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Abstract

We introduce OMG-QA, a new resource for
question answering that is designed to evaluate
the effectiveness of question answering systems
that perform retrieval augmented generation
(RAG) in scenarios that demand reasoning on
multi-modal, multi-document contexts. These
systems, given a user query, must retrieve rele-
vant contexts from the web, which may include
non-textual information, and then reason and
synthesize these contents to generate a detailed,
coherent answer. Unlike existing open-domain
QA datasets, OMG-QA requires systems to
navigate and integrate diverse modalities and
a broad pool of information sources, making
it uniquely challenging. We conduct a thor-
ough evaluation and analysis of a diverse set of
QA systems, featuring various retrieval frame-
works, document retrievers, document indexing
approaches, evidence retrieval methods, and
LLMs tasked with both information retrieval
and generation. Our findings reveal signifi-
cant limitations in existing approaches using
RAG or LLM agents to address open questions
that require long-form answers supported by
multi-modal evidence. We believe that OMG-
QA will be a valuable resource for develop-
ing QA systems that are better equipped to
handle open-domain, multi-modal information-
seeking tasks.

1 Introduction

Modern question answering systems are explored
within two primary frameworks. The first frame-
work operates under the premise of a limited con-
text, providing all necessary information to answer
queries. This approach, which treats QA as a read-
ing comprehension exercise, assesses the system’s
ability to extract and interpret information from a
given context to formulate responses (Yang et al.,
2015; Rajpurkar et al., 2016; Chen et al., 2017;
Joshi et al., 2017; Kwiatkowski et al., 2019). Al-
though this method offers a detailed examination of

the systems’ comprehension and reasoning skills,
it relies on the availability of chosen context, limit-
ing its applicability in many real-world scenarios
where the context to address the question is not
directly available. The second framework, also
known as open-domain QA, addresses this limita-
tion by requiring the system to source information
from large-scale knowledge sources - such as text
corpora, databases or the Internet - in response to
any user query (Chen et al., 2017; Lee et al., 2019;
Yang et al., 2019; Guu et al., 2020; Lewis et al.,
2020a; Zhu et al., 2021). Typically, these systems
utilize a two-stage design: a retrieval stage that
efficiently identifies broadly relevant contexts from
extensive knowledge sources, and a subsequent
reading stage that mirrors the closed setting. With
advancements in large language models (LLMs),
these systems have primarily benefited the reading
stage, demonstrating enhanced proficiency in inter-
preting and reasoning with the retrieved content.

Enhancing open-domain QA systems presents
two primary challenges. The first challenge in-
volves enhancing retrieval stage using LLMs while
ensuring efficiency and scalability. To tackle this,
several studies have integrated LLMs into retrieval
frameworks through methods like query expansion,
ranking adjustments (Lee et al., 2018; Qi et al.,
2019; Zhang et al., 2020; Mao et al., 2021), or em-
bedding extraction for dense retrieval (Seo et al.,
2019; Nie et al., 2019; Lee et al., 2019; Guu et al.,
2020; Lewis et al., 2020a; Karpukhin et al., 2020;
Khattab et al., 2021). The second challenge is en-
abling QA systems to retrieve and interpret multi-
modal content, such as tables, images, and videos.
Research efforts to address this have included cre-
ating a unified embedding space that allows for
the retrieval and ranking of context across different
modalities (Li et al., 2019; Lu et al., 2019; Herzig
et al., 2020; Yin et al., 2020; Qi et al., 2020; Rad-
ford et al., 2021; Liu et al., 2022).

Although there have been many attempts to ad-
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dress these challenges, there remains a notable gap:
the lack of a comprehensive benchmark captur-
ing the complexities of real-world tasks and can
effectively evaluate these advancements. In re-
sponse, we introduce Open-domain Multi-modal
Generative Question Answering Dataset1 (OMG-
QA). Unlike existing open-domain multi-modal
QA datasets (Chen et al., 2020; Talmor et al., 2021;
Li et al., 2022; Chang et al., 2022) that primar-
ily feature factoid questions (Fu et al., 2020) and
call for concise, single noun-phrase or entity-based
answers, OMG-QA challenges QA systems to re-
trieve and reason across content in various modal-
ities within an open setting, ultimately resulting
in the generation of detailed narratives or explana-
tions. Additionally, we implement various types of
LLM systems, described in Section 3, which are
evaluated by our dataset to assess their ability to
retrieve multi-modal content in an open setting.

2 OMG-QA

We define open-domain multi-modal generative
question answering as the task of producing a long-
form answer a, which is a structured discourse
that presents entities and their relationships in re-
sponse to a question q. This process is based on a
large-scale knowledge source K, from which the
system must retrieve multiple pieces of evidence
e1, e2, . . . , en to substantiate the answer. To ensure
that the systems generate answers grounded in the
retrieved evidence, we also mandate systems to ex-
plicitly cite the evidences used within the answer.
An example of our dataset is provided in Figure 1.

2.1 Question Collection Methods
The task of collecting questions that require the
retrieval of multiple multi-modal evidences from
different documents presents substantial challenges.
Specifically, the identification of multi-modal con-
tent that is relevant and shares a common topic
for question generation is complex. To address
these challenges, we leverage Wikipedia’s exten-
sive and diverse content, which includes texts, ta-
bles, and images, and developed two question col-
lection pipelines.

Pipeline 1: Text and Table Modality This
pipeline processes the Wikipedia dump to se-
lect articles containing substantial text and mul-
tiple tables. Using the OpenAI text embedding

1Our dataset and code can be found at https://github.
com/linyongnan/OMG-QA

model text-embedding-ada-002, we extract em-
beddings for article introductions, and articles with
high cosine similarity are paired. For each pair,
tables with overlapping entities are identified, and
initial questions are generated based on these table
pairs with the aid of GPT-4. These questions are
then revised to incorporate both textual and tabular
content from the articles. The prompts utilized are
provided in Figures 3 and 4 in the Appendix.

Pipeline 2: Integrating Texts, Tables and Im-
ages The second pipeline is designed to incorpo-
rate texts, tables, and images as evidence sources.
We start from a single document and extract its
table of contents, which included all titles of sec-
tions and subsections, and visually represented the
parent-child relationships with structured indenta-
tion (as illustrated in Figure 2). Additionally, we
identify tables and images within each section by
extracting their titles and captions. With this table
of contents, GPT-4 is prompted (see Figure 5 in
the Appendix for the prompt) to generate questions
that required retrieving content from at least two
different modalities within the document.

2.2 Document and Evidence Retrieval
Annotation

The questions from both pipelines yield a set of
primary documents or evidences. To expand these
into a broader set of relevant evidences, a pool-
ing annotation procedure (Buckley and Voorhees,
2004; Voorhees and Tice, 2000; Voorhees, 2002)
is employed. This process unfolds through several
structured steps: 1) Collection of Systems Results:
We deploy various systems, as detailed in section 3,
which execute queries against the entire Wikipedia,
retrieving a preliminary set of documents and ev-
idences; 2) Creation of the Pool: Outputs from
all systems are combined, undergoing a deduplica-
tion process to forge a unified pool of documents
and evidences for each query; 3) Relevance Judg-
ments: The relevance of each pooled evidence to
its corresponding query is evaluated; 4) Evalua-
tion: The collected relevance judgments serve as a
ground truth to evaluate each system’s efficacy.

2.3 Statistics

Utilizing the above question collection pipelines,
we gather a total of 1,000 questions, with each
pipeline contributing 500 questions. Following the
pooling process, we annotated the document and
evidence retrieval tasks, with each question linked
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to an average of 10 relevant documents and 33
pieces of relevant evidence. Table 8 of the Ap-
pendix presents key statistics of our dataset.

3 QA Systems

Constructing an open-domain QA system requires
three fundamental components: an index, a re-
triever, and an answerer. For OMG-QA, we
assume that all QA systems in our study first
retrieve documents from Wikipedia using estab-
lished search APIs. Furthermore, we aim to as-
sess the LLM systems’ capabilities of retrieving
fine-grained content. To this end, we implement
an evidence retrieval process in all our QA sys-
tems, which involves indexing fine-grained content
within documents and deploying corresponding ev-
idence retrievers. Following these two retrieval
steps, the system employs an answerer to aggregate,
reason, and synthesize various pieces of evidence
to produce the final answer. An illustration of our
QA systems is provided in Figure 1.

Module Configurations We benchmark our
dataset against LLM systems that incorporate sev-
eral key modules: query rewriter, document re-
triever, document reranker, evidence indexer, evi-
dence retriever, multi-modal evidence reranker, and
answerer. The implementation of different systems
is primarily distinguished by variations in the con-
figurations of these components:

• Document Retriever: We evaluate the effec-
tiveness of using Wikipedia’s own search API2

versus DuckDuckGo’s search API3, restricted to
Wikipedia content.

• Evidence Indexer: We explore several methods
to index evidence from Wikipedia documents,
utilizing a document parser that structures data
into a tree with section titles as non-leaf nodes
and evidence (text paragraphs, tables, images)
as leaf nodes. We extract each leaf node’s lo-
cation and content, creating dense indexes with
metadata for efficient search. Our three indexing
strategies for multi-modal content include:

– Text-Only Index: Textual representations of
non-textual content are created using titles,
captions, or synthesized text, which are then
embedded for dense retrieval.

2https://www.mediawiki.org/wiki/API:Search
3https://serpapi.com/duckduckgo-search-api

– Textual-Visual Index: Separate indices are
maintained for textual and image evidence, us-
ing respective embedding models for indexing.

– Modality-Specific Index: Distinct indices for
each evidence type are created using modality-
appropriate embedding models.

• Evidence Retriever: We compare four types of
evidence retrievers: sparse, dense, generative and
hybrid. Detailed descriptions of each type can be
found in Section A.1 of the Appendix.

• Additional Modules: Query rewriter, docu-
ment reranker, multi-modal evidence reranker
and answerer tasks are implemented by prompt-
ing LLMs, which perform tasks requiring se-
mantic interpretation of queries, ranking re-
trieved documents or evidences, and synthesiz-
ing final answers with citation attributions. We
have evaluated LLMs including Llama-3-[8,
70b] (Meta LLaMA Team, 2024), Mistral-[7b,
8x7b] (Jiang et al., 2023), GritLM-[7b, 8x7b]
(Muennighoff et al., 2024), GPT-3.5-Turbo, and
GPT-4.

Fusion of Multi-modal Evidences When using
multiple indices, each with unique indexer and re-
triever setups, we initially retrieve top-k evidences
from each index. To integrate these results, non-
textual evidences are transformed into textual for-
mat by extracting or synthesizing titles for tables
and images. These are then embedded using a
unified text embedding model. We re-rank these
evidences by comparing their embeddings’ proxim-
ity to the query’s embeddings, selecting the top-k
for the final evidence retrieval results.

One-round versus Multi-rounds Retrieval We
implemented and evaluated both one-round (RAG)
(Lewis et al., 2020a) and multi-round (LLM Agent)
retrieval strategies. The one-round strategy fol-
lows the procedure depicted in Figure 1 once. Con-
versely, the multi-round strategy employs episodic
memory to record all prior retrieval efforts (Su
et al., 2021; Yao et al., 2023; Zhong et al., 2023;
Lu et al., 2023; Liu et al., 2023), and includes an
evaluation module after each round. This module
determines the adequacy of retrieved evidence and
guides the refinement of subsequent retrieval ef-
forts through feedback. Due to budget limits, we
restrict retrieval to a maximum of three rounds.
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Figure 1: Example of OMG-QA and illustration of modular design of QA systems. Modules in orange color are
implemented with LLMs learned in zero-shot.

4 Experiments

4.1 Evaluation

We employed GPT-4 for the following evaluation
tasks, with prompts shown in Figures 6-8 of the
Appendix: 1) Evidence Relevancy: The evalua-
tor determines whether an evidence is relevant and
should be retrieved given a query; 2) Correct Us-
age of Evidence: The evaluator assesses whether
an answer properly uses all the retrieved evidence
from different documents, ensuring consistency in
content; 3) Citation Completeness: The evaluator
checks if all relevant evidence to any content in the
answer is cited.

After obtaining these evaluations, we calculate
various metrics focusing on different aspects of
each system. Using the relevancy labels of all evi-
dence in the pools of testing instances, we compute
precision (PER), recall (RER), and F1 (F1-ER)
scores for evidence retrieval. Assuming the docu-
ments containing all relevant evidence should be
retrieved, we also calculate precision (PDR), re-
call (RDR), and F1 (F1-DR) scores for document
retrieval. Additionally, we measure Effective Re-
trieval Usage (ERU), the proportion of retrieved
evidence that is both relevant and accurately used
in the generated answer, and Relevance of Used
Evidence (RUE), the proportion of evidence cited
in the answer that is relevant to the question. For
Correct Usage of Evidence (CUE) and Citation
Completeness (CCM), we calculate the percentage
of instances where the evaluator predicts True.

Document
Retrieval

Wikipedia DuckDuckGo

Pre. Rec. F1 Pre. Rec. F1

Llama-3-8b 0.62 0.26 0.32 0.71 0.32 0.40
Llama-3-70b 0.63 0.27 0.34 0.70 0.35 0.41
Mistral-7b 0.61 0.28 0.34 0.71 0.34 0.41
Mistral-8x7b 0.70 0.28 0.37 0.71 0.33 0.40
GritLM-7b 0.55 0.25 0.31 0.66 0.31 0.38
GritLM-8x7b 0.61 0.27 0.33 0.67 0.31 0.37

Table 1: Comparison of performance of systems with
different document retrievers on document retrieval.

4.2 Results
We present the results in Tables 1 to 6, where we
analyze the performance impact of varying specific
system modules while keeping others constant.

Document Retriever We compare the effective-
ness of using Wikipedia’s own search API ver-
sus DuckDuckGo’s search API for document re-
trieval across different LLM configurations. This
comparison takes into account both the quality of
the queries and the document retrieval algorithms
employed. As demonstrated in Table 1, Duck-
DuckGo’s search API consistently provides supe-
rior precision, recall, and F1 scores for document
retrieval.

Document Indexing Strategy Next, we evaluate
the performance of systems utilizing different in-
dexing strategies, namely text-only, textual-visual,
and modality-specific settings. We assess these con-
figurations based on evidence retrieval precision,
recall, and F1 scores. For systems with a text-only
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Evidence Retrieval Text-Only Textual Visual Modality Specific

Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

Llama-3-8b 0.43 0.16 0.19 0.52 0.20 0.24 0.53 0.20 0.24
Mistral-7b 0.43 0.17 0.20 0.52 0.21 0.25 0.51 0.21 0.24
GritLM-7b 0.38 0.15 0.17 0.48 0.19 0.23 0.49 0.19 0.23

Table 2: Comparison of performance of systems with different indexers on evidence retrieval.

Evidence Retrieval Llama-3-8b Mistral-7b GritLM-7b

Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

Sparse 0.38 0.10 0.14 0.35 0.10 0.14 0.31 0.10 0.12
Dense-SFR 0.46 0.20 0.23 0.44 0.21 0.23 0.39 0.18 0.20
Dense-GTE 0.52 0.20 0.24 0.52 0.21 0.23 0.49 0.19 0.23
Dense-Arctic 0.35 0.12 0.15 0.35 0.12 0.15 0.35 0.13 0.15
Generative 0.39 0.12 0.16 0.37 0.13 0.16 0.32 0.11 0.13
Hybrid-SFR 0.45 0.19 0.22 0.52 0.21 0.25 0.39 0.18 0.20
Hybrid-GTE 0.50 0.20 0.24 0.52 0.20 0.24 0.46 0.18 0.21
Hybrid-Arctic 0.34 0.12 0.15 0.39 0.15 0.18 0.31 0.12 0.14

Table 3: Comparison of performance of systems with different text retrievers on evidence retrieval.

index, we report the average scores for various text
retrievers compatible with this indexing approach.
Table 2 shows that multi-index setups outperform
the text-only index in terms of evidence retrieval
for our dataset. This enhanced performance is pri-
marily because our dataset demands the retrieval of
multi-modal evidences, and a multi-index design
facilitates the retrieval of non-textual modalities
more effectively.

Evidence Retriever We then proceed to assess
the performance of systems equipped with differ-
ent text retrievers, comparing setups that utilize
three distinct types of LLMs. Based on the re-
sults shown in Table 3, the sparse retriever ex-
hibits the poorest performance. Both the gener-
ative retriever and the dense retriever using the
snowflake-arctic-embed-l model generally un-
derperform compared to other dense retrievers.
Additionally, hybrid retrievers, which narrow the
search space to specific sections before dense re-
trieval, do not demonstrate any clear advantage
over the corresponding dense retrievers that retrieve
from a broader set of evidences.

LLMs for Retrieval Subsequently, we aim to
evaluate the performance of systems that use dif-
ferent LLMs for document and evidence retrieval.
Table 4 demonstrates the performance outcomes
for document retrieval and evidence retrieval, with
various LLMs and two index and retriever config-
urations. Interestingly, across both indexing and

retrieval settings, the choice of LLM appears to
have a minimal impact on retrieval performance.
The performance disparity between smaller mod-
els like Llama-3-8b and powerful models such as
GPT-4 is negligible. This suggests that other fac-
tors, such as the design of the index or the choice
of retrievers, play a more significant role in influ-
encing performance.

One-round versus Multi-rounds Retrieval We
now evaluate the performance of systems utiliz-
ing either a one-round retrieval or a multi-rounds
retrieval process. The results for document and
evidence retrieval are shown in Table 5. As an-
ticipated, the multi-rounds retrieval process sig-
nificantly enhances the recall for document re-
trieval, thereby improving overall document re-
trieval outcomes. However, this does not necessar-
ily translate to better results in evidence retrieval;
in fact, evidence performance noticeably declines
in some cases. We hypothesize that although re-
trieving a greater number of documents can im-
prove document recall, maintaining the same top-k
for evidence retrieval might introduce a significant
amount of irrelevant evidence. Each subsequent
retrieval round generates new queries for both doc-
ument and evidence retrievals, and the evidences
retrieved in these rounds are ranked according to
the latest queries. This ranking process could in-
advertently displace previously retrieved evidences
that were relevant, resulting in a deterioration of
overall evidence retrieval performance.
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Modality-Specific Indexer Text-Only Indexer w/ Sparse Text Retriever

Document Retrieval Evidence Retrieval Document Retrieval Evidence Retrieval

Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

Llama-3-8b 0.83 0.29 0.40 0.53 0.20 0.24 0.71 0.32 0.40 0.38 0.10 0.14
Llama-3-70b 0.84 0.34 0.44 0.52 0.21 0.24 0.70 0.35 0.41 0.37 0.11 0.14
Mistral-7b 0.86 0.32 0.42 0.51 0.21 0.24 0.71 0.34 0.41 0.35 0.10 0.14
Mistral-8x7b 0.86 0.33 0.43 0.52 0.22 0.25 0.71 0.33 0.40 0.34 0.10 0.14
GritLM-7b 0.84 0.30 0.41 0.49 0.19 0.23 0.66 0.31 0.38 0.31 0.10 0.12
GritLM-8-7b 0.82 0.31 0.41 0.54 0.21 0.25 0.67 0.31 0.37 0.36 0.12 0.14
GPT-35-Turbo 0.81 0.32 0.42 0.50 0.21 0.24 0.69 0.33 0.40 0.38 0.13 0.15
GPT-4 0.87 0.35 0.45 0.53 0.22 0.25 0.71 0.36 0.43 0.38 0.12 0.15

Table 4: Comparison of performance of systems with different LLMs with different indexers and retrievers on
document and evidence retrieval

Document Retrieval Evidence Retrieval

Single-Round Multi-Rounds Single-Round Multi-Rounds

Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

Llama-3-8b 0.83 0.29 0.40 0.81 0.32 0.42 0.53 0.20 0.24 0.50 0.19 0.23
Llama-3-70b 0.84 0.34 0.44 0.81 0.36 0.45 0.52 0.21 0.24 0.51 0.21 0.24
Mistral-7b 0.86 0.32 0.42 0.80 0.36 0.45 0.51 0.21 0.24 0.49 0.21 0.24
Mistral-8x7b 0.86 0.33 0.43 0.81 0.36 0.46 0.52 0.22 0.25 0.46 0.19 0.22
GritLM-7b 0.84 0.30 0.41 0.75 0.38 0.44 0.49 0.19 0.23 0.46 0.20 0.22
GritLM-8-7b 0.82 0.31 0.41 0.77 0.36 0.44 0.54 0.21 0.25 0.46 0.19 0.22
GPT-35-Turbo 0.81 0.32 0.42 0.80 0.35 0.44 0.50 0.21 0.24 0.50 0.20 0.24
GPT-4 0.87 0.35 0.45 0.86 0.30 0.42 0.53 0.22 0.25 0.62 0.16 0.23

Table 5: Comparison of performance of systems with different retrieval strategies on document and evidence
retrieval.

ERU RUE CUE CCM

Llama-3-8b 0.46 0.68 0.33 0.31
Llama-3-70b 0.54 0.69 0.53 0.47
Mistral-7b 0.34 0.67 0.25 0.29
Mistral-8x7b 0.42 0.65 0.44 0.27
GritLM-7b 0.17 0.69 0.60 0.26
GritLM-8-7b 0.36 0.95 1.00 0.27
GPT-35-Turbo 0.54 0.70 0.52 0.45
GPT-4 0.59 0.71 0.59 0.52

Table 6: Comparison of systems with different LLMs on
answer and citation quality evaluation. Abbreviations
in the column headers are explained in Section 4.1.

LLMs for Answer Synthesis Next, we evalu-
ate the performance of systems using different
LLMs based on answer quality and citation quality
metrics. As shown in Table 6, proprietary mod-
els like GPT-3.5-Turbo and GPT-4 excel in ef-
fective retrieval usage and citation completeness,
with Llama-3-70b also delivering competitive re-
sults. However, when it comes to the relevance and
accuracy of attributed evidences in the answers,
GritLM-8x7b clearly outperforms the others.

Overall Configurations Finally, in Table 9 of the
Appendix, we present the aggregated performance
of all systems sorted by averaging the results of 10
evaluation metrics detailed in Section 4.1. We see
that the best-performing QA system configuration
utilizes the DuckDuckGo search API for document
retrieval and employs modality-specific indexing
strategies. It leverages a gte-large-en-v1.5 em-
bedding model for retrieving text and table evi-
dence, CLIP for retrieving image evidence, and in-
tegrates GPT-4 for tasks requiring LLM capabilities.
Additionally, the system incorporates multi-round
retrieval with a memory of retrieval history and a
self-reflection mechanism to utilize feedback for
further enhancing retrieval performance.

4.3 Human Evaluation

We also conduct human evaluations on a subset of
samples from tasks evaluated by GPT-4 to assess
the alignment between human judgments and those
of GPT-4. For the evidence relevancy task, we man-
ually assess the relevance of all evidences in 50
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Evaluation Task Agreement

Evidence Relevancy 96.6%
Correct Usage of Evidences 75.7%
Citation Completeness 65.7%

Table 7: Agreements between judgements made by hu-
man and GPT-4 evaluators on retrieval, answer and cita-
tion evaluation tasks.

instances. For tasks assessing correct evidence us-
age and citation completeness, we randomly select
100 outputs from all system-generated responses
for manual evaluation. As indicated in Table 7,
there is a high level of agreement between human
evaluators and the GPT-4 evaluator.

5 Related Work

5.1 Open-Domain QA

Open-domain question answering systems typi-
cally operate within a Retriever-Reader framework,
where a retriever module identifies relevant docu-
ments, and a reader module employs a language
model to extract the final answer from these docu-
ments (Hermann et al., 2015; Chen et al., 2017;
Nguyen et al., 2017; Kwiatkowski et al., 2019;
Lazaridou et al., 2023). Several studies (Nishida
et al., 2018; Karpukhin et al., 2020; Khattab et al.,
2021) have developed neural retrieval models that
enhance the accuracy of document retrieval using
neural networks. (Lee et al., 2018; Wang et al.,
2018; Nogueira and Cho, 2019) focused on im-
proving OpenQA systems by re-ranking documents
before they are processed by the reader. Other re-
search efforts include iterative document retrieval
(Das et al., 2019; Feldman and El-Yaniv, 2019; Qi
et al., 2019), and training end-to-end OpenQA sys-
tems (Lee et al., 2019; Lewis et al., 2020b; Sachan
et al., 2024).

5.2 Multi-Modal QA

Multi-modal question answering requires retrieving
and processing information from various modali-
ties, often demanding cross-modal reasoning. Sev-
eral benchmarks have been established to test these
capabilities, including Chen et al. (2020); Talmor
et al. (2021); Reddy et al. (2021); Chang et al.
(2021); Singh et al. (2021); Li et al. (2022). Previ-
ous research has focused on different strategies for
integrating these modalities. Some studies have de-
veloped methods for creating joint embeddings of
different modalities (Hannan et al., 2020; Li et al.,

2022; Chen et al., 2022; Yu et al., 2023). Yang
et al. (2023) utilized entity-based fusion models
to align content from disparate modalities. Addi-
tionally, Zhang et al. (2023) proposed using LLMs
to extract and subsequently fuse information from
multiple knowledge sources of different modalities.

6 Conclusion

In this study, we introduce OMG-QA, which chal-
lenges QA systems to retrieve and reason across
text, tables, and images to generate long-form an-
swers. Our experiments reveal that multi-index
setups outperform single index setting in evidence
retrieval, dense retrievers excel over sparse and
generative retrievers, and multi-round retrieval en-
hances document recall but not necessarily evi-
dence relevance in all cases. The choice of LLMs
has minimal impact on retrieval performance; how-
ever, the best retrieval configuration paired with
GPT-4, equipped with memory on retrieval history
and self-reflection, showed superior results in over-
all evaluations. These findings emphasize the im-
portance of integrating multi-modal content and so-
phisticated retrieval strategies in developing more
capable QA systems, positioning OMG-QA as a
robust benchmark for future advancements.

Limitation

Due to the open-ended nature of our questions,
some might be solvable using information from a
single modality, challenging the presumed neces-
sity for a multi-modal approach.

There are inherent limitations when employing
GPT-4 to assess evidence relevance. Human an-
notators, without knowing the final answers, ini-
tially gather what they consider potentially relevant
evidence for multi-hop questions. This initiates
a dynamic process in which the evidence pool is
continuously adjusted - irrelevant evidence is dis-
carded, and pertinent evidence is enhanced as more
information becomes available. Conversely, GPT-4
evaluates evidence in isolation, without the capabil-
ity to update its assessments based on new insights.
This static approach can result in a greater tendency
to overlook relevant evidence.

Acknowledgments

We are grateful for the compute support provided
by the Microsoft Research’s Accelerate Foundation
Models Research (AFMR) program and Google’s
TRC program.

1007



References
Chris Buckley and Ellen M. Voorhees. 2004. Retrieval

evaluation with incomplete information. In Proceed-
ings of the 27th Annual International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’04, page 25–32, New York,
NY, USA. Association for Computing Machinery.

Yingshan Chang, Mridu Narang, Hisami Suzuki, Gui-
hong Cao, Jianfeng Gao, and Yonatan Bisk. 2021.
Webqa: Multihop and multimodal QA. CoRR,
abs/2109.00590.

Yingshan Chang, Mridu Narang, Hisami Suzuki, Gui-
hong Cao, Jianfeng Gao, and Yonatan Bisk. 2022.
Webqa: Multihop and multimodal qa. Preprint,
arXiv:2109.00590.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading Wikipedia to answer open-
domain questions. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1870–1879,
Vancouver, Canada. Association for Computational
Linguistics.

Wenhu Chen, Hexiang Hu, Xi Chen, Pat Verga,
and William Cohen. 2022. MuRAG: Multimodal
retrieval-augmented generator for open question an-
swering over images and text. In Proceedings of
the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 5558–5570, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong,
Hong Wang, and William Yang Wang. 2020. Hy-
bridQA: A dataset of multi-hop question answering
over tabular and textual data. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020,
pages 1026–1036, Online. Association for Computa-
tional Linguistics.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer,
and Andrew McCallum. 2019. Multi-step retriever-
reader interaction for scalable open-domain question
answering. CoRR, abs/1905.05733.

Yair Feldman and Ran El-Yaniv. 2019. Multi-hop para-
graph retrieval for open-domain question answering.
In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 2296–
2309, Florence, Italy. Association for Computational
Linguistics.

Bin Fu, Yunqi Qiu, Chengguang Tang, Yang Li,
Haiyang Yu, and Jian Sun. 2020. A survey
on complex question answering over knowledge
base: Recent advances and challenges. Preprint,
arXiv:2007.13069.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: retrieval-
augmented language model pre-training. In Proceed-
ings of the 37th International Conference on Machine
Learning, ICML’20. JMLR.org.

Darryl Hannan, Akshay Jain, and Mohit Bansal. 2020.
Manymodalqa: Modality disambiguation and QA
over diverse inputs. CoRR, abs/2001.08034.

Karl Moritz Hermann, Tomáš Kočiský, Edward Grefen-
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A Appendix

A.1 Evidence Retriever Configuration

We compare four types of evidence retrievers, each
suited to specific indexing configurations:
• Sparse Retriever: Utilizes a BM25 retriever

(Robertson and Zaragoza, 2009) to extract top-k
textual evidences from a text-only index.

• Dense Retriever: Employs various text-
embedding models to retrieve top-k evidences
from both the text-only and corresponding text in-
dex in multi-index settings. Specifically, we used
SFR-Embedding-Mistral4 (Rui Meng, 2024),

4https://huggingface.co/Salesforce/
SFR-Embedding-Mistral

gte-large-en-v1.55 (Li et al., 2023), and
snowflake-arctic-embed-l6 (Merrick et al.,
2024). For images, we use the CLIP model7

(Radford et al., 2021), and for tables, we use the
gte-large-en-v1.5 model to build and retrieve
from their respective indices.

• Generative Retriever: Extracts a table of con-
tents from a document (excluding explicit men-
tions of tables and images) and prompts LLMs
to predict relevant (sub)sections in order of po-
tential relevancy, focusing on nodes closer to leaf
nodes to minimize the volume of evidence re-
trieved. Top-k evidences are then selected based
on predicted relevancy.

• Hybrid Retriever: Combines the generative and
dense retrievers by using the generative approach
to identify potentially relevant (sub)sections, fol-
lowed by dense retrieval to rank and finalize the
top-k evidences within the predicted sections.

Property Value

Dataset Size 1,000
Question Length (Median/Avg) 37.4
No. Documents Relevant per Question 10.4
No. Evidences Relevant per Question 33.4
Percentage of questions that involve 3 modalities 40%
Percentage of questions that involve 2 modalities 60%

Modality Distribution of Evidences
Text 74.6%

Table 13.2%
Image 12.1%

Table 8: OMG-QA Statistics

5https://huggingface.co/Alibaba-NLP/
gte-large-en-v1.5

6https://huggingface.co/Snowflake/
snowflake-arctic-embed-l

7https://github.com/openai/CLIP/blob/main/
model-card.md

1011

https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.18653/v1/2023.findings-acl.292
https://doi.org/10.18653/v1/2023.findings-acl.292
https://doi.org/10.18653/v1/2023.findings-emnlp.85
https://doi.org/10.18653/v1/2023.findings-emnlp.85
https://doi.org/10.18653/v1/2023.findings-emnlp.85
https://api.semanticscholar.org/CorpusID:221739280
https://api.semanticscholar.org/CorpusID:221739280
https://arxiv.org/abs/2305.10250
https://arxiv.org/abs/2305.10250
https://arxiv.org/abs/2101.00774
https://arxiv.org/abs/2101.00774
https://huggingface.co/Salesforce/SFR-Embedding-Mistral
https://huggingface.co/Salesforce/SFR-Embedding-Mistral
https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5
https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5
https://huggingface.co/Snowflake/snowflake-arctic-embed-l
https://huggingface.co/Snowflake/snowflake-arctic-embed-l
https://github.com/openai/CLIP/blob/main/model-card.md
https://github.com/openai/CLIP/blob/main/model-card.md


Background [9]
Procedure [10]
Simultaneous elections [14]

Nominations [16]
Democratic Party [20]
Republican Party [24]
Libertarian Party [30]

[table] 2020 Libertarian Party ticket [32]
Green Party [34]

[table] 2020 Green Party ticket [36]
General election campaigns [38]

Ballot access [39]
Party conventions [41]
Issues unique to the election [46]

Impeachment [47]
Effects of the COVID-19 pandemic [50]

[image] States and territories with at least one local, state, or
federal primary election date or method of voting altered
as of August 5, 2020. [51]

[image] A poll worker sanitizes an election booth in Davis,
California [53]

Foreign interference [60]
Trump's potential rejection of election results [68]
Election delay suggestion [71]
Postal voting [73]

[image] Chart of July 2020 opinion survey on likelihood of voting
by mail in November election, compared to 2016 [74]

Federal Election Commission issues [79]
Supreme Court vacancy [81]

[image] President Donald Trump with Amy Coney Barrett and her family,
just prior to Barrett being announced as the nominee,
September 26, 2020 [82]

Pre-election litigation [85]
Debates [87]

[table] Debates for the 2020 U.S. presidential election sponsored by
the CPD [94]

Polling [96]
Two-way [97]

[table] Polling aggregates [99]
[table] Donald Trump vs. Joe Biden [101]

Four-way [102]
[table] Donald Trump vs. Joe Biden vs. Jo Jorgensen vs.

Howie Hawkins [104]
Swing states [105]

Endorsements [109]
Total cost estimate [110]

Campaign issues [112]
COVID-19 pandemic [113]
(Further text omitted for brevity)

Figure 2: Example of table of content representation of the Wikipedia page https://en.wikipedia.org/wiki/
2020_United_States_presidential_election. Numbers represent the node ids that are used to locate contents
in a document.
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[
{"system": "You are a question designer that develop questions by stages. You update your
question based on the previous question and the new material given by the user at each stage.
Now begin!"}
{"user": "Generate a question that requires complex analyses and syntheses (ex. multihop)
of information in the material. The question should be concrete enough to have only one
single-fact objective answer. Questions asking 'impact', 'factors', 'reason' etc are considered
too general and undesired. The answer to the question should be able to be determined from
the following material:\n\n{material_1}"}

]

Figure 3: Prompt used for the initial question generation of Pipeline 1.

[
{"system": "You are a question designer that develop questions by stages. You update your
question based on the previous question and the new material given by the user at each stage.
Now begin!"}
{"user": "Generate a question that requires complex analyses and syntheses (ex. multihop)
of information in the material. The question should be concrete enough to have only one
single-fact objective answer. Questions asking 'impact', 'factors', 'reason' etc are considered
too general and undesired. The answer to the question should be able to be determined from
the following material:\n\n{material_1}"},
{"assistant": "{initial_question}"},
{"user": "Now I have one more material: \n\n{material_2}\n\nPlease update your
question so that the new question:\n1. Uses both the information in the previous question
and in the new material provided;\n
2. The new question should also have only one objective correct answer, so avoid general
questions about relation, impact, etc."}

]

Figure 4: Prompt used for the question revision of Pipeline 1.

Wikipedia page
{page_name}

Table of content:
{table_of_content}

Task: Given the above Wikipedia page table of contents and basic information of the tables and
images, generate a list of questions that require retrieving information from at least two different
modalities (e.g., text, table, image) to formulate an answer. For each question, also indicate which
section in the table of contents, which table and which image the question is referring to.

Figure 5: Prompt used for Pipeline 2 question generation.

Task: Determine if the provided evidence contains useful information to answer the given question.

Question:
{question}

Evidence:
From Document - {document_title}

'''
{evidence}
'''

Instructions: Review the question and evidence. If the evidence provides useful information for
answering the question, respond with a single letter "Y" for Yes. If it does not, respond with
a single letter "N" for No. Do not include any explanation or additional text in your response.

Your Answer:

Figure 6: Prompt used for the evidence relevancy evaluation task.
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Your task is to evaluate whether the answer provided properly cites the specific evidence
excerpts given from different documents. Assess only the accuracy of the citations related
to the provided evidence excerpts, reflecting their content as presented in the original
documents. If there is inconsistent content between how the evidence is cited in the answer and
the content of the original evidence, this is an example of not properly using the evidence.
Ignore any additional evidence mentioned in the answer that is not among the provided excerpts.
Your response should be strictly limited to either 'Y' for Yes, if all provided evidences are
accurately cited, or 'N' for No, if any of the provided evidences are inaccurately cited.
Do not include any explanations or additional text—only the letter 'Y' or 'N' is required.

Question: {question}

Evidences:
{evidences}

Answer:
{answer}

Your Evaluation:

Figure 7: Prompt used for the correct usage of evidences (CUE) evaluation task.

Your task is to evaluate the citation completeness of the provided answer. Determine whether
all evidences that are relevant to any content in the answer are cited. Assess if every piece
of information in the answer that requires support from documents has a corresponding, properly
cited evidence mentioned. Your response should strictly be 'Y' for Yes if every relevant piece
of evidence is cited in the answer, or 'N' for No if any relevant evidence is missing or not cited.
Do not include any explanations or additional text—only the letter 'Y' or 'N' is required
as a response.

Question: {question}

Evidences:
{evidences}

Answer:
{answer}

Your Evaluation:

Figure 8: Prompt used for the citation completeness (CCM) evaluation task.
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Document
Retriever Indexer Evidence

Retriever LLM Retrieval
Strategy

DR
P/R/F1

ER
P/R/F1 ERU/RUE CUE/CCM Avg

D MS
te, tae-gte

ie-clip
GPT-4 MR 0.859/0.3/0.417 0.616/0.158/0.226 0.656/0.759 0.681/0.472 0.514

D MS
te, tae-gte

ie-clip
GritLM-8x7b SR 0.824/0.311/0.408 0.539/0.214/0.25 0.365/0.95 1.0/0.27 0.513

D MS
te, tae-gte

ie-clip
GPT-4 SR 0.869/0.349/0.453 0.526/0.219/0.251 0.591/0.707 0.588/0.52 0.507

D MS
te, tae-gte

ie-clip
GPT-35-turbo MR 0.8/0.35/0.439 0.502/0.201/0.237 0.506/0.699 0.556/0.54 0.483

D MS
te, tae-gte

ie-clip
Llama-3-70b SR 0.843/0.337/0.437 0.521/0.211/0.245 0.545/0.686 0.53/0.47 0.482

D MS
te, tae-gte

ie-clip
Mistral-8x7b MR 0.814/0.357/0.455 0.46/0.186/0.219 0.53/0.681 0.588/0.44 0.473

D MS
te, tae-gte

ie-clip
GPT-35-turbo SR 0.815/0.323/0.417 0.5/0.212/0.239 0.543/0.697 0.521/0.45 0.472

D MS
te, tae-gte

ie-clip
Llama-3-70b MR 0.81/0.358/0.451 0.513/0.207/0.243 0.527/0.699 0.434/0.42 0.466

D MS
te, tae-gte

ie-clip
GritLM-8x7b MR 0.768/0.357/0.444 0.459/0.191/0.219 0.396/0.628 0.833/0.28 0.457

D TO h-gte Mistral-7b SR 0.811/0.338/0.425 0.524/0.196/0.238 0.352/0.667 0.536/0.32 0.441
D TO h-sfr Mistral-7b SR 0.787/0.353/0.433 0.522/0.208/0.249 0.347/0.717 0.361/0.42 0.44

D MS
te, tae-gte

ie-clip
Mistral-8x7b SR 0.861/0.326/0.43 0.517/0.216/0.247 0.424/0.648 0.438/0.27 0.438

D TO s GPT-4 SR 0.714/0.363/0.425 0.375/0.117/0.148 0.712/0.587 0.382/0.48 0.43
D TO h-gte GritLM-7b SR 0.793/0.305/0.396 0.459/0.182/0.212 0.465/0.786 0.5/0.18 0.428
D TO h-sfr Llama-3-8b SR 0.79/0.324/0.42 0.449/0.191/0.216 0.53/0.635 0.375/0.344 0.428

D MS
te, tae-gte

ie-clip
Llama-3-8b SR 0.83/0.295/0.397 0.526/0.2/0.241 0.455/0.677 0.333/0.312 0.427

D TO te-sfr Llama-3-8b SR 0.809/0.32/0.421 0.463/0.202/0.229 0.534/0.624 0.175/0.49 0.427
D TO te-sfr Mistral-7b SR 0.817/0.345/0.434 0.44/0.207/0.226 0.359/0.604 0.344/0.49 0.427

D MS
te, tae-gte

ie-clip
Llama-3-8b MR 0.814/0.324/0.42 0.505/0.194/0.23 0.463/0.653 0.333/0.295 0.423

D TO s GPT-35-turbo SR 0.685/0.334/0.4 0.381/0.126/0.153 0.724/0.643 0.385/0.39 0.422
D TO te-gte GritLM-7b SR 0.817/0.316/0.415 0.492/0.189/0.227 0.488/0.667 0.375/0.23 0.422
D TO te-gte Mistral-7b SR 0.842/0.335/0.433 0.524/0.213/0.246 0.299/0.592 0.3/0.43 0.421
D TO te-gte Llama-3-8b SR 0.827/0.298/0.403 0.527/0.2/0.241 0.431/0.715 0.312/0.24 0.419

D TI
te-gte
ie-clip

GritLM-7b SR 0.826/0.328/0.429 0.479/0.191/0.228 0.489/0.75 0.2/0.27 0.419

D MS
te, tae-gte

ie-clip
GritLM-7b SR 0.839/0.305/0.411 0.493/0.191/0.229 0.171/0.686 0.6/0.26 0.419

D TI
te-gte
ie-clip

Llama-3-8b SR 0.815/0.304/0.407 0.522/0.197/0.238 0.434/0.639 0.286/0.292 0.413

D MS
te, tae-gte

ie-clip
Mistral-7b SR 0.855/0.318/0.42 0.513/0.207/0.24 0.335/0.673 0.25/0.29 0.41

D MS
te, tae-gte

ie-clip
Mistral-7b MR 0.8/0.355/0.445 0.488/0.207/0.236 0.281/0.621 0.294/0.33 0.406

D TI
te-gte
ie-clip

Mistral-7b SR 0.837/0.336/0.434 0.523/0.212/0.245 0.324/0.521 0.333/0.29 0.406

D TO te-sfr GritLM-7b SR 0.78/0.323/0.413 0.393/0.178/0.2 0.544/0.8 0.167/0.22 0.402

D MS
te, tae-gte

ie-clip
GritLM-7b MR 0.754/0.376/0.444 0.456/0.195/0.221 0.417/0.917 0.0/0.22 0.4

D TO h-gte Llama-3-8b SR 0.801/0.31/0.406 0.502/0.201/0.232 0.41/0.679 0.205/0.25 0.4
D TO s Llama-3-70b SR 0.701/0.348/0.411 0.369/0.106/0.139 0.71/0.601 0.27/0.33 0.399
D TO s Mistral-8x7b SR 0.707/0.334/0.405 0.339/0.105/0.135 0.644/0.624 0.422/0.21 0.393
D TO g Mistral-7b SR 0.875/0.253/0.345 0.368/0.128/0.158 0.455/0.651 0.417/0.27 0.392
D TO g GritLM-7b SR 0.809/0.224/0.309 0.317/0.111/0.133 0.553/0.738 0.5/0.14 0.383
W TO s Llama-3-70b SR 0.634/0.275/0.341 0.365/0.115/0.143 0.711/0.587 0.328/0.271 0.377
W TO s Mistral-8x7b SR 0.705/0.285/0.37 0.376/0.129/0.156 0.601/0.616 0.263/0.194 0.369
D TO s GritLM-7b SR 0.657/0.315/0.384 0.308/0.098/0.12 0.548/0.575 0.4/0.15 0.355
W TO s Mistral-7b SR 0.605/0.28/0.339 0.335/0.101/0.127 0.515/0.557 0.424/0.245 0.353
D TO s Mistral-7b SR 0.71/0.34/0.411 0.353/0.101/0.135 0.427/0.553 0.25/0.24 0.352
D TO s Llama-3-8b SR 0.709/0.319/0.399 0.377/0.098/0.139 0.608/0.496 0.167/0.188 0.35
D TO s GritLM-8x7b SR 0.674/0.309/0.375 0.36/0.117/0.143 0.304/0.539 0.5/0.16 0.348
D TO g Llama-3-8b SR 0.871/0.202/0.299 0.394/0.123/0.157 0.446/0.507 0.269/0.198 0.347
D TO h-sfr GritLM-7b SR 0.77/0.308/0.397 0.39/0.181/0.199 0.305/0.429 0.25/0.2 0.343
W TO s Llama-3-8b SR 0.62/0.265/0.325 0.329/0.105/0.135 0.674/0.523 0.125/0.226 0.333
W TO s GritLM-7b SR 0.554/0.249/0.306 0.323/0.084/0.118 0.5/0.5 0.5/0.082 0.322
W TO s GritLM-8x7b SR 0.606/0.267/0.327 0.332/0.107/0.133 0.444/0.494 0.25/0.152 0.311
D TO h-arctic Mistral-7b SR 0.757/0.342/0.421 0.393/0.154/0.179 0/0 0/0.15 0.24
D TO te-arctic Mistral-7b SR 0.759/0.342/0.42 0.345/0.115/0.147 0/0 0/0.19 0.232
D TO te-arctic Llama-3-8b SR 0.769/0.32/0.409 0.355/0.119/0.152 0/0 0/0.188 0.231
D TO te-arctic GritLM-7b SR 0.743/0.322/0.403 0.349/0.125/0.153 0/0 0/0.07 0.216
D TO h-arctic Llama-3-8b SR 0.754/0.312/0.396 0.342/0.125/0.152 0/0 0/0.062 0.214
D TO h-arctic GritLM-7b SR 0.757/0.303/0.388 0.308/0.117/0.136 0/0 0/0.1 0.211

Table 9: System Ranking by Average Evaluation Results. D - DuckDuckGo Search API, W - Wikipedia Search API,
TO - text-only indexer, TI - text-image indexer, MS - modality-specific indexer, s - sparse retriever, g - generative
retriever, h - hybrid retriever, te - text embedding, ie - image embedding, tae - table embedding, SR - single-round,
MR - multi-rounds
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