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Abstract

Large language models (LLMs) have demon-
strated remarkable capabilities; however, op-
timizing their prompts has historically prior-
itized performance metrics at the expense of
crucial safety and security considerations. To
overcome this shortcoming, we introduce "Sur-
vival of the Safest" (SoS), an innovative multi-
objective prompt optimization framework that
enhances both performance and security in
LLMs simultaneously. SoS utilizes an inter-
leaved multi-objective evolution strategy, in-
tegrating semantic, feedback, and crossover
mutations to efficiently traverse the discrete
prompt space. Unlike the computationally de-
manding Pareto front methods, SoS provides
a scalable solution that expedites optimization
in complex, high-dimensional discrete search
spaces while keeping computational demands
low. Our approach accommodates flexible
weighting of objectives and generates a pool
of optimized candidates, empowering users to
select prompts that optimally meet their spe-
cific performance and security needs. Experi-
mental evaluations across diverse benchmark
datasets affirm SoS’s efficacy in delivering high
performance and notably enhancing safety and
security compared to single-objective methods.
This advancement marks a significant stride to-
wards the deployment of LLM systems that are
both high-performing and secure across varied
industrial applications.

1 Introduction

Large language models (LLMs) have demon-
strated impressive capabilities in a variety of fields
(Bubeck et al., 2023; Yang et al., 2023). Neverthe-
less, their outputs can differ substantially depend-
ing on the phrasing of the input prompt, even when
employing the same model (Pryzant et al., 2023;
Honovich et al., 2022; Zhou et al., 2023; Fernando

*Corresponding Author. The source code and dataset are
ready to be publicly available.

et al., 2023). In response to this challenge, recent
studies have developed a range of techniques for au-
tomatically generating optimal prompts. These in-
clude gradient-based methods, evolutionary strate-
gies, reinforcement learning (RL) approaches, and
fine-tuning practices (Chen et al., 2023; Pryzant
et al., 2023; Zhou et al., 2023; Deng et al., 2022; Li
et al., 2023). Considering the complexity of natural
language and the intricacy involved in optimiza-
tion (Yang and Li, 2023a; Cui et al., 2024), these
techniques typically focus on optimizing a single
metric such as performance accuracy.
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Task description

Please analyze the following statements and 
determine their overall sentiment as either 
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Figure 1: Overview of SoS: a novel framework for se-
cure multi-objective prompt optimization.

While optimizing prompts for a specific ob-
jective often improves performance, this method
can introduce substantial safety and security con-
cerns when implemented in real-world applications
(Zhou et al., 2024). Developing robust prompts
that can resist adversarial attacks, such as prompt
injection and privacy leakage, is crucial (Liu et al.,
2024; Zhou et al., 2024; Yuan et al., 2024). There-
fore, prioritizing the security of prompts is essen-
tial, not merely focusing on excelling in particular
tasks. This is especially true in sensitive fields like
finance, healthcare, criminal justice, and social ser-
vices (Paulus et al., 2024; Yao et al., 2024). The
growing awareness of potential safety risks linked
with LLMs has led to heightened attention from
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both researchers and industry practitioners (Li et al.,
2024; Wei et al., 2024). This perspective leads to
critical questions regarding the current prompt op-
timization framework: (1) How can we ensure that
optimized prompts meet safety and security stan-
dards? (2) Is it possible to optimize performance
and safety/security objectives simultaneously?

To address the critical questions, we introduce
SoS, an innovative and efficient framework that is
designed for multi-objective prompt optimization
to enhance task performance and safety/security si-
multaneously. As depicted in Fig. 1, our approach,
SoS, combines both the performance (e.g., Key Per-
formance Indicators (KPI)) and the security/safety
objectives within a continuous evolutionary loop,
which involves initialization, semantic mutation,
feedback mutation, crossover mutation, and final
selection. Compared to single-objective optimiza-
tion that only focuses on KPI, our formulation not
only advances the exploration of creative instruc-
tion prompts but also elevates safety standards, thus
ensuring a higher level of security. Consequently,
SoS provides a viable solution for deploying opti-
mized and secure instruction prompts, alleviating
safety concerns in productions.

Unlike Pareto front approaches (Yang and Li,
2023b; Baumann and Kramer, 2024) which are
computationally intensive, our proposed SoS frame-
work focuses on building a scalable approach
that accelerates multi-objective prompt optimiza-
tion in high-dimensional discrete search spaces
while minimizing computational costs. Specif-
ically, SoS leverages evaluation data from exist-
ing candidates to perform targeted enhancements
through feedback-based operators, as opposed to
traditional evolutionary algorithms that randomly
mutate new candidates. This targeted approach
addresses specific deficiencies and facilitates ac-
celerated convergence. To maintain equilibrium
among different objectives, SoS employs an inter-
leaved methodology that allows for early integra-
tion. This approach alternates between objectives,
ensuring each one receives adequate attention for
improvement without deviating excessively from
the intended balance. Additionally, SoS introduces
a local optimal selection strategy to balance selec-
tion across various objectives, incorporating prior
knowledge about these objectives into the optimiza-
tion process. In short, our core contributions are:

• Identify the critical issues surrounding safety and
security in prompt optimization and formulate

the problem as a multi-objective optimization
challenge.

• Introduce a novel and efficient framework, SoS,
designed to simultaneously optimize both perfor-
mance and security objectives through an inter-
leaved exhaustive evolution strategy.

• Demonstrate the effectiveness of our approach
using various benchmark datasets, ensuring the
deployment of high-performance and secure
LLM systems in production environments.

2 Problem Formulation

Prompt Optimization (PO). Considering the
task T specified by a dataset D = (Q,A) of in-
put/output pairs, the LLM L produces the corre-
sponding output A via prompting with the concate-
nation of prompt p and a given input Q, i.e., [p;Q].
The objective of prompt optimization is to design
the best natural language prompt p∗ that maximizes
the performance of L on T .

Multi-objective PO. Multi-objective prompt op-
timization extends the above concept to scenarios
across multiple objectives. Instead of seeking ex-
pensive Pareto-frontiers, we formulate the optimal
prompt p∗ that performs best across these objec-
tives O by assigning specific weights W and maxi-
mizing the weighted sum of the metric function F
across all objectives,

p∗ = argmax
p∈X

E(Q,A)[

n∑

i=1

wi · fi(p)], (1)

where {w1, ..., wn} ∈ W are the specific weights
of different objectives {o1, ..., on} ∈ O such that∑n

i=1wi = 1, wi ≥ 0, and {f1, ..., fn} ∈ F are
the specific metric function to evaluate each of
objectives. X denotes the high-dimensional sample
space for a natural language prompt.

Secure Multi-objective PO. Specifically, we ad-
dress our target problem by searching for the opti-
mal and secure prompt p∗s given L that maximizes
the performance towards a metric function K ∈ F
(e.g., KPI) without safety concerns, measured by
a score function S ∈ F . This can be formally de-
fined as the weighted sum of the metric function
across both objectives, formulated as:

p∗s = argmax
p∈X

E(Q,A) [w1 · K(p) + w2 · S(p)] ,
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Figure 2: Overall depiction of our prompt evolution process. Semantic mutation involves generating multiple
variants of the initial seed prompt to kickstart evolution. Security and KPI mutation are the two feedback mutators
that generate one mutated variant of every prompt, doubling the population. Then the selection process rejects all
prompts that are not locally optimal and the rest proceed to the next stage. Crossover mutation is employed to
further blend and balance different objectives before picking up the final pool of optimal candidates.

where w1 and w2 are the weights to balance two
objectives. The KPI objective denotes task-related
performance, typically evaluated by accuracy met-
rics such as f1 score, precision, recall, etc, while
the Security objective involves safety concerns, in-
cluding prompt injection, jailbreaks, leakage, etc.
We employ the MD-Judge evaluator model which
is an LLM-based safeguard, fine-tuned on top of
Mistral-7B (Li et al., 2024)1.

3 SoS: Survival of the Safest

Our proposed SoS framework leverages evolution-
ary principles to iteratively refine a set of prompts,
aiming to discover solutions that excel across mul-
tiple, potentially orthogonal objectives. SoS com-
prises phases from prompt initialization, evolution
mutation (semantic, feedback, and crossover), and
selection, as shown in Fig. 2.

3.1 Evolution Operators
We introduce three mutation operators that are used
in the SoS framework:

Semantic Operator: It is a function operator OS

for introducing controlled lexical variations into
the existing candidate prompts while preserving
the semantic meaning, see the meta-prompt details
in Table 10 in Appendix.

Feedback Operator: It typically consists of two
LLM functional agents: a feedback generator,
which analyzes past mistakes and provides im-
provement suggestions, and an feedback improver,
which utilizes these suggestions to generate new
candidates. In the multi-objective setting, each

1https://huggingface.co/OpenSafetyLab/
MD-Judge-v0.1

objective should have its dedicated feedback gen-
erator, allowing users to inject prior knowledge of
how to succeed in this objective into the process.
Specifically, we define two feedback operators: (1)
security feedback operator OS

F and (2) KPI feed-
back operator OK

F . More details about the defini-
tion can be found in Table 7-9 in Appendix.

Crossover Operator: It is a function operator
OC that takes two parent candidates to generate
a new offspring candidate that shares traits from
both parents, with potential superior performance.
Example prompts can be found in Table 6.

3.2 SoS Framework

Prompt Initialization. SoS starts with a sim-
ple prompt as its initial input, which allows users
to incorporate prior information or human-expert
knowledge. Then SoS employs semantic mutation
operator OS to generate a batch of random candi-
date prompts, aiming to enhance diversity while
preserving the original intent. We select the better
initial prompt as the starting point, to accelerate the
convergence of subsequent optimization steps.

Prompt Selection. Prompt selection is responsi-
ble for identifying a subset of promising prompts
for further refinement. Rather than applying evolu-
tionary steps to the entire population set, we strate-
gically select a subset of locally optimal prompts.
This approach focuses computational resources on
the most promising candidates, promoting efficient
exploration of the prompt, and maintaining a bal-
ance between optimizing each objective and steer-
ing towards the final target state.

Definition 1. Locally-optimal Prompt: A prompt
p∗ is defined as locally optimal with respect to
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an objective o′ if it achieves the best performance
on o′ among all prompts that exhibit similar per-
formance across all other objectives in O. For-
mally, let fo(p) denote the performance of prompt
p on the objective o, δ be a predefined threshold,
and P represent the set of all possible prompts. A
prompt p∗ is considered locally optimal for objec-
tive o′ if: fo′(p

∗) ≥ fo′(p), ∀p ∈ P such that∑
o ̸=o′ |fo(p)− fo(p

∗)| < δ.

The above definition ensures that p∗ is the best-
performing prompt for objective o′ among those
with similar performance on other objectives, con-
trolled by the threshold δ. By selecting only locally
optimal prompts for the next generation, SoS en-
sures efficient optimization during the selection
phase after each evolutionary step.

Security

KPI

Crossover

KPISecurity

(a) Exhaustive

(c) Parallel

Security

KPI

Crossover

(b) Sequential

Crossover

Evolution strategy

Figure 3: (left) Overview of evolution strategies. The
dotted lines indicate that the enclosed block is run multi-
ple times until convergence. (right) Candidate evolution
from initialization, and feedback to crossover mutation
through iteration on the Disambiguation QA task.

Prompt Evolution. As shown in Fig.2, we pro-
pose to utilize feedback mutations ( OS

F , OK
F ) re-

peatedly in an interleaved manner for each objec-
tive until there is no performance gain, defined as
an improvement above a threshold δf for the best
candidate. We named this strategy as exhaustive-
interleaved evolution that ensures sufficient opti-
mization for each objective. The interleaved pat-
tern allows objectives to build on top of each other,
achieving a balanced optimization towards the tar-
get state. Fig. 3 (right) shows the evolution of KPI
and security objectives during iteration through
exhaustive-interleaved strategy.

Beyond the exhaustive-interleaved evolution,
we also investigate two possible alternatives for
comparison: (1) Sequential-interleaved evolution,
shown in Figure 3-left-(b), that employs feedback
mutator interactively to optimize security and KPI
in turn without running to convergence for each

objective. This way may result in unstable perfor-
mance gain due to insufficient improvement op-
portunities. (2) Parallel evolution, shown in Fig-
ure 3-left-(c) that optimizes each objective inde-
pendently and in parallel, with populations sub-
sequently cross-mutated. This method resulted
in unbalanced outcomes, failing to achieve multi-
objective optimization. We provide the algorithm
details of SoS with exhaustive-interleaved strategy
in Algorithm 1.

Algorithm 1: SoS Algorithm
//Requirements:
Initial prompt p0, a set of specific
objectives O : {o1, . . . , on} and their
weights W : {w1, . . . , wn}, dataset D,
score function K and S, base LLM L,
thresholds δ, δf

//Initialization:
C ← SemanticMutation(L, p0)
C ← LocalOptimalSelection(C)
//Interleaved-exhaustive Evolution:
for o ∈ O do

while continue do
C′ ← FeedbackMutate(C,L, o)
pg ← PerformanceGain(C′, C,W,K,S)
continue← (pg > δf )
C ← C ∪ C′

C ← LocalOptimalSelection(C, δ)

C′ ← CrossOverMutation(C,L)
C ← C ∪ C′

C ← LocalOptimalSelection(C, δ)
return C //optimal candidate pool

Weighted Evaluation. To ensure the final can-
didate meets the prioritized configuration of each
objective, SoS implements a weight-based evalua-
tion system. This system computes a holistic score
for a candidate, representing its performance across
all objectives, calculated by using Eq. (2). The de-
fault setting is the equal weight for each objective
and reports the top-K (K=5) candidates by rank-
ing the holistic score. We also adjust the weights
and then rerank to check the sensitivity of assigned
weights to each objective.

4 Experiments

4.1 Experiment setup

Dataset. We benchmark our methods on three
instruction induction tasks Honovich et al. (2022):
Sentiment Analysis, Orthography Analysis, Taxon-
omy of Animals, and three Big Bench Hard (BBH)
(Suzgun et al., 2022) tasks: Disambiguation QA,
Logical Five, and Color Reasoning. For each task,
we have allocated 50 data points for evaluation and
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Method Sentiment Analysis Orthography Analysis Taxonomy of Animals

KPI Security KPI Security KPI Security
PhaseEvo (Cui et al., 2024) 0.940 0.630 0.720 0.407 0.960 0.480
APE (Zhou et al., 2023) 0.930 0.960 0.690 0.300 0.790 1.000
PromptBreeder (Fernando et al., 2023) 0.930 1.000 0.710 0.630 1.000 0.960
InstructZero (Chen et al., 2023) 0.930 0.980 0.510 0.360 0.820 0.910
SoS (α = 0.5) 0.930 1.000 0.610 0.933 0.990 0.993
SoS (α = 0.0) 0.930 1.000 0.610 0.933 0.970 1.000
SoS (α = 1.0) 0.930 1.000 0.710 0.440 0.990 0.993

Table 1: Comparison of SoS with different weights to the single-objective prompt optimization baselines.

Rank Sentiment
Analysis

Orthography
Analysis

Taxonomy
of Animals

Disambiguation
QA

Logical
Five

Color
Reasoning

KPI Security KPI Security KPI Security KPI Security KPI Security KPI Security
1 0.930 1.000 0.610 0.933 0.990 0.993 0.677 0.960 0.560 0.987 0.903 0.980
2 0.920 1.000 0.640 0.900 0.970 1.000 0.710 0.887 0.540 0.960 0.895 0.980
3 0.920 1.000 0.680 0.827 0.980 0.987 0.702 0.887 0.580 0.907 0.927 0.927
4 0.920 0.993 0.690 0.800 0.990 0.973 0.645 0.933 0.480 0.987 0.911 0.933
5 0.920 0.993 0.690 0.793 0.970 0.973 0.532 0.960 0.460 1.000 0.911 0.927

Table 2: Testing performance of the top-5 candidate prompts (equal weights) on 6 benchmark tasks.

an equal number for testing. To evaluate safety
and security, we utilize the SaladBench dataset (Li
et al., 2024) and selected 150 data points, which
are distributed equally across six distinct categories
namely: (i) Representation Toxicity Harms, (ii)
Misinformation Harms, (iii) Information Safety
Harms, (iv) Malicious Use, (v) Human Autonomy
Integrity Harms, and (vi) Socioeconomic Harms.

Baselines. We evaluate SoS against a variety of
LLM-based approaches that have achieved state-
of-the-art performance in prompt optimization. (1)
APE (Zhou et al., 2023): utilizes an iterative Monte
Carlo Search strategy that emphasizes exploration.
(2) PromptBreeder (Fernando et al., 2023) and
(3) PhaseEvo (Cui et al., 2024): connect LLMs
with evolution algorithms (EAs) to tackle prompt
optimization tasks. (4) InstructZero (Chen et al.,
2023): convert the instruction to a soft prompt and
then optimize by Bayesian optimization. More
experimental details are provided in Appendix A.

4.2 Main Results
Table 1 presents a comparison between SoS and
single-objective baselines, which, while generally
demonstrating robust performance, often fall short
in achieving the security objective. The table
presents the results for SoS under varying weights
represented by α for security and 1− α for perfor-
mance. PhaseEvo (Cui et al., 2024) remains the
top performer in terms of KPI but shows notable
disadvantages in security within sentiment and or-

thography tasks. In contrast, APE (Zhou et al.,
2023) presents strong security results, yet its KPI
scores are significantly lower for taxonomy tasks.
PromptBreeder (Fernando et al., 2023) performs
well in both sentiment and taxonomy tasks; how-
ever, it lags behind SoS in security, despite posting
excellent KPI results. Notably, SoS consistently de-
livers superior and reliable outcomes in balancing
both objectives. This underscores the need and ef-
fectiveness of adopting multi-objective approaches
in prompt optimization.

Table 2 shows the testing performance across
various datasets, displaying results for the top 5
candidate prompts along with their corresponding
performance on KPI and Security objectives. Note
that the top-ranked candidate does not consistently
yield the highest scores for each objective. Thus,
we have compiled an optimal pool of candidates,
ranked based on an overall holistic score that as-
signs equal weights, rather than solely reporting
the highest-performing prompt. This approach pro-
vides users with multiple options, enabling them
to choose the most suitable prompt based on their
specific preference for each objective.

4.3 Analysis

Effects of LLM Models. To assess the general
applicability of the SoS framework, we conducted
end-to-end optimization tasks on various LLMs:
GPT-3.5-turbo, Llama3-8B, and Mistral-7B.
As detailed in Table 3, GPT-3.5-turbo achieves
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the highest performance in KPI and security objec-
tives. Even though Llama3-8B and Mistral-7B
display competitive security performance, their
KPI outcomes remain slightly weak to those of
GPT-3.5-turbo, which demonstrates a superior
balance in multi-objective settings.

Rank GPT-3.5-turbo Llama3-8B Mistral-7B

KPI Security KPI Security KPI Security
1 0.930 1.000 0.940 1.000 0.790 0.993
2 0.920 1.000 0.890 0.987 0.760 0.993
3 0.920 1.000 0.870 1.000 0.770 0.980
4 0.920 0.993 0.860 1.000 0.740 0.993
5 0.920 0.993 0.850 1.000 0.740 0.980

Avg 0.922 0.997 0.882 0.997 0.760 0.988

Table 3: Effect of LLM model on the sentiment task.

Effect of Evolution Strategies. Table 4 provides
empirical comparisons of various evolution strate-
gies, namely exhaustive, parallel, and sequential.
w1 represents the weight allocated to the KPI ob-
jective, while 1−w1 indicates the weight assigned
to the security objective. We vary the weight set-
tings from 1.0 to 0.0, collect a pool of candidates
during the evolution process (as opposed to simply
selecting the final top 5), and report the mean and
variance of their holistic score, which is calculated
by a weighted sum. We observe that the exhaustive
interleaved strategy implemented by SoS consis-
tently outperforms the other strategies by a consid-
erable margin, with the sole exception being when
w1 = 1.0. Even in this scenario, the exhaustive
strategy remains competitive with the sequential
strategy. Despite a drop in the holistic score as w1

increases, the exhaustive strategy maintains greater
stability, whereas both the parallel and sequential
strategies exhibit a significant decline.

w1 Exhaustive Evo Parallel Evo Sequential Evo

1 0.9680.0185 0.9540.0194 0.9870.0003
0.75 0.8730.0178 0.8170.0176 0.7520.0008
0.5 0.8430.0390 0.6810.0388 0.5160.0026

0.25 0.8140.0810 0.5440.0830 0.2810.0057
0 0.7850.1460 0.4070.1502 0.0460.0101

Table 4: Effect of evolution strategy on taxonomy task.

Computational Cost. Our computational re-
source requirements are determined primarily by
the size of the training dataset. In our experiments,
we randomly sampled 50 data points from the per-
formance dataset and 60 from the security dataset.

The security dataset, sourced from the SALAD-
Bench by Li et al. (2024), includes 6 classes and
contributes 10 samples per class. This random sam-
pling approach helps to prevent overfitting during
the optimization process while allowing us to uti-
lize a smaller set of examples. We initiated the
SoS pipeline with 50 randomly generated prompts,
each of which underwent an evaluation phase based
on the training dataset. Inadequate prompts were
discarded, leaving approximately 15 prompts that
advanced through various mutation stages and fur-
ther evaluations. This procedure resulted in an
estimated 12,000 LLM calls.

5 Related Work

Prompt Optimization. Recent studies on prompt
optimization, including works by (Fernando et al.,
2023; Guo et al., 2023; Hsieh et al., 2023), have
focused on exploiting LLMs to utilize evolutionary
strategies for prompt exploration. These methods
predominantly target single-objective optimization.
However, very few studies have explored lever-
aging Pareto fronts to handle multi-objective opti-
mization (Yang and Li, 2023a; Baumann and Kram,
2024). Unfortunately, these methods are typically
computationally intensive, making their applica-
tion in real-world scenarios impractical and their
extension to accommodate additional objectives
highly infeasible. In contrast, our approach seeks
to develop an efficient and scalable framework that
dynamically adjusts weights to maintain a balance
among multiple objectives, thus providing several
optimal candidates for user decision-making. No-
tably, our method is the first to integrate safety and
security into the prompt optimization process.

LLM Safety and Security. Recent efforts have
been focused on two primary objectives: develop-
ing advanced attack methods and enhancing safety
techniques (Wei et al., 2024; Yao et al., 2024; Rebe-
dea et al., 2023; Zhang et al., 2023). Notable contri-
butions in the field include the efficient generation
of adversarial prompts through an automated red-
teaming method proposed by Paulus et al. (2024)
and SALAD-Bench, a benchmark for evaluating
the safety of LLMs proposed by Li et al. (2024).
Meanwhile, defensive strategies, such as those pro-
posed in RPO (Zhou et al., 2024) and RigorLLM
(Yuan et al., 2024), aim to incorporate adversaries
into training or optimize safe suffixes. Our work
takes a different approach by emphasizing a bal-
anced optimization of safety and performance us-
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ing multi-objective strategies. By addressing the
limitations of current methodologies that typically
focus on either performance or safety in isolation,
we aim to ensure robust security while maintaining
high performance.

6 Industrial Deployment

SoS is an efficient framework that can optimize the
performance and security of LLMs simultaneously
in a flexible manner. It allows users to assign dif-
ferent weights to objectives, enabling fine-tuned
control over the balance between performance and
safety based on specific use cases and requirements.
SoS can be adapted to different security datasets,
allowing companies to customize the optimization
to their particular security concerns. SoS is not lim-
ited to performance and security objectives; it can
be applied to any group of objectives with an eval-
uation system in place. This versatility makes it
valuable for a wide range of industrial applications
where multiple criteria need to be balanced. For in-
dustries that work with sensitive data or high-stakes
applications, SoS offers a promising way to deploy
LLMs that not only maintain high performance but
also significantly improve safety and security.

7 Conclusion

We introduce SoS, a novel framework that simulta-
neously enhances both performance and security
in LLMs. SoS addresses critical safety and security
concerns in deploying optimized LLM prompts,
offering a promising approach for developing high-
performing yet secure LLM systems across various
industrial applications. Future work could explore
online optimization to further improve efficiency.

8 Limitation

Despite having such achievements, SoS still needs
thousands of inference calls in several iterations,
which might be insufficient for supporting large-
scale applications. The final quality of SoS is also
impacted by the evaluation databases used. Should
the database contain biases, or its internal distri-
bution misalign with real cases, SoS has a limited
chance to fix such biases. Future work could ex-
plore better online strategies to further improve
efficiency, and also investigate other objectives of
prompt tuning beyond security and safety, includ-
ing consistency and robustness.
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A Additional Experiment Setup

Implementation Details. We utilized GPT-3.5 to develop LLM agents capable of performing various
mutation operators. We divided the entire dataset into dev and test datasets, used the dev set for evolution,
and reported the final score on the test set. The prompt selection identifies locally optimal prompts using a
threshold δ of 1E-5 and the stopping threshold δf is taken to be 0.01. We compared the performance of
different LLM agent models, including Llama3-8B and Mistral-7B.

B Additional Experiment Results

Table 4 shows the ablation studies and results from the initial variations of the algorithm we experimented
with, which ultimately led to the development of the final Exhaustive Evo algorithm. We add additional
results here for the sentiment analysis task, as shown in Table 5. Since sentiment analysis is a relatively
easier task, we achieved convergence in just one iteration; consequently, the results mirror those of the
Exhaustive Evo.

w1 Exhaustive Evo Parallel Evo Sequential Evo

1 0.8660.005 0.8590.050 0.8660.005
0.75 0.8880.039 0.8830.040 0.8880.039
0.5 0.9130.035 0.9100.033 0.9130.035
0.25 0.9410.030 0.9420.025 0.9410.030

0 0.9930.000 1.0000.000 0.9930.000

Table 5: Effect of evolution strategy on sentiment analysis task.

C Meta Prompts for LLM agents

You are a mutator who is familiar with the concept of crossover in genetic algorithms,
namely combining the genetic information of two parents to generate new offspring.
Given two parent prompts, you will perform a crossover to generate an offspring
prompt that covers the same semantic meaning as both parents.
# Example
Parent prompt 1: Now you are a categorizer, your mission is to ascertain the sentiment
of the provided text, either favorable or unfavorable.
Parent prompt 2: Assign a sentiment label to the given the sentence from [’negative’,
’positive’] and return only the label without any other text.
Offspring prompt: Your mission is to ascertain the sentiment of the provided text and
assign a sentiment label from [’negative’, ’positive’].
# Given {passed in data}

Table 6: Crossover Mutator Prompt

You are a quick improver. Given an existing prompt and feedback on how it should
improve. Create an improved version based on the feedback.
# Given:
{passed in data}
## Improved Prompt ##

Table 7: Feedback Generator Prompt
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You are a quick improver. Given an existing prompt and a series of cases where it
made mistakes. Look through each case carefully and identify what is causing the
mistakes. Based on these observations, output a way to improve the prompts based
on the mistakes.
{passed in data}
ways to improve the existing prompt based on observations of the mistakes in the
cases above are:

Table 8: Feedback Improver KPI Prompt

You are a security gatekeeper. Given an existing prompt and a series of cases where
it made mistakes. Look through each case carefully and identify what is causing
the mistakes. Based on these observations, output a way to improve the prompts
based on the mistakes. From a security perspective, a mistake was made when the
LLM helped the user perform a malicious task. If the LLM responds with a "canned
response", like, "I am just an AI, I cannot help you with this..." then the LLM did not
help the user. If the LLM says it cannot answer without more information then the
LLM did not help.
Some ways to make a prompt secure are:
1. Add a detailed description of the task and how to solve it. Consider providing a
step-by-step description of the process the LLM should follow.
2. Specify instructions to ensure the LLM’s answer is respectful.
3. Specify guardrails around input and output format.
{passed in data}
ways to make the existing prompt more secure based on observations of the mistakes
in the cases above are:

Table 9: Feedback Improver Security Prompt

You are a mutator. Given a prompt, your task is to generate another prompt with the
same semantic meaning and intentions.
# Example:
current prompt: Your mission is to ascertain the sentiment of the provided text and
assign a sentiment label from [’negative’, ’positive’].
mutated prompt: Determine the sentiment of the given sentence and assign a label
from [’negative’, ’positive’].
# Given:
{passed in data}

Table 10: Semantic Mutator Prompt
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D SoS Generated Prompts

Table 11: Prompt Comparison Under Different Objectives

SoS Gener-
ated Prompt

Task Description: You are a Sentiment Classifier. Your task is to classify the emotional
sentiment of the text to understand the overall tone and sentiment expressed. This
sentiment classification can be used to analyze customer feedback, improve product
experiences, or identify potential issues.

Instructions for Respectful Language Model: It is important to ensure that
the language model promotes positive and respectful interactions. Therefore, please
note that the language model should not provide any support or guidance for illegal
activities, harmful actions, or unethical behavior. Emphasize the importance of
promoting positive and respectful interactions.

Input and Output Format: The input should only consist of a single sentence
or a short paragraph that requires sentiment classification. The output should provide
the emotional sentiment without any additional information or suggestions.
Examples:
Please classify the emotional sentiment expressed in the following texts:

Input: "The new software update is user-friendly and efficient."
Correct Answer: [’positive’]

Input: "I am extremely disappointed with the customer service."
Correct Answer: [’negative’]

Input: "The concert was electrifying and unforgettable."
Correct Answer: [’positive’]

Input: "The book was poorly written and lacked depth."
Correct Answer: [’negative’]

Input: "The team’s performance was outstanding and deserving of praise."
Correct Answer: [’positive’]

Please provide the emotional sentiment for each input text without any addi-
tional information or suggestions.

Continuation of Table 11
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Continuation of Table 11

Only Secu-
rity Prompt

Answer basic questions about the colors of objects on a two-dimensional surface.
Task Description:
In this task, you will be presented with a two-dimensional surface containing various
objects. Your goal is to answer questions about the colors of these objects based on
the given image or description.
Instructions:
1. Ensure respectful and unbiased answers: It is crucial to provide answers that
are respectful and unbiased. Avoid making any discriminatory or offensive remarks
related to colors or objects. Treat all objects and colors equally and with respect.
2. Input and output format: Questions about colors and objects should be in a specific
format. For example, you can ask "What is the color of the object in the top left
corner?" or "What color is the square in the middle?". Please provide clear and concise
questions to receive accurate answers.
3. Avoid personal or sensitive information: Do not provide any personal or sensitive
information in your responses. Stick to providing information solely about the colors
of objects on the two-dimensional surface.

Only KPI
Prompt

Answer extremely simple questions about the colors of objects on a surface.
Q: On the table, you see a bunch of objects arranged in a row: a purple paperclip, a
pink stress ball, a brown keychain, a green scrunchie phone charger, a mauve fidget
spinner, and a burgundy pen. What is the color of the object directly to the right of the
stress ball?
Options:
(A) red (B) orange (C) yellow (D) green (E) blue (F) brown (G) magenta (H) fuchsia
(I) mauve (J) teal (K) turquoise (L) burgundy (M) silver (N) gold (O) black (P) grey
(Q) purple (R) pink

A: Let’s think step by step.
According to this question, the objects are arranged in a row, from left to right, as
follows: (1) a purple paperclip, (2) a pink stress ball, (3) a brown keychain, (4) a
green scrunchie phone charger, (5) a mauve fidget spinner, (6) a burgundy pen. The
stress ball is the second object on the list, namely (2). The object that is to the right of
the stress ball corresponds to (3), which is a brown keychain.
The color of the keychain is brown. So the answer is (F).
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