To mitigate this issue our
work proposes to regularize the cross-entropy
loss with an in-scope embedding reconstruction
loss learned using an auto-encoder. Our method
achieves a 1-4% improvement in the area under
the precision-recall curve for rejecting out-of-
sample (OOS) instances, without compromis-
ing intent classification performance.

1 Introduction

Virtual assistant (VA) systems often can handle
only a limited scope of intents. Out-of-scope (OOS)
rejection refers to the ability of a VA to identify
and reject incoming queries that are outside its
scope. This is a difficult (Fang et al., 2023) and
increasingly important task in many scenarios. Our
work is inspired by VAs in cars, which nowadays
often operate in a hybrid mode where processing
of certain user requests is handled locally, while
others are transmitted to the cloud for response
retrieval. Responding to users’ requests using on-
device/embedded models is cost-effective, quick,

*Work as a part of an internship at Cerence Inc.

and, importantly, can safeguard sensitive informa-
tion. Cloud models on the other hand are typically
much bigger and can respond to a wider range of
queries. In such a setting, it is important that the
on-device natural language understanding (NLU)
models not only identify user queries for intents
that are in-scope but also accurately detect out-of-
scope input so that they can be either routed to the
cloud or ignored. Another important use case for
OOS rejection is the combination of a light-weight,
specialized VA that works tandem with large lan-
guage models (LLMs) for free conversation with
the user. Similar to the in-car use case, the special-
ized VA can be run before the LLM and capture
a subset of the incoming queries. This increases
cost-effectiveness and controllability of the full so-
lution, provided that it has good OOS rejection
capabilities.

The most common approach for intent classi-
fication while rejecting OOS samples is based
on first generating an encoding for the sentences
(Hendrycks et al., 2020; Podolskiy et al., 2021)
and then performing classification on them. In
both (Hendrycks et al., 2020) and (Podolskiy et al.,
2021) it was shown that the most suitable sentence
encoders for this purpose are transformer-based
encoders. Based on the task’s domain, one could
use one of the several sentence encoders available
in the HuggingFace sentence transformer library
1. Fine-tuning sentence encoders on the domain-
specific data leads to better intent classification ac-
curacy. This fine-tuning typically is performed by
applying a softmax to the sentence embeddings. At
test time, the same softmax layer could be used to
perform intent classification, however, the softmax
tends to produce over-confident predictions even
for OOS samples (Dhamija et al., 2018; Hendrycks
and Gimpel, 2018). Hence, after fine-tuning, the
softmax layer is removed from the model and other

1https://sbert.net/
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classification approaches based on embedding sim-
ilarities are used for intent classification and OOS
rejection(Podolskiy et al., 2021).

This fine-tuning approach is shown to be effec-
tive in teaching the model the class-discriminative
features (Fort et al., 2021) which in our task would
result in a very good intent classification accu-
racy. However, fine-tuning without regularization
could make the model forget some of the task-
agnostic knowledge about general linguistic proper-
ties, which could help OOS detection (Chen et al.,
2023). This shortcoming was tackled in (Zhou
et al., 2021) by adding a regularization term based
on contrastive loss. In this paper, we propose a new
regularization term based on the global dispersion
of in-scope sentence embeddings2. This is similar
to the idea of deep one-class classification (Ruff
et al., 2018), in which the model learns to project all
in-scope samples into a relatively small neighbor-
hood in the embedding space. In our approach, this
is achieved by attaching an auxiliary autoencoder
head to the fine-tuning architecture which reduces
the global dispersion of the in-scpoe embeddings
through minimization of reconstruction error. This
approach is explained in detail in Section 3.

2 Related Work

There are largely two categories of approaches for
detecting OOS samples when performing intent-
classification. The first category is based on ex-
plicitly teaching the model to distinguish between
in-scope and OOS samples by introducing OOS
samples during training. This is done by adding
an extra OOS class to the classifier (Larson et al.,
2019; Qian et al., 2022; Choi et al., 2021; Zhan
et al., 2021) or by adding an auxiliary loss func-
tion to the cross entropy loss to enforce the model
to output a uniform probability distribution over
in-scope classes when dealing with OOS samples
(Zheng et al., 2020). These approaches only work
if the OOS test samples are drawn from a distribu-
tion similar to that of the OOS training samples.
In (Fang et al., 2023) the authors prove mathemat-
ically that it is not possible to detect samples out-
side of known distributions unless some conditions
are met. This means for robust detection of OOS
samples, the training OOS test samples have to
represent a wide variety of possible distributions.
While collecting such training samples is not feasi-

2Our code is available at : https://github.com/
SlangLab-NU/autoencoder-oos/tree/main

ble, synthesizing OOS samples using models like
GANs (Ryu et al., 2018; Lee et al., 2018) and man-
ifold learning (Goyal et al., 2020; Bhattacharya
et al., 2023) have shown promise to make the deci-
sion boundary around in-system training samples
as tight as possible.

The second category consists of approaches that
rely only on in-scope training data without mak-
ing any assumption about the OOS class. These
approaches are largely based on sentence embed-
dings. Sentence embeddings generated by trans-
former encoders are shown to perform better than
the ones generated using traditional NLU models
(Hendrycks et al., 2020; Podolskiy et al., 2021).
The classification of sentence embeddings into in-
scope intent classes and into in-scope versus OOS
could be done using non-parametric methods such
as KNN (Zhou et al., 2022) or density based meth-
ods (Chen et al., 2023; Ren et al., 2021; Xu et al.,
2020). There is a trade-off between the model foot-
print and its accuracy when it comes to choosing be-
tween parametric and non-parametric approaches.
Due to constraints on the size of the model put in
the car we chose the parametric approach based on
the Mahalanobis distance.

The sentence embeddings could be generated
using pretrained sentence transformers (Hendrycks
et al., 2020) but fine-tuning the encoder for the task
at hand provides more suitable embeddings (Dar-
rin et al., 2024; Zhou et al., 2021; Barnabo et al.,
2023; Zhou et al., 2022). The work in (Zhou et al.,
2021) highlights that while fine-tuning based on
cross-entropy loss effectively separates sentence
embeddings of different intent classes, it struggles
to differentiate between in-scope samples and OOS
samples. In that paper, this issue is tackled by
adding a secondary loss function to the fine-tuning
based on contrastive loss. The contrastive loss in-
creases the distance between intent classes in the
embedding space while reducing the distance be-
tween embeddings of the same intent class. How-
ever, since this loss tries to push the in-scope intent
classes as far as possible from each other, the intent
classes could start overlapping with OOS samples
in the embedding space. Our approach inspired by
the one-class classification in (Ruff et al., 2018)
tries to reduce the dispersion of the in-scope intent
classes in the embedding space by replacing the
contrastive loss with reconstruction loss obtained
using an autoencoder.

911

https://github.com/SlangLab-NU/autoencoder-oos/tree/main
https://github.com/SlangLab-NU/autoencoder-oos/tree/main


3 Methodology

This section discusses the details of our modelling
formalism. Sub-section 3.1 talks about our train-
ing cost-function(s), whereas sub-section 3.3 talks
about our inference methodology.

3.1 Model Fine-tuning
Figure 1 shows our model architecture. Let si de-
note the d dimensional sentence embedding of the
ith training sample generated after pooling the out-
put of the transformer encoder. Here we use yi to
denote a C dimensional one-hot vector associating
ith input to one of C in-scope intents. The jth ele-
ment of yi namely yij is equal to 1 if and only if si

belongs to the jth class where j ∈ {1, . . . , C}. In
the baseline fine-tuning approach, a softmax layer
is applied to si to map it to ei, a C-dimensional
vector of probabilities. The cross-entropy loss Li

CE

of the ith training example is then calculated as:

Li
CE = −

C∑

j=1

yij log(e
i
j) (1)

In the proposed fine-tuning approach, the sentence
embedding si is passed to a second head which
is comprised of an autoencoder network. The au-
toencoder reconstructs the embedding as ri. The
reconstruction loss computed using mean-squared
error is calculated as:

Li
AE =

1

d

d∑

k=1

(sik − rik)
2 (2)

The architecture of the model along with the size of
the layers of the autoencoder head are provided in
Section 4.1. The final loss is calculated as follows
weighted sum of the two losses described above as

Li = (1− α)Li
CE + αLi

AE (3)

Here α tuned as a hyperparameter allows us to
control the contribution of the individual losses
towards the final loss.

3.2 Class-based Mean and Covariance
Calculation

After training, the autoencoder and the softmax
heads are discarded. The transformer encoder
trained with Eq. (3) as the cost function is then
primarily used for extracting sentence embeddings.
Sentence embeddings using this transformer en-
coder are then generated for each training sample

belonging to one of the C in-scope intent classes.
These per-class sentence embeddings are then used
to construct a set of C mean-vectors µj where
j ∈ 1, . . . , C. All of the training set sentence em-
beddings for the C classes are then used to calcu-
late a universal covariance matrix Σ.

3.3 Classification and Inference
For an incoming query q, if sq is its corresponding
sentence embedding, then the class-specific Maha-
lanobis distance dj is calculated as follows:

dj(s
q) =

√
(sq − µj)

⊤Σ−1(sq − µj) (4)

Once the distances are calculated, a minimum dis-
tance dmin(s

q) and the index cmin(s
q) of the can-

didate centroid is picked as follows.

dmin(s
q) = min

j
dj(s

q) (5)

cmin(s
q) = argmin

j
dj(s

q) (6)

The quantity dmin(s
q) is then compared to a thresh-

old τ to determine if the query q is in-scope or out-
of-scope. This threshold is a hyper-parameter and
is set empirically. If the query q is determined to
be in-scope then cmin(s

q) is picked as the candi-
date class. This method of using a soft-max during
training, but using the Mahalanobis distance dur-
ing inference for classification is consistent with
previous work (Podolskiy et al., 2021; Ren et al.,
2021).

4 Experimental Setup

This section talks about our experimental setup.
The main objectives of our experimental setup is to
evaluate the capability of our proposed fine-tuning
approach to improve the model’s ability to detect
OOS queries robustly while maintaining in-scope
intents classification accuracy.

4.1 Sentence-encoder Configuration
The bert-base-uncased (Devlin et al., 2018)
model followed by maxpooling was used to ex-
tract sentence embeddings. Sentence embeddings
from the transformer sentence encoder have dimen-
sionality d = 768. As shown in Figure 1 these
embeddings pass through an autoencoder with a
six-layer architecture designed to compress and
reconstruct the sentence embeddings. The first 3
layers in the autoencoder reduce the data dimen-
sionality from 768 to 512, 512 to 64, and finally
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Figure 1: Model architecture for reducing the dispersion of in-scope embeddings. In-scope data is fine-tuned on a
cross-entropy loss, with an auxiliary autoencoder loss.

from 64 to a 16-dimensional bottleneck. The subse-
quent 3 layers reconstruct the sentence embedding
back to its dimensionality of d = 768. The trans-
former sentence-encoder is then trained using the
objective function stated in Eq. (3). The errors
are backpropagated from both heads back to the
transformer sentence encoder. All layers of the
transformer encoder model were fine-tuned.

4.2 Hyperparameter Optimization and
Training

The training was found to be sensitive to the auto-
encoder weight parameter α. For this reason grid
search was conducted for α with the following
values [0.01, 0.1, 0.2, 0.5, 0.9]. The learning rate,
batch size and no. of epochs were kept constant. It
was found across the different validation sets that
the optimal value for α = 0.1. The performance
started to deteriorate drastically for higher values
of α.

The autoencoder weight α was then kept fixed
for further hyperparameter optimization. Our work
uses an open source hyperparameter optimization
framework called Optuna (Akiba et al., 2019).
Learning rates between 1 × 10−3 and 5 × 10−5

were explored using a logarithmic scale to priori-
tize smaller increments closer to the lower end of
the spectrum, as transformer models often benefit
from precise adjustments in learning rates. The
number of training epochs ranged from 5 to 50.
Batch size values were explored between 16, 32,
64, 128, 256, 512. The exact values for hyperpa-
rameters for each dataset appear in Appendix A.2.

4.3 Evaluation Metrics

The primary metric for assessing the effectiveness
of our OOS detection was the Area Under the
Precision-Recall curve (AUPR). It is important to
mention that we label OOS samples as positive
and in-scope samples as negative and hence we
report AUPRood which signifies that. This metric
is particularly suitable for comparing two binary
classifiers when the test data is imbalanced like
those with a high proportion of in-scope queries
compared to OOS queries. The second metric is
used is Area Under the ROC curve (AUROC). Our
work additionally looks at the intent classification
accuracy. This is important as our goal is to im-
prove OOS rejection while maintaining in-scope
intent classification accuracy.

4.4 Datasets

CLINC150 Dataset: The CLINC150 dataset (mis,
2020) is a benchmark dataset for evaluating natural
language understanding systems particularly in the
context of intent and slot filling tasks. The data set
comprises 150 intent classes with an extra class la-
beled as out-of-scope. The training data consists of
15,000 examples with 100 examples per intent. The
out-of-scope intent was not used in training. The
validation data consists of 3,000 examples with 20
examples per intent. The test data consists of 4,500
examples with 30 examples per intent. The data
spans across 10 diverse domains, such as banking,
credit cards, kitchen appliances making it compre-
hensive for real-world scenarios. Each data sample
consists of a short text utterance, paired with an
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intent label.

Stackoverflow Dataset: This dataset is a cu-
rated subset from a challenge dataset originally
published by Kaggle3. The selection includes ques-
tion titles that have been categorized into 20 distinct
intent classes following the methodology proposed
by Xu et al. (Xu et al., 2017). Since this subset does
not inherently include labeled out-of-scope (OOS)
samples, we adopted the procedure described by
Lin and Xu (Lin and Xu, 2019) to designate classes
as either in-scope (IS) or OOS. Specifically, we
retain classes that, combined, cover at least 75% of
the total dataset as IS. The remaining classes are
considered OOS, and their instances are removed
from the training dataset but retained and relabeled
as OOS in the validation and test datasets. The
specific details of dataset construction is detailed
in Appendix A.1.1

MTOP Dataset: The MTOP dataset is a task-
oriented dialogue dataset with a hierarchical struc-
ture of intent labels. In our experiments, we focus
solely on the root-label of these intents. We utilized
the English portion of this dataset, referred to as
MTOP-EN, which comprises 87 intent classes in
11 domains. This dataset does not include a pre-
defined out-of-scope (OOS) class. Based on the
amount of data, the ‘timer’ domain is chosen as
the pre-defined OOS class. Our preprocessing fil-
tered out in-scope (IS) domains with fewer than 10
occurrences per IS class. The in-scope data was
then split into training, validation, and testing sets
using a stratified approach based on intent labels
to maintain an equal distribution of intents across
these splits. We allocate OOS data between valida-
tion and testing sets, without stratification, due to
the uniform label of OOS.

Car Assistant Dataset: This is an internal
dataset. Due to it’s original massive size, we ran-
domly selected around 200,000 utterances used
per run for training, validation and testing. This
in-scope part of the dataset is derived from user
interactions with car assistant systems and contains
46 distintc intent classes while. The OOS part is
constructed from 14 different setes including sms
messages, dictated emails, book snippets, tweets,
internet-scraped text and some other unsupported
text phrases.

3https://www.kaggle.com/c/
predict-closed-questions-on-stack-overflow

5 Results and Discussion

The OOS detection performance and intent classi-
fication accuracy of both the baseline and the pro-
posed fine-tuning approaches are presented in Table
1. The table has 4 rows and 7 columns. Each row
of Table 1 contains results on one particular dataset.
The first three columns show dataset name and a
summary of numbers of utterances in each dataset.
The fourth column shows the fine-tuning cost func-
tion used namely cross-entropy (CE), versus the
joint cross-entropy and autoencoder (CE+AE) fine-
tuning objective introduced in Eq. (3). The next
three columns display our results for the evaluation
metrics mentioned in Section 4.3. As mentioned
in the table caption, AUPRoos refers to calculating
the AUPR by treating the OOS class in the test set
as the positive class. AUROC refers the area under
the receiver operating curve, and accuracy refers
to intent classification accuracy using Eqs. (5) and
(6). The intent classification accuracy is expressed
as a percentage.

The results show that in 3 out of 4 datasets we
tested, the proposed method improved OOS detec-
tion, while maintaining the same in-scope intent
classification accuracy. Specifically, the relative
improvement with regard to AUPRoos is seen to
be 3.22% on the StackOverflow dataset, 3.45% on
the MTOP dataset and 1.15% on the Car Assistant
dataset. Due to its larger test set, the improvement
on our internal car assistant dataset is statistically
more significant than the improvement on the other
two test sets. This can be attributed to the presence
of a larger training set, which enables the autoen-
coder head to exert greater influence over the more
than 100 million parameters of the sentence en-
coder.

5.1 Embedding Dispersion

We also measured the dispersion of the sentence
embedding vector after baseline fine-tuning and
after our proposed fine-tuning as shown in Table 2.
The dispersion was calculated as follows. For each
training dataset that appears in Table 2, training
sentence embeddings were extracted first using our
baseline cross-entropy (CE) model, and further us-
ing our model trained with joint cross-entropy and
autoencoder objective (CE+AE). After extracting
embeddings a global covariance matrix was calcu-
lated in each case namely ΣCE and ΣCE+AE . To
measure dispersion, the trace of each of these ma-
trices were calculated (Johnson et al., 2002). The

914

https://www.kaggle.com/c/predict-closed-questions-on-stack-overflow
https://www.kaggle.com/c/predict-closed-questions-on-stack-overflow


Intent
Dataset #Train #Test(is/oos) Fine-tuning AUPRoos AUROC Classification

Accuracy (%)

CLINC150 15,000 4,500 / 1,000
CE 0.916 ± 0.007 0.977 ± 0.001 95.8

CE+AE 0.918 ± 0.004 0.978 ± 0.004 95.8

StackOverflow 79,048 16,940 / 14,617
CE 0.822 ± 0.053 0.881 ± 0.028 91.2

CE+AE 0.849 ± 0.050 0.893 ± 0.030 90.9

MTOP 14,465 4,134 / 997
CE 0.869 ± 0.018 0.974 ± 0.004 97.0

CE+AE 0.899 ± 0.039 0.979 ± 0.009 97.0

Car Assistant 600k 150k / 200k
CE 0.954 ± 0.005 0.959 ± 0.002 96.5

CE+AE 0.965 ± 0.004 0.966 ± 0.003 96.6

Table 1: Comparison of cross-entropy (CE) fine-tuning and versus the joint cross-entropy and autoencoder objective
(CE+AE). Here AUPRoos refers to the AUPR metric treating the OOS class as the positive class in the test set. The
last column shows the intent classification accuracy result as a percentage.

Dataset CE CE+AE
CLINC150 17.767 17.762

StackOverflow 16.854 16.026
MTOP 17.269 16.744

Table 2: Dispersion of fine-tuned models

dispersion values thus calculated appear in Table 2.
The dispersion values illustrate that global disper-
sion of in-scope embeddings is smaller when our
proposed fine-tuning is applied. It can be observed
that the smaller the dispersion gets the higher OOS
detection accuracy becomes when comparing the
two fine-tuning approaches. This supports our ar-
gument that constraining the in-scope embeddings
in a smaller neighborhood in the embedding space
helps in the separation of in-scope and OOS sam-
ples.

5.2 Replacing the Model with a Large
Language Model (LLM)

Given the undeniable power of LLMs, one would
naturally wonder what if the classification pipeline
based on sentence encoder was replaced by an
LLM. In other words, how well would a LLM
perform intent classification and OOS detection
tasks without fine-tuning and just by prompt en-
gineering. To answer this question we examined
the performance of ChatGPT’s gpt-3.5-turbo-0125
model from OpenAI on the MTOP dataset. We
evaluated the performance of the LLM for intent-
classification and OOS detection separately with
different prompts as we noticed that if we ask the
LLM to do both tasks, it will overwhelmingly clas-
sify most samples as OOS. Furthermore, due to the
limitations in context size, we were limited to use

200 training examples but we made sure that there
is at least one sample for each intent in the training
set. In our setup, the system prompt is followed
by the user prompt in which the model is provided
with training sentences and a single test sentence.
The exact system prompt is included in the Ap-
pendix A.3. Each experiment was repeated five
times and the mean values of AUPR and AUROC
as well as classification precision are presented in
Table 3.

Metric Value
Average AUPR 0.624 ± 0.00440
AUROC 0.642
Intent Classification Acc.(%) 82.9

Table 3: Benchmark results on GPT-3.5

It is worth noting that even with a very limited
amount of training data the LLM does a good job
of classifying 82.9% of the samples correctly. How-
ever, detecting OOS samples just by looking at a
few in-scope samples is proven to be a more diffi-
cult task even for the LLM. Although comparing
the performance of our approach to the LLM per-
formance for this task is not fair because the latter
only saw a fraction of the training samples, it shows
that one could not simply replace the classifier with
an LLM and expect high intent classification and
OOS detection accuracy.

Conclusion

In this paper, we introduce a new approach to fine-
tuning sentence transformers used for intent clas-
sification, to improve their ability to detect OOS
samples. We showed that sentence embeddings
generated from encoders fine-tuned using the pro-

915



posed approach provide better separation between
in-scope and OOS samples while maintaining the
separation between intent classes.

Limitations

A limitation of our approach is that it requires more
than a few examples per intent class during fine-
tuning to make a big enough impact on the sentence
encoder to improve OOS detection. In other words,
it is not suitable for few-shot learning. This can be
seen in the results given in Table 1 where the OOS
accuracy stays the same for the CLINC150 dataset,
where the ratio of samples to intent classes is much
smaller than for the other datasets. The proposed
approach was not evaluated for compositional or
compound queries that contain both in-scope and
OOS elements. This was mainly because in most
virtual assistant systems the multi-intent queries
are first broken into single-intent phrases, and then
the classification step is performed. In addition,
there are not many studies in the literature on this
use case and not having publicly available datasets
with such queries in them would make it difficult
for us to benchmark our approach against SOTA
approaches.
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A Appendix

A.1 Details of dataset construction

A.1.1 Stackoverflow dataset

The dataset is divided into training, validation, and
testing sets using a stratified split approach. The
stratification ensures that the relative frequency of
IS and OOS labels is maintained across the splits.
This procedure is replicated across five different
IS-OOS class configurations (splits), each initiated
with a unique random seed for repeatability. For
each split, the dataset undergoes:

1. Filtering to include only the specific 20 cat-
egories from the original dataset. The labels
selected for inclusion in this subset are as fol-
lows: ‘svn’, ‘oracle’, ‘bash’, ‘apache’, ‘ex-
cel’, ‘matlab’, ‘cocoa’, ‘visual-studio’, ‘osx’,
‘wordpress’, ‘spring’, ‘hibernate’, ‘scala’,
‘sharepoint’, ‘ajax’, ‘drupal’, ‘qt’, ‘haskell’,
‘linq’, ‘magento’.

2. Random shuffling and selection of tags to
meet the 75% threshold for IS designation.

3. Out-of-domain data, not meeting the IS cri-
teria, is split equally into validation and test
sets, labeled as OOS.
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A.2 Exact hyper-parameter values obtained
for various datasets

Dataset α lr bs # epochs
CLINC150 0.1 10−4 256 15
StackOverflow 0.1 5 x 10−5 1024 6
MTOP 0.1 2.25 x 10−5 128 10
Car Assistant 0.1 2.25 x 10−5 1024 7

Table 4: Parameter values for different datasets. Here
α refers to the autoencoder importance, lr refers to the
learning rate, bs refers to the batch size and # epochs
refers to the number of epochs.

A.3 Prompt given to ChatGPT 3.5

In order to evaluate our approach against ChatGPT
3.5 we used the following system prompt for OOS
detection task:

1 You are an AI assistant
specialized in
natural language
processing tasks. You
will be provided

with training samples
consisting of

sentences and their
corresponding intents
. Your task is to
determine whether a
given sentence is in-
scope (belongs to a
known intent) or out -
of -scope (does not
belong to any known
intent). Based on the
provided training

data , classify each
input sentence and
return a JSON object
indicating whether
the sentence is in-
scope or out -of-scope
. If the sentence is
in -scope , also
provide the intent
name. If the sentence
is out -of-scope ,

indicate that it is
out -of-scope. The in-
scope intents must
match exactly with

the intents provided
in the training data
except for oos.
Instructions: 1. For
each input sentence ,
determine if it is in
-scope or out -of-
scope based on the
provided training
data. 2. If the
sentence is in-scope ,
return a JSON object
with { inscope: true

, scope: "intent_name
" }. The intent name
must match exactly
with the intents
provided in the
training data. 3. If
the sentence is out -
of-scope , return a
JSON object with {
inscope: false , scope
: "oos" }.

System Prompt for classification task:

1 You are an AI assistant
specialized in
natural language
processing tasks. You
will be provided

with training samples
consisting of

sentences and their
corresponding intents
. Your task is to
classify a given
sentence 's intent.
Based on the provided
training data ,

classify the input
sentence and return a
JSON object

indicating the intent
of the sentence. The
intents must match

exactly with the
intents provided in
the training data.
Return a JSON object
with { intent: "
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intent_name" }.
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