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Abstract

This paper presents LOFI (Language, OCR,
Form Independent), a pipeline for Document
Information Extraction (DIE) in Low-Resource
Language (LRL) business documents. LOFI
pipeline solves language, Optical Character
Recognition (OCR), and form dependencies
through flexible model architecture, a token-
level box split algorithm, and the SPADE de-
coder. Experiments on Korean and Japanese
documents demonstrate high performance in
Semantic Entity Recognition (SER) task with-
out additional pre-training. The pipeline’s ef-
fectiveness is validated through real-world ap-
plications in insurance and tax-free declaration
services, advancing DIE capabilities for diverse
languages and document types in industrial set-
tings.

1 Introduction

Many industries handle complex documents
known as Visually Rich Documents (VRDs), con-
taining text, tables, and figures. In real-world indus-
try scenarios involving VRDs, we should consider a
process of Semantic Entity Recognition (SER) (Cui
et al., 2021) to automate workflows. For example,
in insurance claims processing, patient informa-
tion and diagnostic details need to be extracted
from medical reports submitted by customers. Ad-
ditionally, in accounting and tax filing processes,
purchase information should be extracted from re-
ceipts or other tax documents.

To address the automation demands of the indus-
try, we face three main challenges:

1. There are no publicly available VRD datasets
in Low-Resource Languages (LRL), which
makes it difficult to create pretrained models,
nor are there any publicly available models
for these languages.

2. There are limitations in SER from OCR en-
gine results. Typically, OCR engine results

are at the word level, but those OCR results
often require extra splitting or combining to
get semantic entities.

3. Documents handled in the industry also
present challenges in information extraction
due to custom formats, even when standard-
ized forms exist. For example, in medical
reports, even though there is a standardized
form mandated by the government, some hos-
pitals use their own custom formats. Similarly,
receipts may contain simple information, but
their format varies significantly across institu-
tions. Regardless of the document type, rota-
tion or distortion of images can also change
the document’s structure.

However, related research has not comprehensively
addressed these three issues together. We have
focused on considering these three challenges col-
lectively in order to meet the automation demands
of the industry.

Language Independence: There’s a lack of pub-
licly available datasets and models that work with
LRL, languages that are less used compared to En-
glish and Chinese, such as Korean and Japanese.
Most VRD datasets, such as EPHOIE, FUNSD, and
CORD (Wang et al., 2021; Jaume et al., 2019; Park
et al., 2019) are primarily in English or Chinese,
and most open models (LayoutLM, LayoutLMv2,
LayoutLMv3, BROS, GeoLayoutLM) (Xu et al.,
2020b,a; Huang et al., 2022; Hong et al., 2022; Luo
et al., 2023) are trained with open datasets (Lewis
et al., 2006). As multilingual models like Lay-
outXLM (Xu et al., 2021) and LiLT (Wang et al.,
2022) exist, we choose LiLT for our base model
due to its flexibility across different languages.

OCR Independence: Models like LayoutLM,
LayoutLMv2, LayoutLMv3, LiLT, BROS, and
GeoLayoutLM use word-level or segment-level
bounding boxes to encode spatial information of
text. However, languages with linguistic features

1056



differing from English face challenges in extract-
ing such bounding boxes. For instance, Japanese
lacks spaces between words (Tian et al., 2020; Hi-
gashiyama et al., 2022), and Korean employs parti-
cles (Seo et al., 2023), resulting in single bounding
boxes containing multiple words with distinct se-
mantic meanings. Consequently, the complexity of
bounding boxes varies across languages. Therefore,
a framework capable of performing SER indepen-
dent of any OCR engine result used is essential.
See Figure 5 in Appendix for an example of token-
level box split algorithm.

Form Independence: To create the model’s in-
put format from document images, the OCR en-
gine results need to be arranged in an appropriate
reading order. However, documents that occur in
real industries are mostly photos, faxes, scanned
copies, etc., which frequently have distortions or
rotations (Chen et al., 2024). For documents with
these characteristics or complex forms, it is difficult
to determine the appropriate reading order (Wang
et al., 2023).

In this paper, we present a practical DIE pipeline
for SER tasks, LOFI (Language, OCR, Form inde-
pendent Extraction) pipeline. Our experiments on
Korean medical bills and Japanese receipts demon-
strate its effectiveness, achieving entity-level F1
scores of 95.64% and 94.60%, respectively. Our
main contributions are:

• A flexible pipeline structure that accounts for
multiple factors in industrial DIE.

• Empirical evidence of satisfactory perfor-
mance on Korean and Japanese industrial doc-
uments without additional pre-training.

2 Related Works

In this section, we show related works on lan-
guage, OCR, and form methodologies on Docu-
ment Information Extraction (DIE) on Semantic
Entity Recognition (SER) tasks.

2.1 Language-independent Layout
Transformer

The development of pre-trained DIE models for
Low-Resource Languages (LRL) presents signif-
icant challenges. Acquiring enough LRL docu-
ments for pre-training is a time-consuming and ar-
duous task (Wang et al., 2022), which is added by
the scarcity of publicly available LRL documents.

The LiLT model has a structure that can address
these challenges. LiLT discovered that among
the text and layout, called bounding boxes, cru-
cial in DIE tasks, layout is relatively language-
independent (Wang et al., 2022). This allowed
for handling non-English documents by chang-
ing the text encoder layers of a DIE model
pre-trained on English documents to a multilin-
gual Pre-trained Language Model (PLM) (Wang
et al., 2022). This compatibility comes from the
language-independent interaction between layout
encoder layers and text encoder layers during com-
putation, resulting in independent effects of layout
and text. To handle LRL documents, we replace
the text encoder layers in the LiLT model structure
to a PLM for the respective language, enabling us
to process LRL documents.

2.2 Representation of spatial information
within documents

Models for DIE use text and its corresponding
layout called bounding boxes as inputs. In real-
world scenario documents, OCR engines are typi-
cally used to obtain text and bounding boxes. How-
ever, OCR engines may not provide the desired
text and bounding boxes depending on the linguis-
tic and structural characteristics of the document.

As mentioned in Introduction, Japanese doc-
uments lack spaces due to linguistic features,
while Korean documents have particles, result-
ing in bounding boxes being extracted in var-
ious forms (character-level, word-level, line-
level) (Kjøller Bjerregaard et al., 2022; Kim et al.,
2022; Bryan et al., 2023). As such, when OCR en-
gine results are extracted in such diverse forms, it
causes performance degradation in the SER model
that uses these results as input. VGT’s approach
to document layout analysis offers an alternative
method (Da et al., 2023). This method uses a tok-
enizer to divide text into tokens, then equally splits
the bounding boxes for each token and embeds it as
a grid feature. However, VGT’s uniform splitting
of bounding boxes fails to reflect the actual length
of tokens, which is a limitation. To address this
limitation, we enhanced the algorithm.

This approach allows us to generate consistent
token-level bounding boxes, independent of the
OCR engine used. We’ve named this process the
"Token-level box split" algorithm. This method
preserves the technical integrity of DIE while ad-
dressing challenges posed by varying OCR engine
results.
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Figure 1: An example of LOFI Pipeline for a Japanese receipt. Language independence is solved using LiLT as the backbone
model as shown as a teal box. OCR independence is solved using token-level box split algorithm as shown as a red box. Form
independence is solved using SPADE decoder as shown as a purple box.

2.3 Graph based parser
In (Xu et al., 2020b,a; Huang et al., 2022; Wang

et al., 2022), SER is performed using BIO tagging
by applying token classification to the Transformer
encoder. This method requires converting text and
bounding boxes into a 1D input format compati-
ble with transformer-based models. Consequently,
the order of spatial information must be adjusted to
align with entity units, enabling SER using BIO tag-
ging (Zhang et al., 2023). However, in real-world
scenarios, the numerous types of business docu-
ments used have diverse forms, limiting the ability
to determine an appropriate reading order (Wang
et al., 2023). This is mainly due to document fea-
tures such as figures, tables, paragraphs, and font
sizes. In particular, factors like document rota-
tion, distortion, and noise also have an impact. To
resolve these problems, we used a graph-based
methodology, the SPADE decoder (Hong et al.,
2022), in our pipeline.

3 LOFI Pipeline

In this section, we present the methodology
of solving language, OCR, form dependency
issues, and our LOFI (Language, OCR, Form
Independent) pipeline, a DIE pipeline for SER
tasks, as shown in Figure 1.

To outline LOFI pipeline process:

1. OCR and text alignment. Our own OCR en-
gine generates text and bounding box data

from document images. Then, to preprocess
1D positional information, the results are se-
quentially arranged from top-left to bottom-
right.

2. Token-level box split. Our own algorithm is
applied to the sorted text and bounding boxes,
to preprocess 2D positional information.

3. Model inference. The (token, token box) pairs
are put into LiLT for sequence output gen-
eration. The SPADE decoder processes this
output to produce ITC and STC results.

4. Outputs. The results are combined to generate
the final SER output.

The strengths of LOFI regarding the three chal-
lenges mentioned in Introduction are as follows.

Language Independence: Language models are
paired with tokenizers, and Pretrained Language
Models (PLMs) for specific languages typically use
data predominantly in that language for tokenizer
training. This ensures that tokens are structured to
suit the characteristics of the language.

As discussed in Section 2.1, LiLT utilizes a
model structure that can adapt to the PLM cor-
responding to the language of the target document,
enabling customized token configurations for Low-
Resource Languages (LRL).

In the teal box in Figure 1, we implement LiLT as
the base model, utilizing a language-specific PLM
for efficient token processing. Language-specific
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models tokenize sentences into more contextually
relevant tokens compared to multilingual models,
which may be less optimal for single-language
tasks and could suffer from parameter inefficien-
cies. Therefore, using an appropriate model en-
hances efficiency for our purposes.

OCR Independence: The model in our pipeline
uses text and layout called bounding boxes as input.
As mentioned in Section 2.2, the text and layout
obtained through the OCR engine can have differ-
ent ranges (character-level, word-level, line-level)
depending on the linguistic and structural complexi-
ties of documents. This different range of bounding
boxes results can lead to performance degradation
in the SER model, as the range of layout is dif-
ferent if the OCR engines used in inference are
different from those used in fine-tuning. For ex-
ample, when using word-level bounding boxes for
fine-tuning and line-level bounding boxes for infer-
ence, the layout ranges differently, which causes
performance degradation.

We use the token-level box split algorithm to
make the layout at the same level with any OCR
engine. The algorithm converts any bounding box
range (character-level, word-level, line-level) to the
same token-level bounding boxes, which allows
any OCR engine to be independent of the model’s
results. For details, refer to Algorithm 2 in the
Appendix.

Form Independence: Regardless of the docu-
ment format, OCR results need to be aligned for
human-readable order. However, as mentioned in
Section 2.3, this is a challenging task. Nevertheless,
a consistent alignment is needed when constructing
model inputs; a traditional method of Top-Left to
Bottom-Right(TL-BR) alignment is used.

Figure 1’s OCR & Text Alignment shows the
text input order aligned in TL-BR. In the middle
of the receipt, for items 13, 14, and 15, it fails to
align in the correct order of 15→13→14 due to
differences in bounding box positions. This is due
to rotation and distortion characteristics occurring
in real-world scenarios, along with complex docu-
ment forms, affect the TL-BR alignment based on
bounding box coordinates.

The SPADE decoder (Hong et al., 2022) operates
robustly even with the incorrect order information
by using the Initial Token Classification (ITC) and
Subsequent Token Classification (STC) layer of the
SPADE decoder. These two types of layers connect
with LiLT, receiving the last hidden states output
from LiLT to perform the downstream task. The

ITC layer classifies the entity type for the initial
token within the bounding box and the STC layer
classifies which tokens are connected to each other
for all tokens. In this process, it learns how tokens
within the same semantic entity are connected in
order. Therefore, to be form-independent, we used
the SPADE decoder in our pipeline.

4 Experiment Setting

To assess our pipeline’s performance, particu-
larly the model, we conduct experiments on two
types of Low-Resource Language (LRL) business
documents and two open datasets as shown in Ta-
ble 1. Due to personal information security con-
cerns, these datasets are not publicly available.

Dataset Language Type # of Entity Train Valid Test
Medical bills Ko Forms 68 829 98 -
Receipts Ja Receipts 16 990 110 -
FUNSD En Forms 3 149 50 -
CORD En Receipts 30 800 100 100

Table 1: Information on LRL business documents and open
datasets that were used to train for SER. # of Entity refers to
the total number of unique entities.

4.1 LRL business documents
Korean medical bills contain diverse medical

and financial information from various Korean hos-
pitals, including detailed patient records, treatment
specifics, complex pricing tables, and hospital de-
tails. They come in various formats such as faxes,
scans, and mobile phones. Japanese receipts are
general Japanese receipts similar to CORD (Park
et al., 2019) in Japanese. These documents con-
tain information about the store name, expenditure
details, taxes, etc, also in various types including
mobile photos.

Data preprocessing: We utilize the LOFI
pipeline described in Section 3. Our validation
dataset includes both clean images and manually
selected examples with rotation, distortion, and low
resolution, reflecting real-world conditions to as-
sess the pipeline’s robustness in diverse practical
implementation settings.

Model setting: For our SER experiments, we
employ various PLMs as text encoders, as we
named LOFI-en, LOFI-ko, LOFI-ja, LOFI-mul†,
LOFI-mul‡, and LayoutXLMº (SCUT-DLVCLab,
2024; KLUE, 2024; Ku-NLP, 2024; Facebook AI,
2024; Microsoft, 2024). As you can see from Ta-
ble 2, All models starting with LOFI- are based
on the LiLT model combined with a SPADE de-
coder. Consistently across all configurations, we
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Name Language Encoder Parameters Modality Image Embedding Korean medical bills Japanese receipts

LayoutXLMº Multi LayoutXLMBASE 369 M T + L + I ResNeXt101-FPN 95.58% 94.35%
LOFI-mul† Multi InfoXLMBASE + lilt-only-base 284 M T + L None 93.81& 94.60%
LOFI-mul‡ Multi XLMRoBERTaBASE + lilt-only-base 284 M T + L None 94.24& 94.10%
LOFI-ko Ko RoBERTaBASE + lilt-only-base 116 M T + L None 95.64% -
LOFI-ja Ja RoBERTaBASE + lilt-only-base 106 M T + L None - 93.78%

Table 2: Entity-level F1 scores of the LRL business documents.“T/L/I” denotes “Text/Layout/Image” modality.

use LiLT’s layout encoder (lilt-only-base) (SCUT-
DLVCLab, 2024) as the layout encoder layer. To
compare with other methodologies that can pro-
cess Korean or Japanese, our baseline model con-
sisted of LayoutXLM combined with the initialized
SPADE decoder weights.

4.2 Open datasets
We used FUNSD (Jaume et al., 2019) and

CORD (Park et al., 2019) to see the performance
on English datasets.

Data preprocessing: We use standardized pre-
processing for fair model comparison: 1) Use orig-
inal dataset text and bounding boxes. 2) Construct
1D input sequence using dataset-provided order.
3) Use dataset word-level bounding boxes with-
out token-level splitting. See Table 1 for dataset
details.

Model setting: For English datasets (FUNSD
& CORD), we combine LiLT-RoBERTa-en-
base (SCUT-DLVCLab, 2024) with the SPADE
decoder, denoted as LOFI-en. LayoutLM, Lay-
outLMv2, LayoutLMv3, LiLT, BROS use BIO tag-
ging for SER.

5 Experiment Results

We use the entity-level F1 score as the measure
standard (Wei et al., 2020) for both experiments.

5.1 LRL business documents
Table 2 presents the entity-level F1 score for

LRL business documents. For Korean medical
bills, LOFI-ko demonstrated relatively higher per-
formance on Korean documents, a LRL target,
without additional pre-training or vision informa-
tion, when compared to LayoutXLM. Furthermore,
with only 116M parameters, approximately 68.6%
fewer than LayoutXLM, our model offers signifi-
cant advantages in resource utilization and process-
ing speed.

For Japanese receipts, the multilingual model
combining lilt-infoxlm-base with a SPADE decoder
demonstrated the relatively higher performance,
surpassing LayoutXLM while using fewer parame-
ters and computational resources.

These findings highlight the effectiveness of our
approach for Korean and Japanese documents, even
in the absence of specific PLMs. F1 scores across
various language models indicate broad applicabil-
ity to diverse languages and document types. In-
terchangeable text encoders allow adaptation to in-
dustry needs. Our results demonstrate the model’s
effectiveness and potential for practical applica-
tions, especially where resource constraints and
multilingual capabilities are crucial.

5.2 Open datasets

Name Parameters Modality Image Embedding FUNSD CORD
LayoutLM 160 M T + L ResNet-101 (fine-tune) 79.27 % 94.72 %
LayoutLMv2 200 M T + L + I ResNeXt101-FPN 82.76 % 94.95 %
LayoutLMv3 133 M T + L + I Linear 79.38 % 96.80 %
BROS 110 M T + L None 83.05 % 95.73 %
LOFI-en 131 M T + L None 78.99 % 96.39 %

Table 3: Entity-level F1 scores of FUNSD and CORD datasets.

Table 3 shows the F1 scores for FUNSD (Jaume
et al., 2019) and CORD (Park et al., 2019). For
LayoutLMv3, we used word-level bounding boxes
for direct comparison. LOFI-en also used word-
level boxes without token-level splitting. BROS led
FUNSD (83.05%), while LayoutLMv3 led CORD
(96.80%).

LOFI-en was similar to LayoutLMv3 on CORD
(96.39%) but trailed BROS by 4% on FUNSD
(78.99%). This reveals LOFI’s need for ample fine-
tuning data, evident in performance differences be-
tween CORD (800 documents) and FUNSD (149
documents). The results highlight LOFI’s limita-
tions with limited fine-tuning data compared to
pre-trained models.

6 Ablation Study

6.1 Number of training data for fine-tuning
Additionally, we conducted an experiment to

determine the minimum number of training sam-
ples needed for satisfactory SER fine-tuning per-
formance. The experiment compared performance
across training data sizes ranging from 50 to 400
documents for Korean medical bills and Japanese
receipts using LOFI-ko, LOFI-ja, LOFI-mul†, and
LOFI-mul‡ models. Figure 2 demonstrates how
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Figure 2: Performance change based on the number of fine-
tuning training data samples. The x-axis represents the number
of train data. The y-axis represents the entity-level F1 score.

performance varies with different number of train-
ing data in SER.

While the required number of training data
may differ based on language, document structure,
and characteristics, achieving satisfactory perfor-
mance typically requires at least 300-400 docu-
ments. With fewer than 200 training documents,
there is at least 5% performance difference com-
pared to using the full training dataset. Given the
time and cost constraints of building a large training
dataset, research into methods for achieving robust
performance with fewer training data is crucial.

6.2 Layout encoder layers

Layout encoder Korean medical bills Japanese receipts
Pre-trained 0.9564 0.9290
Initialized 0.9259 0.9035

Table 4: Comparison of entity level f1 score based on the use
of pre-trained layout encoder weight. In random initialization,
the weights are drawn from a zero-mean Gaussian distribution.

We tested LRL business documents to see lan-
guage’s impact on layout encoder, as shown in
Table 4. Using Korean & Japanese RoBERTa for
text encoding, we compared performance with and
without English-based weights (lilt-only-base) for
the layout encoder layers. The LOFI pipeline, em-
ploying pre-trained layout layers weights, showed
3.05% higher performance on detailed statements
and 2.55% higher on Japanese receipts.

7 Use Cases

7.1 Automation of claim document processing
for Korean insurance companies

Korean insurance companies have recently
launched remote claim services, allowing cus-
tomers to submit documents via phone, fax, or

Figure 3: Before and after a Korean detailed medical bill
image goes through LOFI pipeline

scanned emails. This surge in remote claims has
increased the document processing workload. To
overcome this issue, insurance companies have be-
gun adopting document processing service. Fig-
ure 3 represents an example image of a Korean de-
tailed medical bill used to process in LOFI pipeline.

Our LOFI pipeline addresses specific needs in
this industry: protecting customer privacy by pro-
cessing documents on-premises, handling visual
noises in document images such as blur and distor-
tion of images from various channels, and manag-
ing numerous document types with format varia-
tions across institutions. This requires scalability
and efficiency within limited computing resources.

The LOFI pipeline successfully automated var-
ious insurance claim documents process. Clients
verified that our pipeline achieved an average accu-
racy of 97% across different document types. This
resulted in a reduction of processing time by over
60% and a decrease in staff requirements by 40%.
This case demonstrates the LOFI pipeline’s effec-
tiveness in addressing complex document process-
ing challenges in the Korean insurance industry.

7.2 Automation of receipts processing for
Japanese application service company

A Japanese application service company devel-
oped a tax-free declaration service to assist small
retail shops. Retailers can now register passport
photos and receipt information through a smart-
phone app. The service company then compares
the entered receipt content with the captured re-
ceipt image and handles the tax agency declaration
on behalf of the retailer. Initially relying on manual
data entry, the growing service required automation.
Our LOFI pipeline was implemented to automate
receipt processing, addressing challenges posed by
Japanese text characteristics and varying receipt
layouts. The lack of spacing in Japanese text on
receipts poses challenges for DIE.

Therefore, through collaboration, we applied the
LOFI pipeline to the tax-free declaration service,
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developing an automated function for the product
information input and verification process. This
demonstrates the LOFI pipeline’s effectiveness in
handling complex document processing tasks in
LRL and complex document formats.

8 Conclusions and Future Work

In this paper, we propose LOFI, a DIE pipeline
for SER tasks in Low-Resource Language (LRL)
business documents. The LOFI pipeline extracts
text and bounding boxes from image documents
via OCR, preprocesses them using a token-level
box split logic, and performs SER fine-tuning with-
out pre-training by replacing the PLM. It achieves
language independence through PLM replacement,
OCR independence via token-level box split logic,
and form independence by extracting information
despite image rotation or distortion. Demonstrated
on Korean and Japanese datasets, we anticipate its
applicability to other LRL business documents.

Future research will focus on data augmentation,
efficient annotation, and improved decoder archi-
tectures to handle document challenges to enhance
AI capabilities for diverse business scenarios and
document types.

9 Limitations

The practical implementation of the LOFI
pipeline in the industry is constrained by the need
for extensive training data. For instance, insurance
companies dealing with Korean medical policies
must process a wide variety of medical documents,
each requiring specialized knowledge for accurate
annotation, and Korean medical bills is one of them.
The creation of training datasets is restricted by the
need for domain expertise, time-intensive labor,
and the complexity of establishing clear annotation
guidelines. Also, the documents used in the exper-
iment cannot be reproduced because they contain
security policies and sensitive personal informa-
tion.

Moreover, the LOFI pipeline’s encoder-based
model is susceptible to OCR errors deriving from
low-quality images or noise, as it relies directly on
OCR output for information extraction. For real-
world automation, addressing these limitations is
crucial. Future research will focus on develop-
ing methods to decrease the impact of OCR errors
and post-processing the results, thereby enhancing
the robustness and applicability of document in-
formation extraction systems in diverse business

contexts.

10 Ethics Statement

Our research focuses on developing a language,
OCR, and form independent pipeline to enhance
DIE efficiency in industrial applications. Through-
out this process, we adhered strictly to ethical
guidelines, including those set by the EMNLP con-
ference for data usage. As researchers, we take full
responsibility for the study’s ethical integrity and
are committed to maintaining the highest standards
in DIE research. This approach reflects our under-
standing of the broader implications of our work,
balancing technological advancement with ethical
considerations to ensure our contributions are both
innovative and responsible.

Acknowledgments

References
Tom Bryan, Jacob Carlson, Abhishek Arora, and

Melissa Dell. 2023. Efficientocr: An extensible,
open-source package for efficiently digitizing world
knowledge. arXiv preprint arXiv:2310.10050.

Yufan Chen, Jiaming Zhang, Kunyu Peng, Junwei
Zheng, Ruiping Liu, Philip Torr, and Rainer Stiefel-
hagen. 2024. Rodla: Benchmarking the robustness
of document layout analysis models. arXiv preprint
arXiv:2403.14442.

Lei Cui, Yiheng Xu, Tengchao Lv, and Furu Wei. 2021.
Document ai: Benchmarks, models and applications.
arXiv preprint arXiv:2111.08609.

Cheng Da, Chuwei Luo, Qi Zheng, and Cong Yao. 2023.
Vision grid transformer for document layout analysis.
In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 19462–19472.

Facebook AI. 2024. Xlm-roberta-base.
https://huggingface.co/FacebookAI/
xlm-roberta-base.

Shohei Higashiyama, Masao Ideuchi, Masao Utiyama,
Yoshiaki Oida, and Eiichiro Sumita. 2022. A
japanese corpus of many specialized domains for
word segmentation and part-of-speech tagging. In
Proceedings of the 3rd Workshop on Evaluation and
Comparison of NLP Systems, pages 1–10.

Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok
Hwang, Daehyun Nam, and Sungrae Park. 2022.
Bros: A pre-trained language model focusing on text
and layout for better key information extraction from
documents. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pages 10767–
10775.

1062

https://huggingface.co/FacebookAI/xlm-roberta-base
https://huggingface.co/FacebookAI/xlm-roberta-base


Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, and
Furu Wei. 2022. Layoutlmv3: Pre-training for doc-
ument ai with unified text and image masking. In
Proceedings of the 30th ACM International Confer-
ence on Multimedia, pages 4083–4091.

Guillaume Jaume, Hazim Kemal Ekenel, and Jean-
Philippe Thiran. 2019. Funsd: A dataset for form
understanding in noisy scanned documents. In 2019
International Conference on Document Analysis and
Recognition Workshops (ICDARW), volume 2, pages
1–6. IEEE.

Geonuk Kim, Jaemin Son, Kanghyu Lee, and Jaesik
Min. 2022. Character decomposition to resolve class
imbalance problem in hangul ocr. arXiv preprint
arXiv:2208.06079.

Nikolaj Kjøller Bjerregaard, Veronika Cheplygina, and
Stefan Heinrich. 2022. Detection of furigana text in
images. arXiv e-prints, pages arXiv–2207.

KLUE. 2024. Roberta-base (korean). https://
huggingface.co/klue/roberta-base.

Ku-NLP. 2024. Roberta-base japanese char
wwm. https://huggingface.co/ku-nlp/
roberta-base-japanese-char-wwm.

David Lewis, Gady Agam, Shlomo Argamon, Ophir
Frieder, David Grossman, and Jefferson Heard. 2006.
Building a test collection for complex document in-
formation processing. In Proceedings of the 29th
annual international ACM SIGIR conference on Re-
search and development in information retrieval,
pages 665–666.

Chuwei Luo, Changxu Cheng, Qi Zheng, and Cong
Yao. 2023. Geolayoutlm: Geometric pre-training
for visual information extraction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7092–7101.

Microsoft. 2024. Infoxlm-base. https://
huggingface.co/microsoft/infoxlm-base.

Seunghyun Park, Seung Shin, Bado Lee, Junyeop Lee,
Jaeheung Surh, Minjoon Seo, and Hwalsuk Lee. 2019.
Cord: a consolidated receipt dataset for post-ocr
parsing. In Workshop on Document Intelligence at
NeurIPS 2019.

SCUT-DLVCLab. 2024. Lilt-roberta-en-base.
https://huggingface.co/SCUT-DLVCLab/
lilt-roberta-en-base.

Jaehyung Seo, Hyeonseok Moon, Jaewook Lee, Sug-
yeong Eo, Chanjun Park, and Heui-Seok Lim. 2023.
Chef in the language kitchen: A generative data aug-
mentation leveraging korean morpheme ingredients.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
6014–6029.

Yuanhe Tian, Yan Song, Fei Xia, Tong Zhang, and Yong-
gang Wang. 2020. Improving chinese word segmen-
tation with wordhood memory networks. In Proceed-
ings of the 58th annual meeting of the association for
computational linguistics, pages 8274–8285.

Jiapeng Wang, Lianwen Jin, and Kai Ding. 2022. Lilt:
A simple yet effective language-independent layout
transformer for structured document understanding.
arXiv preprint arXiv:2202.13669.

Jiapeng Wang, Chongyu Liu, Lianwen Jin, Guozhi
Tang, Jiaxin Zhang, Shuaitao Zhang, Qianying Wang,
Yaqiang Wu, and Mingxiang Cai. 2021. Towards
robust visual information extraction in real world:
new dataset and novel solution. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 35, pages 2738–2745.

Renshen Wang, Yasuhisa Fujii, and Alessandro Bis-
sacco. 2023. Text reading order in uncontrolled con-
ditions by sparse graph segmentation. In Interna-
tional Conference on Document Analysis and Recog-
nition, pages 3–21. Springer.

Mengxi Wei, Yifan He, and Qiong Zhang. 2020. Robust
layout-aware ie for visually rich documents with pre-
trained language models. In Proceedings of the 43rd
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
2367–2376.

Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu
Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha
Zhang, Wanxiang Che, et al. 2020a. Layoutlmv2:
Multi-modal pre-training for visually-rich document
understanding. arXiv preprint arXiv:2012.14740.

Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu
Wei, and Ming Zhou. 2020b. Layoutlm: Pre-training
of text and layout for document image understanding.
In Proceedings of the 26th ACM SIGKDD interna-
tional conference on knowledge discovery & data
mining, pages 1192–1200.

Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yi-
juan Lu, Dinei Florencio, Cha Zhang, and Furu Wei.
2021. Layoutxlm: Multimodal pre-training for multi-
lingual visually-rich document understanding. arXiv
preprint arXiv:2104.08836.

Chong Zhang, Ya Guo, Yi Tu, Huan Chen, Jinyang
Tang, Huijia Zhu, Qi Zhang, and Tao Gui. 2023.
Reading order matters: Information extraction from
visually-rich documents by token path prediction.
arXiv preprint arXiv:2310.11016.

1063

https://huggingface.co/klue/roberta-base
https://huggingface.co/klue/roberta-base
https://huggingface.co/ku-nlp/roberta-base-japanese-char-wwm
https://huggingface.co/ku-nlp/roberta-base-japanese-char-wwm
https://huggingface.co/microsoft/infoxlm-base
https://huggingface.co/microsoft/infoxlm-base
https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base
https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base


A Appendix

A.1 Fine-tuning configuration

Dataset Train Epoch Learning Rate Batch Size Max Length
Korean medical bills 50 1e-5 24 512
Japanese receipts 100 5e-5 32 512
FUNSD 100 5e-5 4 512
CORD 100 5e-5 16 512

Table 5: Hyperparameter setting for LRL business documents
and open datasets.

The base configurations for all models in our
experiments are 768 hidden size, 12 self-attention
heads, 3072 feed-forward size, and 12 encoder lay-
ers. This standardized approach to model architec-
ture and fine-tuning allows for more meaningful
comparisons across different language models and
datasets.

A.2 Text alignment algorithm

Algorithm 1 Top-Left to Bottom-Right text align-
ment algorithm

Require: Set of bounding boxes B, height toler-
ance ϵ

Ensure: Sorted list of bounding boxes S
1: function SORTBOUNDINGBOXES(B, ϵ)
2: S ← ∅
3: while B ̸= ∅ do
4: R← ∅ ▷ Current row
5: href ← HEIGHT(B[1])
6: for box ∈ B do
7: if |HEIGHT(box)−href | ≤ ϵ then
8: R← R ∪ {box}
9: end if

10: end for
11: Sort R from left to right
12: S ← S ∪R
13: B ← B \R
14: end while
15: return S
16: end function
17: function HEIGHT(box)
18: return box.height
19: end function

20: procedure MAIN

21: B ← LOADBOUNDINGBOXES(‘path’)
22: ϵ← predefined tolerance value
23: S ← SORTBOUNDINGBOXES(B, ϵ)
24: Output S
25: end procedure

Algorithm 1 is designed to sort all bounding
boxes extracted by OCR engine. It compares the
differences in y-axis positions between boxes. If
the absolute difference is below a certain thresh-
old, the boxes are considered to be on the same
line. Starting from the box with the smallest
y-coordinate value, it sequentially identifies and
stores boxes that are on the same line. By repeating
this process for all boxes, we obtain a sorted result
that utilizes the layout of the bounding boxes.

A.3 Word-level and segment-level bounding
boxes

Figure 4: Blue boxes represent segment-level bounding boxes
and red boxes represent word-level bounding boxes

Figure 4 illustrates an example visualization of
layout information from the FUNSD dataset, show-
ing both segment-level bounding boxes and word-
level bounding boxes. Segment-level bounding
boxes represent the layout information for the en-
tire range of important information, known as en-
tities. Word-level bounding boxes provide layout
information at the individual word level. As evident
from the figure, segment-level bounding boxes,
which represents entity layouts, can encompass
multiple word-level bounding boxes.

A.4 Token-level box split

Algorithm 2 shows the logic for converting text
and bounding boxes extracted by OCR engine into
tokens and token boxes. We use the model’s tok-
enizer to tokenize the text. The resulting tokens are
then divided into character units to determine the
text type, which refers to character-level classifica-
tions such as numbers, special symbols, uppercase
letters, and lowercase letters. This classification is
necessary because the character size in documents
vary by type. Then we pre-define the ratios that
exist for each character type. By using these ratios
to split the bounding box proportionally for each
token, we determine token boxes that correspond
to the size of each token. This process is applied
uniformly to all text and bounding boxes, which
then we are able to obtain a result where the origi-
nal inputs are split into tokens and corresponding
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token boxes.

Algorithm 2 Token-Level box split Algorithm

Require: Image I , OCR engine O, Tokenizer T
Ensure: Tokenized text T , Bounding boxes B

1: function TOKENLEVELBOXSPLIT(I,O, T )
2: (text, boxes)← O(I) ▷ Perform OCR
3: T ← T (text) ▷ Tokenize text
4: C ← IDENTIFYCHARTYPES(T )
5: B ← CALCTOKENBOXES(T,C, boxes)
6: return T,B
7: end function
8: function IDENTIFYCHARTYPES(T )
9: C ← {}

10: for each token in T do
11: ctoken ← [GETCHARTYPE(char) for each char in token]

12: C ← C ∪ {ctoken}
13: end for
14: return C
15: end function
16: function CALCTOKENBOXES(T,C, boxes)
17: B ← {}
18: for i← 1 to |T | do
19: sizei ←

∑|Ci|
j=1 GETBOXSIZE(Ci[j])

20: B ← B ∪ {ADJUSTBOX(boxes[i], sizei))}
21: end for
22: return B
23: end function
24: function GETCHARTYPE(char)
25: return CharacterClassification(char) ▷

Returns character type classification
26: end function
27: function GETBOXSIZE(char_type)
28: return PredefinedSizeRatio(char_type) ▷

Returns size ratio based on character type
29: end function
30: function ADJUSTBOX(box, size)
31: return ModifiedBox(box, size) ▷ Adjusts

original OCR box based on calculated size
32: end function

Figure 5 shows an example of before and after
token-level box split algorithm is applied. Fig-
ure 5 (a) represents an example of text and bound-
ing boxes extracted by our OCR engine from a
Japanese receipt image. (b) illustrates the result
after applying the algorithm. This shows more
meaning-based bounding boxes to give more accu-
rate results.

(a)

(b)

Figure 5: (a) represents the bounding boxes extracted from
the OCR engine and (b) represents token unit boxes divided
by token-level box split algorithm.

1065



A.5 Annotation
We describe the annotation process for the train-

ing and evaluation data and our experience with
it.

1. We first reviewed open datasets and sought to
understand the business processes involving
the documents. Through this separate process,
we were able to construct an annotation guid-
ance framework.

2. To minimize subjective judgements, we col-
lected and discussed exceptional cases that
arose during the annotation process and re-
vised the annotation guidance accordingly.
Multiple annotators could perform the task
simultaneously using an annotation tool.

3. Finally, we ensured higher data quality by
having different annotators cross-check each
other’s work, resulting in a cleaner and more
reliable dataset.

During the annotation process, we also conducted
model training with qualitative evaluations, con-
firming that the inference results improved through
the process mentioned above.

Step Number of people / period

Korean medical bills Japanese receipts

Research 2 people / 2 weeks 1 person / 4 weeks
Annotation 4 people / 5 weeks 2 people / 2.5 weeks
Inspection 3 people / 4 weeks 2 people / 1 week

Table 6: Duration and personnel required for each an-
notation stage of Korean medical bills and Japanese
receipts.

A.6 Supplementary Data Information

Dataset Type Length Total entities

Korean medical bills Train 1370 410,735
Korean medical bills Valid 1233 21,337

Japanese receipts Train 293 21,731
Japanese receipts Valid 280 2,572

FUNSD Train 845 7,411
FUNSD Valid 1011 2,332

CORD Train 118 11,106
CORD Valid 103 1,247
CORD Test 113 1,336

Table 7: Length refers to the average text length that
appears on a single image. Total entities refers to the
total number of entities across all images.

Table 7 shows the statistics of the datasets used
in the experiment. Tables 8 and 9 show how we
defined the entity classes for the Korean medical
bills and Japanese receipt data.

As for the korean medical bills, we defined the
entities in a format necessary for real-world sce-
narios as follows. For detailed estimation reports,
entities are categorized into those outside the table
and those inside the table. To differentiate between
these, entities are composed of Key and Value. Key:
A unique item that serves as a reference point for lo-
cating a specific value, and does not repeat. Value:
The value corresponding to the Key. Entities inside
the table are composed of Head and Line. Head:
The equivalent of a column name in a table, and is
a unique, non-repeating item. Line: The value cor-
responding to the Head, which may be a repeated
item. We distinguished each entity as either Key,
Value, Head, or Line depending on whether it is
outside or inside the table. To provide a clearer
understanding, we will share some examples of the
entities defined in Korean medical bills.

As for the Japanese receipts, we only constituted
of Key, Value. We share all the entities in the
following table.
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Type Entity Appearance Description

Patient

ID Key/Value A unique identifier assigned to the patient within the hos-
pital’s system.

Name Key/Value The full legal name of the patient.
Period Key/Value The timeframe during which the medical history statement

is relevant. This could specify the duration of the patient’s
treatment, admission dates, or the period over which the
medical services were provided.

Class Key/Value This may refer to the classification of the patient’s insur-
ance, the category of service (e.g., inpatient, outpatient),
or another relevant classification system used by the hos-
pital to categorize patients.

Hospital

Name Key/Value The official name of the hospital or medical facility.
Representative Key/Value The name or title of the hospital representative responsible

for the medical history statement.
Subject Key/Value The main topic or purpose of the medical history state-

ment.

Medical Treatment

Category Head/Line The classification of the medical treatment or service.
Date Head/Line The date when the medical treatment or service was ad-

ministered.
Item Head/Line A description of the specific medical service, procedure,

medication, or item provided to the patient.
Item Code Head/Line A standardized code associated with the medical item or

service.
Number of Days Head/Line The duration for which a particular treatment or service

was administered, measured in days.
Quantity/Dose Head/Line The amount of medication administered or the quantity of

a service provided.
Unit Price Head/Line The cost per single unit of the medical item or service.
Price Head/Line The total cost for the specific medical item or service,

typically calculated as Quantity/Dose multiplied by Unit
Price.

Total

Total Key/Value The aggregate amount due for all medical treatments and
services listed.

Subtotal Key/Value The intermediate total calculated by summing amounts
grouped by Category or Date.

Table 8: Descriptions of entity types and their corresponding keys and values in korean medical bills. Although the
total number of unique entities is 68, only representative entities are shown here.

Type Entity Appearance Description

Store Name Only Value The name of the store or seller.

Product

Name Only Value The name of the product or item.
Code Only Value The code of the product or item.
Quantity Only Value The quantity of the product purchased.
Unit price Only Value The price per unit of the product.
Price Only Value The total price for this product (quantity * unit price).
Tax Key/Value Tax information for the product.
Discount Key/Value The discount amount.

Payment
Subtotal Key/Value The total subtotal amount (before tax and discounts).
Total Key/Value The final total amount (after tax and discounts).
Tax total Key/Value The total tax amount.

Table 9: Descriptions of entity types and their corresponding keys and values in japanese receipts.
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