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Abstract

Query Autocomplete (QAC) is a critical feature
in modern search engines, facilitating user in-
teraction by predicting search queries based on
input prefixes. Despite its widespread adoption,
the absence of large-scale, realistic datasets has
hindered advancements in QAC system devel-
opment. This paper addresses this gap by in-
troducing AmazonQAC, a new QAC dataset
sourced from Amazon Search logs, compris-
ing 395M samples. The dataset includes actual
sequences of user-typed prefixes leading to fi-
nal search terms, as well as session IDs and
timestamps that support modeling the context-
dependent aspects of QAC. We assess Prefix
Trees, semantic retrieval, and Large Language
Models (LLMs) with and without finetuning.
We find that finetuned LLMs perform best,
particularly when incorporating contextual in-
formation. However, even our best system
achieves only half of what we calculate is the-
oretically possible on our test data, which im-
plies QAC is a challenging problem that is far
from solved with existing systems. This con-
tribution aims to stimulate further research on
QAC systems to better serve user needs in di-
verse environments. We open-source this data
on Hugging Face at https://huggingface.
co/datasets/amazon/AmazonQAC.

1 Introduction

Query Autocomplete (QAC) is an important feature
in nearly every modern search engine (Cai and
de Rijke, 2016). As the user types out a search
query, the QAC system’s aim is to provide a list
of search term suggestions based on the partially
typed query (the “prefix”). Ideally, the QAC system
will provide the user’s intended query, which they
can select, thereby saving them the effort of typing
out the full query. Even where the user does not
have a specific query in mind, QAC suggestions
can help them formulate search queries that lead
them to the results they are seeking.

However, despite the importance of QAC, it is
a comparatively under-explored task in research.
The publicly available datasets tend to be derived
from search query datasets (e.g. Patki et al., 2024;
Maurya et al., 2023; Park and Chiba, 2017). How-
ever, these datasets do not contain the prefixes that
users typed, so prefixes have to be synthetically
constructed (Mitra and Craswell, 2015), greatly
limiting the empirical value of these resources for
QAC. In fact, we were unable to find any publicly
available large scale QAC datasets beyond synthet-
ically constructed ones from the AOL data release
in 2006. In general, the lack of large-scale realis-
tic benchmarks has hampered research on QAC;
few tasks have as large a gap between their impor-
tance in real-world technologies and the amount of
research devoted to them.

In this paper we aim to facilitate more research
on QAC by releasing AmazonQAC, a QAC dataset
collected from Amazon Search logs with partici-
pation and support from Amazon. AmazonQAC
contains 395M anonymized examples, where an
example consists of a submitted search term to-
gether with the sequence of prefixes that was typed
to reach that search term, a session ID, a times-
tamp, and other metadata (Table 1). The session
IDs and timestamps mean that multiple sequential
user searches can be grouped together to form con-
text, which has shown to be useful for QAC (e.g.
Shokouhi, 2013; Bar-Yossef and Kraus, 2011). The
dataset includes a test set of 20K examples from a
later time period than the train set, designed to sim-
ulate a real-world deployment of a QAC system.

We present the task description, analyze dataset
statistics, describe evaluation metrics, and motivate
an upperbound Success@10 score of 69.8% on our
held-out test set. We also evaluate several baseline
approaches on AmazonQAC: Prefix Trees, seman-
tic retrieval, and Large Language Models (LLMs)
with and without finetuning. We find that the QAC
problem is not just a simple case of prefix-search
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Query ID Session ID Prefixes First Prefix Time Final Search Term Search Time

12 354 [s, si, sin, sink, sink
r, sink ra, sink rac,
sink rack]

2023-09-
04T20:46:14.293Z

sink rack for bot-
tom of sink

2023-09-04
20:46:27

376 1886 [a, al, alu, alum,
alumi, alumi, alu-
min, alumin, alu-
mind, alumind]

2023-09-
04T12:18:44.120Z

aluminum free de-
odorant for men

2023-09-04
12:18:47

120259 5691 [t, tu, tup, tupe, tu-
pelo, tupelo ]

2023-09-
15T07:47:16.359Z

tupelo honey 2023-09-15
07:47:20

983301 5691 [tupelo honey, tu-
peo honey, tupo
honey, tuo honey, to
honey]

2023-09-
15T07:49:21.616Z

honey 2023-09-15
07:49:27

Table 1: Illustrative AmazonQAC dataset examples. The examples contain the actual prefixes that users typed on
the way to selecting a search term. The session IDs and timestamps support reconstructing search contexts.

term memorization, as conventional wisdom might
imply, but rather that it is a complex recommen-
dation problem that is significantly influenced by
the user’s search context. Our best baseline system
is a finetuned LLM that leverages session context,
and it achieves Success@10 of 37, which is half
of our upperbound. This indicates that the QAC
problem is a difficult one not readily solved by cur-
rent systems. We hope that releasing AmazonQAC
will prompt further innovation in QAC systems and
that our baseline systems help guide these research
efforts.

2 Task Description and Data Preparation

2.1 Task Description

Broadly, a QAC system in a search engine provides
a list of relevant search term suggestions given the
current user-typed prefix, as the user types their
intended search. There are two core mandates a
QAC system should serve: given a prefix input p
and the user’s intended final search term s (which
may or may not be a string-literal completion of
the prefix), the QAC system’s main goal is to pro-
vide s in a list of N suggestions (usually 10) that
the user sees in the interface, with the secondary
aim of placing s as high as possible in the list. In
practice, we expand the definition to allow for other
contextual inputs like past searches (c) which could
be useful to predict s. Thus, given a set of (c, p, s)
tuples, the QAC task is to optimize for the presence
and rank of s given (c, p) in the QAC system’s top
N provided suggestions. We give examples of the
data in Table 1, highlighting past search, prefix and

completion triplets as well as cases where the user-
typed prefix matches and does not match their final
search term.

2.2 Data Preparation

We collect AmazonQAC from Amazon Search au-
tocomplete customer logs in the U.S., with the sup-
port and technical assistance of Amazon. All data
has been scrubbed for personally identifiable infor-
mation (PII) with a wide variety of regex matches
to remove any patterns commonly associated with
PII (see Appendix A.3). We further limit the dataset
to contain terms which have been searched at least
4 times by at least 4 different sessions, and filter all
search terms through an LLM to flag inappropriate
or personal content, as an additional measure to
ensure user privacy (A.4). The full dataset is avail-
able on Hugging Face at https://huggingface.
co/datasets/amazon/AmazonQAC.

Main Data. Existing QAC datasets generally in-
clude only the final search term, leading researchers
to construct synthetic prefixes from that search term
(e.g. Mitra and Craswell, 2015; Cai et al., 2016).
In contrast, we provide both the final search term
and the sequence of prefixes a user typed which
led to that search term. For example, if a user
typed “iph” and selected “iphone” from the QAC
list, the dataset would have prefix list [“i”, “ip”,
“iph”] leading to the search term “iphone”.

We believe the synthetic approach has several
key disadvantages. First, synthetically constructed
prefixes assume users type out the search term in
a linear manner, but we find that nearly 38% of
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Main Data Test Data
Overall

Data Size / # Search Terms 395,550,004 - 20,000 -
Prefixes 4,280,432,094 - 20,000 -
Unique Prefixes 383,527,223 8.9% 15,145 75.7%
Unique Search Terms 39,588,974 10.0% 16,667 83.3%
Unique Prefix/Search Term Pairs 1,106,613,071 25.9% 19,871 99.4%
Unique Sessions 53,839,687 13.6% 6,679 33.4%

Patterns

Average Prefix Length 9.5 - 9.2 -
Average Search Term Length 20.0 - 20.3 -
Average Search Term Words 3.3 - 3.3 -
Search Terms Starting w/ Prefix 344,223,609 87.0% 15,180 75.9%
Searches per Session 7.3 - 10.3 -

Train/Test Overlap

Unique Prefixes Overlap 13,375 88.3%
Unique Search Term Overlap 12,308 73.8%
Unique Prefix/Search Term Overlap 11,718 58.9%

Table 2: Statistics on various aspects of AmazonQAC. We provide percentages where applicable.

user typing sequences are in a non-linear pattern
where the previous prefix typed in the sequence
is not itself a prefix of the current one (e.g. [“i”,
“ip”, “ipo”, “ip”, “iph”, “ipho”, . . . ]). Rather, it
is a deletion, or word substitution, usually due to
misspellings.

Second, advanced QAC systems go beyond
strict-prefix-matching and provide semantically
meaningful suggestions. We find that 13% of final
search terms are not prefixed by the final typed pre-
fix (e.g., prefix “ipad ca” and search term “case for
ipad”). Such patterns are not possible to capture
with the synthetic construction.

Finally, providing real prefix sequences enables
modeling how much of a search term users type
before selecting a QAC suggestion.

We also collect the session ID, final search times-
tamp, and timestamp of the first prefix typed. These
metadata allow us to reconstruct search sessions
and condition model predictions on session history.

In sum, AmazonQAC consists of the following
columns: search term ID, user session ID, sequence
of prefixes, timestamp of first typed prefix, final
search term, timestamp of final search, popularity
(full schema in Appendix A.1). This dataset is
constructed from a sample of searches from 2023-
09-01 to 2023-09-30. Popularity is a count of how
many times that search term appears in the dataset.

Main Data Analysis. We provide detailed statis-
tics on the dataset in Table 2. In the top section
of the table, we provide overall statistics: number
of words, number of prefixes, number of unique
prefixes, number of unique final search terms, and
number of unique sessions. These are useful for
gaining an overall picture of the dataset. In the
middle section of the table, we provide detailed
pattern statistics: average final search term word
length, average prefix length, percentage of final
search terms which match the prefix, and number
of searches per session. These are useful for under-
standing users’ typing patterns.

We derive several important insights from the
dataset statistics. First, the number of unique pre-
fixes and the number of unique search terms are
low (8.9% and 10.0% respectively). However, the
number of unique prefix/search term pairs is much
higher, at 25.9%. In other words, while there is
significant repetition in the data, users don’t arrive
at the same suggestion in the same way. We also
find that users type approximately 48% of the fi-
nal search term before selecting the search term
from the suggestion list. Finally, we find that, in
13% of searches, users selected a QAC suggestion
which did not match the prefix. This motivates
QAC systems which go beyond the elementary
prefix-matching paradigm.
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Test Data. In practice, a QAC system should be
able to perform well on prefixes/search terms in
the future, past the date with which any historical
training data was used to build the system. To that
end, we sample test data from the 2 weeks after
the training data, 2023-10-01 to 2023-10-14. In
addition, we construct the test set to mimic the con-
ditions a QAC service would encounter if deployed.
In practice, a QAC system receives a series of asyn-
chronous/unrelated (prefix, context) requests and
is tasked with providing search term suggestions
for each request. In this setup, the QAC system
would not have access to the sequence of prefixes
being typed out or past suggestions provided for
a sequence. To that end, the test set we provide
is a sample of 20,000 random single prefix/final
search term pairs from the test set along with an
array of the past searches in the session for each
prefix/search term pair.

Test Data Analysis. We compute the same statis-
tics on the test dataset as we do on the training
dataset, shown in Table 2. In order to compare the
test and train dataset, we additionally compute the
overlap in unique prefix/search term pairs with the
training dataset. This analysis is summarized in
the bottom section of the table. It shows a high
overlap in prefixes (88%) and search terms (74%),
but this drops to 59% overlap when considering
prefix/search term pairs. This means that, while a
QAC system trained on the main data may have
seen 74–88% of the prefixes and final search terms
before, it has only seen about half of the exact pre-
fix/search term combinations before. In terms of
the search pattern changes between the main data
and test data, we find a statistically significant dif-
ference (t-test, p < 0.05) in the average search
term length, number of searches per session, and
the percentage of final prefixes which match the
final search term (76% test vs 87% train). These
attribute changes confirm our hypothesis that user
interaction patterns with QAC vary over time. In
all, our test set’s unseen prefix/completion terms
and shift in statistics provide a realistic test of a
QAC system’s adaptability to new scenarios.

3 Evaluation Metrics

3.1 Core Metrics
The QAC’s system has a dual mandate to provide
the correct final search term in a short list and rank
that search term highly in that list. This motives
two metrics. For the first mandate, we use the

metric of Success@10. Formally given a (c, p, s)
triplet and a QAC function to produce search term
suggestions using (c, p), Success@10(c, p, s) is:

Success@10(c, p, s) =

{
1 if s ∈ QAC(c, p)@10

0 otherwise

where QAC(c, p)@10 is the set of top 10 items
returned by QAC(c, p). We report the average of
this value over the full evaluation set.

For the ranking mandate, we use Reciprocal
Rank (Voorhees and Harman, 2000):

RR@10(c, p, s) =

{
1

pos(s) if s ∈ QAC(c, p)@10

0 otherwise

where pos(s) is the position of s in the ranking
determined by QAC(c, p). We again report the
mean of this value over the full evaluation set
(MRR@10).

3.2 Performance Upperbound
QAC is a difficult and often ambiguous task, as a
given prefix might be compatible with numerous
reasonable search terms. Thus, to help contextu-
alize our baseline performance numbers, we now
estimate an upperbound for performance on Ama-
zonQAC. To do this, we make two assumptions.

Assumption 1 is that any past search context be-
yond 1 hour does not provide any information for
the next search. If a prefix does not have a past
search context, it is not possible to disambiguate
different search terms for the same prefix. (For
example, we cannot systematically provide better
search terms for one user prefix “i” over another
user prefix “i” if neither have context). The best the-
oretical performance any system could do on those
test set prefixes would be to provide the top 10 most
popular search terms based on true observed retro-
spective popularity during the test set dates. 43.2%
(8,641) of our test-set search terms fall into this
no-context group. For them, Success@10 is 30.1%
(2,598 successes) using true observed popularity,
according to our maximally optimistic criterion.

Assumption 2 is that any past search within
1 hour provides perfect information for the next
search. 56.8% (11,359) of our test-set search terms
are in this group. We assume that the best systems
would be able to provide perfect suggestions for
this group (100% Success@10).

Putting the above two estimates together, we
conclude that the best system would achieve an
average Success@10 of 69.8% on our test set.

1049



System Success@10 MRR@10

IR: Prefix Tree 25.3% 0.16

IR: Semantic Retrieval+
28.9% 0.17Prefix Tree

Few-shot LLM (Mixtral8x7B)

No context 21.2% 0.13
Context 24.0% 0.15

Finetuned LLM (Mistral7B)

No context 32.3% 0.20
Context 37.0% 0.23

Upperbound 69.8%

Table 3: QAC system results.

4 Baseline Systems and Results

In order to provide researchers with QAC base-
lines on our dataset, we train and benchmark a
cross-section of different QAC approaches with
our dataset. Our implemented systems may not
be state-of-the-art, since we rather aim to provide
a base number and insights into how different ap-
proaches to QAC behave on our dataset.

QAC approaches can broadly be split into two
categories: information-retrieval (IR) QAC and
generative QAC. We explore representative models
from both categories. Our results are summarized
in Table 3.

4.1 Prefix Trees

Conventional wisdom structures QAC as complet-
ing prefixes by matching the prefix to a database of
known words (Bar-Yossef and Kraus, 2011), which
is algorithmically solved with a trie data structure.
This method constructs a tree where each node is a
character that leads to other nodes which are possi-
ble continuations from that character. Traversing
a trie from a root character will spell out all possi-
ble completions beginning with that character. For
example, “t” leads to [“v”, “o”], and “o” leads to
[“i”, “a”], and so forth. Given a prefix like “to”, we
follow it down the trie to “to” and then traverse all
possible completions, which would result in com-
plete search terms like “toilet paper” and “toaster”.

To rank the completions, we construct the trie
such that each leaf node also contains the popularity
of that search term, and we then take the top 10
most popular. We construct the trie on the training
data’s prefix-to-search-term mappings, using only
cases where prefixes match the final search term.

Since the prefix tree is a memorization of train-

ing prefix/search term pairs, the theoretical success
upperbound of the prefix tree on this test set is
58.9%, which is the percent of prefix/suggestion
pairs in the test set seen in the train set. We find
that the basic prefix tree has a 25.3% Success@10
and 0.16 MRR@10, reaching only 43% of the theo-
retical upper bound of success for this method and
only 37% of the best QAC theoretical upperbound.

The prefix-tree approach cannot readily incorpo-
rate context like past searches, and it cannot cover
cases where the submitted search does not exactly
match the typed prefix, which appears in 24.1% of
the test set. Therefore, we conclude that the QAC
problem is a search term recommendation problem
rather than a prefix-matching problem and requires
solutions beyond basic prefix matching.

4.2 Neural Information Retrieval
As neural embedding models gained popularity,
various systems emerged that take advantage of
embedding rather than exact word-matching for re-
trieval tasks (e.g., Karpukhin et al. 2020; Khattab
and Zaharia 2020; Xiong et al. 2020; Qu et al. 2021;
Formal et al. 2021). The key benefit of semantic
matching is the ability to capture related semantic
intent and return search terms which do not neces-
sarily have to start with the prefix. For example, if
the prefix is “women running shoe”, a traditional
system will propose only suggestions beginning
with “women running shoe”. A semantic system
may be able to provide alternative suggestions like
“nike shoes for women” due to their semantic close-
ness to the prefix. This is particularly useful for the
cases where no exact prefix tree match exists in the
data, a scenario present in 48% of our test cases.

For our retriever, we use ColBERTv2 (San-
thanam et al., 2022a,b), a recent state-of-the-art
retriever particularly suited to partial words. The
ColBERT retriever first builds an index of search
terms by tokenizing the terms and creating an em-
bedding vector for each token. At inference time,
the ColBERT retriever tokenizes and embeds the
prefix similarly, and then computes a final score for
each prefix–search term pair that takes into account
similarity scores between all the token vectors in
the prefix and the token vectors in the search term.
In order to ensure high quality matches between
prefixes of partial words and the final search terms,
we append to each search term all the possible pre-
fixes for each word in the search term. For example,
if the search term is “iphone case”, we transform it
to “iphone case i ip iph ipho iphon c ca cas” so it
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contains all of its constituent prefixes. We use this
semantic retriever to augment the retrieved search
terms from the prefix tree when the prefix tree re-
turns fewer than the full 10 results. We find that
this semantic retrieval-augmented prefix tree out-
performs the basic prefix tree matching by +3.6%
in Success@10 and +0.01 MRR.

4.3 Off-the-shelf LLM
Recent QAC methods treat the problem not as in-
formation retrieval but as a generative problem,
where we are tasked to generate the suggestions
from a model (e.g. Maoro et al., 2024a). Recently,
there has been emerging research on using LLMs
in search applications in general (e.g. Spatharioti
et al., 2023; Maoro et al., 2024b). The idea is that
knowledge of what is relevant as well as the seman-
tic relationships between prefix and search terms
are accurately captured in the training of an LLM.
We can then prompt the LLM and have it generate
10 relevant search terms already ranked in order.

We first test this system using an off-the-shelf
non-finetuned LLM, Mixtral-8x7B-v0.1 (Jiang
et al., 2024). We do few-shot prompting and ask
the LLM to generate a suggestion given the pre-
fix (prompt in Appendix B.1). We perform beam
search with beam size of 10 to get the top 10 sug-
gestions from the model. We measure Success@10
and MRR@10 on the test set. We also add the past
searches context in the prompt and measure the
same metrics, all reported in Table 3.

We find that few-shot prompting is able to
achieve only 21.2% success, which is worse than
the basic prefix-matching system. However, includ-
ing context improves the model’s performance by
+2.8%, to 24.0%, close (but still worse) than the pre-
fix tree. The prefix tree performs well on seen and
popular prefix–search term pairs, whereas an LLM,
which has no direct knowledge of past prefix/search
term pairs or popularity, performs better on unseen
and rarer prefix–search terms pairs – a complete
error analysis is in Appendix C. The improvement
from including context is further evidence that con-
text is important in QAC systems and suggests that
LLMs can accurately capture and use the context
where necessary and ignore it otherwise.

Although the performance is slightly worse than
prefix-trees, the LLM is able to incorporate context
by simply inserting it into the prompt, and is able
to generate a full 10 search term suggestions for
100% of the prefixes. Overall, then, LLMs seem
better suited to QAC than prefix-based approaches.

4.4 Finetuned LLM

Since the previous LLM approach did not use his-
torical prefix/search term data, the next step for
generative QAC is to finetune an LLM on a zero-
shot prompt using the training data, so the model
can get a better understanding of the data patterns
for the QAC application. The prompt we use asks
the LLM to generate a suggestion given the prefix
(in Appendix B.2).

We chose Mistral-7B-v0.1 for this task (Jiang
et al., 2023). We construct the finetuning data by
randomly choosing 200M prefix/search term pairs
from the data and fine-tune for 10 epochs, choosing
the best checkpoint by validation loss (details in
the Appendix B.2). Similar to the prior approach,
we decode with beam size 10 to get the top 10
suggestions in order. We also test including the
context in the prompt during finetuning and testing.

The results are reported in Table 3. We find
that this setup is the best in both MRR@10 and
Success@10, far surpassing the next best in suc-
cess@10 by +8.1% and MRR by +0.06. Like the
off-the-shelf LLM, including context improves the
model’s ability to generate the correct suggestions
(+4.7% success@10). However, we are not incor-
porating past notions of popularity, which means
this LLM also suffers on shorter and more popular
prefix/search terms. Therefore, promising avenues
of exploration here involve endowing the LLM with
information about prior popularity (Appendix C).

5 Conclusion

We introduced the AmazonQAC dataset to help
address a critical need for realistic, large-scale
datasets for Query Autocomplete (QAC). Ama-
zonQAC is derived from Amazon Search logs and
contains 395M examples with rich metadata. Our
analysis of a range of baseline approaches sug-
gests that QAC is a challenging context dependent
task that benefits from the generative capacity of
modern LLMs. In particular, finetuning LLMs to
perform the QAC task and make use context leads
to especially strong results. However, even the best
of these systems falls well short of optimal per-
formance on AmazonQAC, suggesting that there
is plenty of room for further innovation. Overall,
we hope the availability of AmazonQAC helps cat-
alyze further research and innovation in QAC, driv-
ing the development of more intuitive and efficient
search functionalities across digital services.
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6 Limitations and Ethical Considerations

In creating AmazonQAC, we employed a variety
of methods designed to ensure user privacy, as de-
tailed in Section 2.2. We regard these steps as vital,
but they do affect the data distributions in ways that
are relevant. In particular, since some examples
were filtered out, it is not possible to reconstruct
search sessions with complete fidelity. In our ex-
periments, we find that using search context history
nonetheless leads to empirical gains, but users of
the dataset should still bear in mind that it is not
comprehensive as a result of ethical considerations
that surround any release of naturalistic data.

AmazonQAC is derived from Amazon customer
logs from the U.S. (Section 2.2). This is a par-
ticular cultural and linguistic context that is not
representative of the world population. Models
and results derived from AmazonQAC should be
assumed to inherent these biases. By the same
token, the shopping-oriented nature of Amazon’s
search traffic means that AmazonQAC is unlikely
to generalize to other search contexts.

We selected our baseline models to help illu-
minate specific properties of the dataset and give
readers a sense for the remaining headroom for
system performance. Our analyses suggest that
the headroom is substantial, but we recognize that
different modeling choices might have led to a dif-
ferent assessment.
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Appendix

A Data Details

The full AmazonQAC dataset is released at
https://huggingface.co/datasets/amazon/
AmazonQAC.

A.1 Training Schema

The full schema of the training data is:

|query_id (string)
|session_id (string)
|prefixes (array <string >)

|- prefix (string)
|first_prefix_typed_time (string)
|final_search_term (string)
|search_time (string)
|popularity (long)

The query_id is a unique ID given to each row
in the dataset. The session_id refers to the user
session ID. The prefixes are an array of prefix
strings, in order, typed by the user to arrive at the fi-
nal search term. The first_prefix_typed_time
is the timestamp of when the first prefix was typed,
and the search_time is the timestamp of the final
search. The popularity is the number of times
the particular search term appeared in the dataset,
before filtering steps.

A.2 Test Schema

The full schema of the test data is:

|query_id (string)
|session_id (string)
|past_searches (array <array <string >>)

|- element (array <string >)
|- search_term (string)
|- search_time (string)

|prefix (string)
|prefix_typed_time (string)
|final_search_term (string)
|search_time (string)

The query_id is a unique ID given to each row in
the dataset. The session_id refers to the user
session ID. The past searches are all searches
from the session which occurred prior to the
prefix_typed_time. It is an array which con-
tains a sequence of arrays with the past search
term at position 0 and the past search term’s search
time at position 1. The prefix is the current pre-
fix string for the QAC system to take as an input.
The prefix_typed_time is the time that prefix
was typed, and the final_search_term is the fi-
nal typed search term, along with the search_time
for that final search term.

A.3 Regex Data Filtering

We apply a comprehensive regex to the data in order
to filter all terms which could contain potentially
sensitive personal information. For safety purposes
we won’t describe the details of the filters we used.

A.4 LLM Data Filter

After regex filtering we also apply an LLM filter
step. We few-shot prompted an LLM to identify
any search terms which may contain personally
identifiable information or are inappropriate. Any
search terms which were flagged were removed.
We don’t release the prompt used or LLM details
for safety concerns.

B Large Language Model Details

B.1 Few-shot LLM (Mixtral-8x7B-v0.1)

We choose Mixtral-8x7B-v0.1 as our benchmark
for few-shot LLM on this task. We curate 3 exam-
ples in the prompt. For the experiment including
past searches context, two of the three examples
have past searches context. Our context examples
are carefully chosen to show how context influ-
ences the final search term suggestion. Below is
the prompt we used for no-context:

### Instruction: Provide ecommerce
product query suggestion starting
with prefix ### Prefix: toi ###
Suggestion: toilet paper ### Prefix:
run ### Suggestion: running shoes

for women ### Prefix: ipho ###
Suggestion: iphone 15 case ###
Prefix: {prefix} ### Suggestion:

We add context examples for the exact same search
terms and prefixes in order to keep the few-shot
examples consistent for both the the context and
no-context experiments:

### Instruction: Provide ecommerce
product query suggestion related to
context and starting with prefix ###
Context: plunger ### Prefix: toi

### Suggestion: toilet paper ###
Context: women socks , running shoes
### Prefix: run ### Suggestion:
running shoes for women ### Context
: none ### Prefix: ipho ###
Suggestion: iphone 15 case ###
Context: {context} ### Prefix: {
prefix} ### Suggestion:

We inference on a beam size of 10, with no sam-
pling (0 temperature, p=1) to retrieve the top 10
generated suggestions, in order, for each prefix and
context in the test set.
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B.2 Finetuned LLM (Mistral-7B-v0.1)

We chose Mistral-7B-v0.1 as our LLM to finetune.
We selected a random 200M (context, prefix, fi-
nal search term) triplets from the training data
and placed them in the following prompt for no-
context:
### Instruction: Provide ecommerce

product query suggestion starting
with prefix ### Prefix: {prefix} ###
Suggestion: {final_search_term} ###

We added the context for the past searches context
experiment:
### Instruction: Provide ecommerce

product query suggestion related to
context and starting with prefix ###
Context: {context} ### Prefix: {

prefix} ### Suggestion: {
final_search_term} ###

We finetune the LLM using PEFT LoRA (Hu
et al., 2021), in fp16 and using the 4bit version
of the model. We used a peft_lora_r of 256,
peft_lora_alpha of 512, peft_lora_dropout of 0.05,
and targeted q_proj, k_proj, down_proj, v_proj,
gate_proj, o_proj, up_proj, lm_head layers. We
used an AWS p3dn.24xlarge machine with 8 Tesla
V100 GPUs, which took 20 hours to train 20
epochs. We cut 10M of the 200M as validation set
and computed the validation loss every 500 steps,
picking the best checkpoint when the validation
loss stopped decreasing.

C Error Analysis

We conducted an error analysis for the prefix tree
and context-finetuned LLM. For the prefix tree, we
found that in 16% of cases where suggestions were
provided, the correct final search term didn’t match
the prefix (e.g., spelling mistakes), which the pre-
fix tree could never get right. Generally, 74% of
cases had no match in the suggestion list due to
the number of different final search terms being
too large to capture in a generic top-10 popularity
list which applies to all users. Other features, like
personalized context, semantic matching, and pre-
fix spelling correction, are needed to disambiguate.
For the LLM, it struggles with shorter, ambiguous
prefixes when no context is available likely due to
not being able to use popularity information. Our
analysis shows that in cases without recent context,
the LLM’s Success@10 is 32%, slightly below a
basic popularity list’s 34%. For shorter prefixes
(≤5 chars), the LLM performs at 13% vs 16% for
the popularity list. Potential improvements include

RAG approaches or methods to guide the LLM
toward more popular suggestions.
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