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Abstract

API integration is crucial for enterprise sys-
tems, as it enables seamless interaction between
applications within workflows. However, the
diversity and complexity of the API landscape
present significant challenges in combining
API calls based on user intent. Existing meth-
ods rely on named entity recognition (NER)
and knowledge graphs, but struggle to generate
more complex control flow structures, such as
conditionals and loops. We propose a novel
framework that leverages the success of large
language models (LLMs) in code generation
to integrate APIs based on natural language in-
put. Our approach involves fine-tuning an LLM
using automatically generated API flows de-
rived from OpenAPI specifications. We further
evaluate the effectiveness of enforcing the syn-
tax and schema adherence through constrained
decoding. To enable systematic comparison,
we introduce targeted test suites to assess the
generalization capabilities of these approaches
and their ability to retain structured knowledge.
Our findings show that LLMs fine-tuned on
OpenAPI specifications can (a) learn structural
API constraints implicitly during training, and
(b) achieve significant improvements in both
in-distribution and out-of-distribution perfor-
mance over NER and retrieval-augmented gen-
eration (RAG)-based approaches.1

1 Introduction

The ability to integrate APIs of different software
services is crucial for automating processes across
applications. Industrial tools like IBM App Con-
nect2 or Zapier3 provide visual interfaces for man-
ual flow composition but they require users to pos-
sess API knowledge or tediously search through
service catalogs. This motivates automatic flow
generation from natural language descriptions.

1The code is public and available here: https://github.
com/chanr0/api-integration

2https://ibm.com/cloud/app-connect
3https://zapier.com

GOFA (Brachman et al., 2022) demonstrates
the feasibility of such solutions by implementing
utterance-to-API generation with an NER-based
approach. GOFA, however, struggles with
variations in user utterances and limited support for
complex flow control structures like conditionals
and iterations, as they require more complex
reasoning over the natural language query. Recent
successes of large language models (LLMs) on
related code generation tasks like text-to-SQL (Xie
et al., 2022; Scholak et al., 2021; Giaquinto et al.,
2023; Deng et al., 2022) encourage exploring their
capabilities for this task. This requires the LLM
to learn (a) mapping utterances to relevant APIs,
(b) valid methods within those APIs, and (c) the
syntactical constraints for composing API flows.

To this end, we propose a generic LLM-tuning
approach where structured information is (a) im-
plicitly learned through automatically generated
samples and (b) optionally enforced at inference
time with constrained decoding. Our contributions
are summarized as follows:

1. We propose general synthetic data generation
for learning API structure to implicitly adapt
the LLM via fine-tuning and compare them
to NER, prompt engineering, and RAG ap-
proaches.

2. We introduce problem-specific baselines to
assess the in- and out-of-distribution general-
ization of the tuned LLM and compare them
to baselines from previous work.

3. We demonstrate that in- and out-of-
distribution generalization and structural
reasoning can be improved by data augmenta-
tion and constrained decoding.

4. We implement a working system that trans-
lates natural language queries to API flows.4

4A video demonstration of the system can be found here:
https://youtu.be/U0KNdnO92rk
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2 Background

OpenAPI Specification. The OpenAPI Spec-
ification (OpenAPI Initiative, 2021), formerly
known as Swagger, defines a language-agnostic
way to describe interfaces for HTTP APIs. Many
enterprise software systems provide an OpenAPI
specification or document how users can interact
with them through a REST-style API. OpenAPI
defines how to specify API metadata, available
endpoints, operations, parameters, and expected
responses. API calls are uniquely identified by
their application, object, and CRUD operation,
where the former two define the endpoint to which
the API call is made. We can therefore represent
the available API calls for a set of applications as
a forest of trees—one for each application. The
application is stored at the root, and the available
objects and operations are stored on the subsequent
layers as shown in Figure 1. The forest stores
all available application, object, and operation
combinations along with relevant metadata.

API Flows. An API flow refers to a sequence of
API calls across applications. These flows can be
event-driven, where a trigger event initiates a set
of actions, or they can involve chaining specific
actions in response to a given request.

Decoding Algorithms. During text generation,
standard decoding algorithms explore an exponen-
tially large space of possible output strings. This
computational complexity necessitates relying
on heuristic decoding strategies without formal
guarantees. Deterministic approaches like greedy
search—selecting the most probable token at each
step—prioritize efficiency, while beam search
(Reddy, 1977; Sutskever et al., 2014) and its
stochastic counterparts like top-k sampling (Wiher
et al., 2022) aim for a balance between efficiency
and generating diverse, natural outputs. This work
focuses on beam search due to its simplicity and
popularity. However, constrained decoding can be
applied to any of the above decoding strategies.

Beam search employs a k ∈ Z+-pruned breadth-
first search. At each decoding step, it only keeps
the top k decoding paths based on the beams’ cu-
mulative probability. As such, it can be defined
recursively (Meister et al., 2020). Namely, let yt−1

denote the previously generated sequence at some
decoding timestep t > 0, y be the next candidate
token in the language model vocabulary Σ which
contains the end-of-string symbol EOSThen, beam

search considers the candidate set

Bt =
{
yt−1 ◦ y | y ∈ Σ ∧ yt−1 ∈ Y t−1

}
, (1)

where for some LM p at each decoding step t > 0:

Y t = argmax
Y ′⊆Bt,|Y ′|=k

log p(Y ′|x;θ), (2)

and Y 0 = {BOS}, the set only containing the
beginning-of-string symbol.
Constrained Decoding. During constrained de-
coding, the set of candidate tokens Bt is restricted
to contain only continuation tokens adhering to a
binary objective function G : Σ→ {0, 1}, i.e.,

Bt =
{
yt−1 ◦ y | y ∈ Σ ∧ yt−1 ∈ Y t−1 (3)

∧ G(yt−1 ◦ y)
}
.

This objective could represent a specific syntax or
grammar that the generated sequence must adhere
to. It is typically left-context dependent, meaning
the constraint on the next token depends only on
the previously generated sequence. In this work,
we adopt incremental parsing for constrained gen-
eration, which has been shown to enhance perfor-
mance in tasks such as text-to-SQL (Scholak et al.,
2021; Poesia et al., 2022), and extend it to the text-
to-API flow task.

3 Automatic Data Generation

Our goal is to automatically generate training data
for LLM text-to-API flow fine-tuning, thereby
aligning the model with API domain knowledge.
To this end, we leverage the tree structure and node
attributes of the API forest depicted in Figure 1.

Prompting with this large structured informa-
tion is still difficult. Firstly, despite efforts to
increase prompt length for modern LLMs (e.g.,
LongLLaMA; Tworkowski et al. 2024), maximum
token limitations restrict the amount of structured
information that can be passed during inference.
Further, LLMs have been shown to perform worse
for longer prompts due to the amount of irrelevant
context (Shi et al., 2023). To this end, a common
mitigation strategy is retrieving-augmented gener-
ation (RAG) (Khattab et al., 2022). However, as
shown in section 5, RAG has limited impact on
domain-specific tasks where semantic search over
unseen concepts performs poorly. Therefore, we
train models to learn structural knowledge implic-
itly through generated training samples. Generat-
ing samples manually is expensive and requires
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Figure 1: API definition ingestion and representation.

specific API flow expertise. We therefore propose
a synthetic data generation approach to create a
rich training set capturing diverse utterance-to-flow
pairs. Namely, we first extract OpenAPI descrip-
tions from the “description” and “responses” at-
tributes of object methods (examples 1 & 2 in Fig-
ure 2). As these descriptions vary in quality, we
additionally generate operation-specific templates
filled with API details from the specification (ex-
amples 3 & 4 in Figure 2). This aims to generate a
diverse set of API call descriptions covering poten-
tial user utterances.

Matching utterance intent to the appropriate API
call requires considering the limited set of request
methods. The same method can have different
meanings depending on the endpoint it calls. For
instance, the CREATE method on a Gmail message
object sends an email, while on a Salesforce ac-
count, it creates the account. Matching intent might
require more than simple semantic parsing and
should incorporate API descriptions.

{
 info: ...
 base_path: /gmail/
 paths:{
 /mail:{
    get: {
   description: ...
   summary: ...
   operationId: create_Mail
    }
 ...
}

gmail/mail/create
↓

“Sends an email message from 
Gmail”

“Sends email ”

“Create a gmail mail.”

“Create a Google Mail mail.”

Figure 2: Synthetic utterance generation from the Ope-
nAPI specification.

We use the following categories for generating
training samples, representing the building blocks
of API flows:

• ID1: Single API call.

• ID2: Trigger followed by an action.

• ID3: Trigger followed by two actions.

• ID4: if-conditional (e.g., conditional branch-
ing based on a stated condition).

• ID5: for-loop (e.g., iteratively calling an ac-
tion on retrieved items).

• ID6: Sync/Move/Copy operation (combina-
tions of the above).

We provide examples for each category in Table 2.
To mitigate spurious correlations and improve out-
of-distribution generalization, we augment data
with paraphrasing—a common technique used to
increase data variability (McCoy et al., 2019; Feng
et al., 2021; Chan et al., 2023). We paraphrase
the synthetically generated samples using few-shot
prompting. Finally, we filter out samples where
application or object names are lost during para-
phrasing using partial string matching.

4 Enforcing Valid API Flows

Event-driven API integrations can be represented
by a constrained subset of Python code with
API calls expressed as app.object.operation
triplets. The precise grammar, which also directly
encodes the set of available APIs, is specified in
EBNF-like notation. For completeness, the gram-
mar is shown in Figure 3. Note, that the schema is
encoded in the set of terminals named actions and
triggers, resulting in a rather large grammar. Dur-
ing incremental parsing, such terminals are split up
to match the current generation with valid matching
suffixes at each decoding step.

To enforce adherence to this structured knowl-
edge and syntax, we employ constrained semantic
decoding (Poesia et al., 2022) at inference time, as
even tuned models can deviate from valid schemas,
especially in ambiguous scenarios.

We adopt a faster implementation of constrained
semantic decoding for beam search. Instead of
building prefix trees to find all valid continuations
at each step, we directly check whether the contin-
uation token is valid on the most likely tokens until
we find k valid continuations. Since beam search
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Figure 3: Syntax and schema ingestion into the grammar. The full grammar is listed in Appendix A.

samples generate at most k continuations per beam,
we only need to keep the k most likely valid tokens
per beam, i.e., its beam width. This significantly
reduces the number of expensive isValidPrefix
calls. The procedure is shown in Algorithm 1.

Algorithm 1 Fast Constrained Decoding

Require: Prefix p, grammar G, tuned model pθ,
beam width k

Ensure: Masked next token scores
1: l← sortProb(getNextTokenProb(p, pθ))
2: ct, validTokens← 0, []
3: for tok in l do
4: while ct < k do
5: if isValidPrefix(p · tok, G) then
6: append(validTokens, tok)
7: ct← ct+ 1
8: end if
9: end while

10: end for
11: return maskInvalid(l, validTokens)

5 Evaluation

We evaluate our approach by training several LLMs
and comparing them to an NER baseline. All
models are trained on the same APIs with 85 ap-
plications, 4’557 application-specific objects, and
21’712 unique API calls. As each application has
an arbitrarily large number of objects/endpoints
and each endpoint may support a different subset
of the actions and triggers, the resulting trees are
much differently sized. This is shown in Figure 4.

101

103

# of commands per app

101

103

# of obj per app

5

10

# of commands per obj

Figure 4: API tree node distribution statistics. The two
plots on the left use a logarithmic scale.

The data is split into a 55k/7k/7k train/eval/test
split, with the test set subsampled for equal distri-
bution among in-distribution (ID) categories. We
also define an out-of-distribution (OOD) test suite
described in subsection 5.1.
LLM Baselines and Fine-tuning. We imple-
ment multiple approaches to assess their effective-
ness in the text-to-API flow task: (a) an NER-
based method serves as a baseline and is similar
to GOFA (Brachman et al., 2022), (b) we prefix-
tune (Li and Liang, 2021) T5-3B (Raffel et al.,
2020) and BLOOM-3B (BigScience Workshop,
2023) at 0.35% of their parameters, (c) BLOOM-
3B and LLaMA-13B (Touvron et al., 2023) are
fully fine-tuned on a mixture of ShareGPT5

data and our training samples, (d) conversational
LLaMA-13B; a version of LLaMA-13B that is
further fine-tuned on a dataset with instructions,
enabling conversational prompting during testing.
This may simulate a conversation scenario, where
the initial utterance requires clarifications on the ap-
plication to use as multiple solutions are possible.

5https://sharegpt.com/
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5.1 Out-of-Distribution Test Suite

We define a set of out-of-distribution sample
classes representing user input scenarios that may
not be included in the training set, allowing us to
evaluate the model’s generalization ability:

• OOD1: Commonly known app name varia-
tions (e.g., “s3” instead of “Amazon Simple
Storage Service”).

• OOD2: Omitting application from utterance
if clear from object and action (cf. Figure 5).

• OOD3: Omitting object from utterance if
clear from the application (cf. Figure 5).

• OOD4: A flow containing a trigger followed
by more than two actions.

• OOD5: User-collected full integration flows
with potentially intricate reasoning.

OOD1 samples consist of a single API call and
evaluate how well the model deals with references
to domain-specific knowledge, for example, refer-
encing Amazon Simple Storage Service as s3. Sam-
ples in OOD2 and OOD3, like OOD1, consist of a
single API call and evaluate whether the model is
able to use structural knowledge to make conclu-
sions about implicit information in the utterance
(Figure 5, top and bottom, respectively). Samples
in OOD4 evaluate whether the model identifies and
generalizes to the syntactic constraints of the gram-
mar. Finally, the samples in OOD5 are a set of full
human-generated integration flows with human an-
notation, which at times require significantly more
intricate reasoning than what can be taken from the
utterance, often significantly exceeding the train-
ing set coverage. We provide examples for each
category in Table 3.

message

create retrieve

google sheets

user

retrieve

slack

spread
sheet

create

salesforce

lead

deleteupdate create

task

”..create a spreadsheet”

”…write a new slack”

gsheets/spreadsheet/create

slack/message/create

Avaliable APIs

Figure 5: Using structural information to infer implicit
knowledge in the utterance.

5.2 Metrics

We introduce the following metrics to evaluate the
API generations:

• Exact matching (EM): Checks if the gener-
ated string exactly matches the ground truth
(except for irrelevant variable names).

• Similarity Ratio (Sim): Token-based simi-
larity between target and generated string (1
minus token-based edit distance).

• Triplet Precision (TP): Fraction of generated
API calls that exist in the API definitions.

5.3 Results and Discussion

NER-Based Baseline: Explicit Matching. The
NER-based approach only considers a subset of
the test set due to limitations in handling iterations
and conditionals (Table 1). It performs well for
individual API calls or simple trigger-action flows
but struggles with more complex scenarios.

We see that the NER-based approach shows de-
cent performance for extracting individual API
calls from utterances, dealing well with common
knowledge app aliases, as such are likely to be part
of the NER train corpus. Triplet precision is high
(and comparable to tuned LLMs), as candidates are
mostly successfully matched to a knowledge graph
of existing API calls. However, the NER-based
model struggles with composite flows, where para-
phrasing may yield a range of formulation varia-
tions, where entities cannot be extracted from the
text.

Effects of Constrained Decoding. Table 1
shows that LLMs outperform the baseline in both
in-distribution and out-of-distribution settings, with
BLOOM generally outperforming T5 for smaller,
prefix-tuned models. Constrained decoding (CD)
significantly improves triplet precision for all mod-
els, especially for ambiguous samples (reflected
in higher out-of-distribution accuracy). While CD
enforces syntactic validity, the underlying model
still influences semantic correctness. The increase
in triplet precision with CD is not met with a pro-
portional increase in Exact matching accuracy, sug-
gesting errors beyond API call matching. Addition-
ally, CD can lead to lower target similarity as the
model might prefer generating existing (but slightly
incorrect) API calls.
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Model In-Distribution Metrics Out-of-Distribution Metrics

EM ↑ Similarity ↑ TP ↑ EM ↑ Similarity ↑ TP ↑
NER-based n/a (8.7) n/a (40.0) n/a (79.4) n/a (23.6) n/a (56.4) n/a (86.8)

Prefix-tuned T5-3B 58.9 (53.6) 92.3 (91.9) 79.4 (76.3) 22.9 (23.2) 76.6 (76.6) 66.6 (67.1)
Prefix-tuned BLOOM-3B 60.9 (59.0) 93.7 (91.9) 78.2 (77.1) 25.0 (25.4) 73.7 (73.5) 68.6 (68.7)
Prefix-tuned BLOOM-3B + CD 64.7 (66.2) 90.8 (90.0) 100.0 (100.0) 32.6 (32.4) 72.0 (71.6) 100.0 (100.0)
Fully tuned BLOOM-3B 83.6 (77.4) 97.6 (96.6) 88.8 (85.6) 34.4 (34.2) 77.1 (76.2) 81.2 (81.5)
Fully tuned BLOOM-3B + CD 85.2 (79.2) 97.3 (96.1) 100.0 (100.0) 40.6 (40.5) 78.2 (77.9) 100.0 (100.0)

Prompting fully tuned LLaMA-13B 44.3 (84.0) 68.3 (94.7) 78.4 (85.1) 26.7 (27.1) 66.5 (67.2) 75.3 (75.7)
LLaMA-13B + RAG 46.6 (46.7) 67.4 (71.5) 88.8 (86.2) 27.1 (27.5) 64.1 (64.6) 96.6 (96.5)
Fully tuned LLaMA-13B 92.1 (87.4) 98.2 (97.2) 89.5 (86.3) 44.8 (44.7) 80.8 (80.6) 78.9 (78.6)
Conversational LLaMA-13B 92.5 (88.6) 98.4 (97.7) 89.6 (86.6) 57.6 (57.7) 87.5 (87.4) 91.7 (91.6)

Table 1: Unweighted average performance metrics. Results in parenthesis refer to the NER-applicable subset.

Retaining Syntax and Schema. We observe that
already the prefix-tuned bloom model shows some
success in predicting an API component missing
from the utterance if it is deducible from the list
of available APIs (OOD2, OOD3), especially if
decoding is constrained. However, the accuracy
in case of a missing application is much lower.
One can argue that this may be attributed to beam
sampling during left-to-right decoding, as the un-
certainty in the choice of application may result in
the correct beam being removed in the early stages
of decoding.

Retrieval-Augmented Prompting. For further
comparison, we finally implement a RAG-based ap-
proach that leverages the API knowledge graph di-
rectly. To achieve this, we encode all potential API
calls—comprising application, object, and opera-
tion triplets, along with their descriptions—using
pre-trained LLM embeddings for semantic search.
We employ ChromaDB for the semantic search, re-
trieving the top 5 most relevant API call paths based
on the encoded utterance. These retrieve paths are
then provided as potential solutions within a simple
prompt for the LLM.

For the embeddings, we evaluate a fine-tuned
LLaMA-13B model and the sentence transformer
model all-MiniLM-L6-v2 (Reimers et al., 2023).
The sentence transformer model retrieve the cor-
rect API call within the top 5 candidates for 54%
of the utterances, significantly higher than the 20%
achieved using LLaMA-based embeddings. The re-
sults for the retrieval-augmented LLaMA-13B with
sentence transformer for semantic indexing are pre-
sented in Table 1. While the retrieval-augmented
approach exhibit slightly better performance than
simple prompting for in-distribution cases, it was
still outperformed by the fully fine-tuned LLaMA
model and models with constrained decoding.

Potential of Multi-Turn-Prompting LLaMA.
The LLaMA model trained on a combined dataset
of our task-specific data and instructional data
achieve the overall best performance. While
LLaMA exhibits similar tendencies to other uncon-
strained models, where it occasionally generates
non-existent API calls, its conversational capabil-
ities enable interactive corrections. We simulate
a user correcting an ambiguous utterance by re-
prompting the model with the intended component
after an initial prediction. While not directly com-
parable to other approaches due to its interactive
nature, multi-turn prompting with LLaMA yields
significant performance improvements when deal-
ing with ambiguous user requests.

Given the good performance of the fully fine-
tuned LLaMA-13B model, both with and without
the conversational simulation, we opted to forgo
applying constrained decoding in this case, even
though it may further improve schematic and syn-
tactic adherance. Constrained decoding would in-
troduce additional computational overhead, and the
model already achieved satisfactory results without
it. As future work, we plan to investigate the possi-
bility of developing efficient constrained decoding
techniques specifically suited for interactive API
generation with LLaMA-like models.

6 Related Work

Database and knowledge graph querying are well-
known NLP problems, often addressed through
techniques such as NER, relation extraction, and
query generation. These methods typically in-
volve producing graph queries from natural lan-
guage utterances and executing them against graph
databases (Liang et al., 2021; Copestake and Jones,
1990; Krivosheev et al., 2021; Brachman et al.,
2022; Krivosheev et al., 2023). Modern database
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interfaces also employ LLMs for converting user
queries into SQL (Toniato et al., 2023).

Web API search using deep learning models has
been explored by Liu et al. (2020). This work pro-
poses synthetic dataset generation and leverages
deep learning for API integration. However, the ap-
proach relies on substring detection routines, which
can be less flexible than the LLM-based adaptation
presented here. Further, Gorilla (Patil et al., 2023)
is an LLM trained to access APIs for interacting
with ML models on platforms like Torch Hub, Ten-
sorFlow Hub, and HuggingFace. It excels at inter-
acting with individual models but is not specifically
tuned creating flows between APIs.

7 Limitations

A limitation of the proposed approach is that this
work focuses solely on generating flows of API call
triplets. As such, the trained models do not gener-
ate arguments for the API calls (cf. Appendix B).
However, we note that including arguments in a
written utterance is practically rather tedious and a
semi-supervised approach may be better suited to
address this need.

8 Conclusion

This work presents a novel approach to natural
language-driven large-scale API integration using
LLMs. We demonstrate that models trained with
our approach exhibit strong generalization capabil-
ities, both in-distribution and out-of-distribution.
This is evident in their ability to: (a) handle ambi-
guity by leveraging structural knowledge to make
informed decisions when user intent is unclear; (b)
learn domain knowledge by adapting to domain-
specific phrasing and terminology encountered dur-
ing training; and (c) generate unseen flow struc-
tures by utilizing the capability of general-purpose
LLMs, particularly LLaMA, to create novel API
flow compositions that adhere to implicit syntactic
constraints. These findings highlight the potential
of LLMs to streamline API integration tasks.

Broader Impact

This paper presents research about generating API
calls from natural language utterances. To the best
of our knowledge, there are no ethical or negative
societal implications to this work.
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Miłoś. 2024. Focused transformer: Contrastive train-
ing for context scaling. Advances in Neural Informa-
tion Processing Systems, 36.

Gian Wiher, Clara Meister, and Ryan Cotterell. 2022.
On Decoding Strategies for Neural Text Generators.
Transactions of the Association for Computational
Linguistics, 10:997–1012.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong,
Torsten Scholak, Michihiro Yasunaga, Chien-Sheng
Wu, Ming Zhong, Pengcheng Yin, Sida I. Wang, Vic-
tor Zhong, Bailin Wang, Chengzu Li, Connor Boyle,
Ansong Ni, Ziyu Yao, Dragomir Radev, Caiming
Xiong, Lingpeng Kong, Rui Zhang, Noah A. Smith,
Luke Zettlemoyer, and Tao Yu. 2022. UnifiedSKG:
Unifying and multi-tasking structured knowledge
grounding with text-to-text language models. In
EMNLP’22, pages 602–631.

998

https://doi.org/10.18653/v1/2020.emnlp-main.170
https://doi.org/10.18653/v1/2020.emnlp-main.170
https://swagger.io/specification/
https://doi.org/10.1184/R1/6609821.v1
https://doi.org/10.1184/R1/6609821.v1
https://doi.org/10.1184/R1/6609821.v1
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://doi.org/10.5555/3618408.3619699
https://doi.org/10.5555/3618408.3619699
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
https://doi.org/10.1162/tacl_a_00502


A Grammar

For completeness, we show the complete EBNF grammar used for constrained semantic decoding.

Figure 6: Full EBNF of the used API integration grammar.

B Data Generation

We provide a set of examples for each of the described integration flow types.

Description Example Command Example Utterance

Single API Calls slack.message.CREATE, or
servicenow.lead.UPDATED

Send a message in slack, or
Triggers a servicenow lead is deleted.

Trigger + Action slack.message.CREATED
box.folder.UPDATE

When a message is sent in slack, update
a box folder.

Trigger + Action + Ac-
tion

slack.message.CREATED
box.folder.UPDATE
salesforce.Note.UPDATE

When a message is sent in Slack, update
both box folders and salesforce notes.

if-Condition yammer.Message.CREATED if
CONDITION: slack.message.CREATE
else: salesforce.Note.UPDATE

For a new message in yammer, if CON-
DITION, forward it in slack, else update
the corresponding salesforce notes.

for Loop for var in
slack.User.RETRIEVEALL:
trello.Member.CREATE

Create a trello membership for every
slack user

Sync / Move / Copy for comment in
trello.Comment.RETRIEVEALL:
confluence.Comment.CREATE
trello.Comment.DELETEALL

Move all trello comments to confluence.

Table 2: Examples for the in-distribution sample categories.
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Description Example Command Example Utterance

Referencing common
knowledge app aliases

ciscospark.groups.DELETEALL Remove all Webex groups.

Leave out app from ut-
terance, if it should be
clear from the object
and action.

gsheet.spreadsheet.CREATE Create a spreadsheet.

Leave out object from
utterance, if it should be
clear from the app.

slack.message.CREATE Write a slack.

Trigger + Action + Ac-
tion + Action

slack.message.CREATED
box.folder.UPDATE
salesforce.Note.UPDATE
maximo.message.UPDATEALL

When a message is sent in Slack, update
both box folders and salesforce notes
and update all Maximo messages.

Mix of user-Generated
Flows

slack.RawMessage.CREATED
mailchimp.Members.CREATE

Add a Mailchimp subscriber from a
Slack slash command.

Table 3: Examples for the out-of-distribution sample categories.
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