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Abstract

Scaling laws in language modeling traditionally
quantify training loss as a function of dataset
size and model parameters, providing compute-
optimal estimates but often neglecting the im-
pact of data quality on model generalization.
In this paper, we extend the conventional un-
derstanding of scaling law by offering a micro-
scopic view of data quality within the original
formulation – effective training tokens – which
we posit to be a critical determinant of per-
formance for parameter-constrained language
models. Specifically, we formulate the pro-
posed term of effective training tokens to be
a combination of two readily-computed indi-
cators of text: (i) text diversity and (ii) syn-
theticity as measured by a teacher model. We
pretrained over 200 models of 25M to 1.5B pa-
rameters on a diverse set of sampled, synthetic
data, and estimated the constants that relate text
quality, model size, training tokens, and eight
reasoning task accuracy scores. We demon-
strated the estimated constants yield +0.83 Pear-
son correlation with true accuracies, and ana-
lyzed it in scenarios involving widely-used data
techniques such as data sampling and synthesis
which aim to improve data quality.

1 Introduction

Recent advancements in language model (LM) de-
velopment have been significantly influenced by
the exploration of scaling laws, which articulate
the relationship between training loss, dataset size,
and the number of model parameters (Hestness
et al., 2017; Kaplan et al., 2020; Aghajanyan et al.,
2023). These scaling laws have been instrumental
in predicting the computational resources necessary
for training increasingly large models and have pro-
vided a framework for understanding how model
performance scales with data and parameters (Hoff-
mann et al., 2022; Kaplan et al., 2020). However,

∗ Equal contribution.
† Work done during an internship at Meta.

these laws primarily focus on the quantity of data
and model size, often underestimating the critical
role of data quality in model generalization.

In this work, we challenge the prevailing focus1

on merely increasing data volume and model size
by emphasizing the importance of data quality, par-
ticularly in scenarios constrained by the number of
model parameters. We argue that for sub-billion
parameter models, the quality of data—or what we
term as effective training tokens – plays a more
decisive role in model performance than previously
recognized. This perspective shifts the paradigm
from a quantity-centric view to a quality-centric
approach in the development of language models.

Further, we provide qualitative measures of stan-
dard data refinement techniques including data sam-
pling (Penedo et al., 2023; Wang et al., 2024; Al-
balak et al., 2024) and text synthesis (Liu et al.,
2024), applied to a pretraining corpus such as Re-
finedWeb (Penedo et al., 2023). This helps to for-
mulate the relationship between the diversity and
syntheticity of pretraining data in order to compute
the number of effective training tokens, which eval-
uate the impact of data quality in terms of model
size and the token number. Further, we conduct
extensive experiments across eight different bench-
marks to evaluate the impact of data refinement
techniques which allow us to significantly outper-
form models trained on randomly selected data
samples, across a spectrum of model sizes ranging
from 25 million to 1.5 billion parameters.

By integrating the notion of effective token size
into the scaling law formulation, we extend the
existing scaling law formulation to better capture
the nuances of data quality. Our results underscore
the pivotal role of high-quality data in training effi-
cient and powerful language models, particularly in

1Both Kaplan et al. (2020) and Hoffmann et al. (2022)
formulate scaling law as minimizing loss w.r.t. compute that
is parameterized by number of model parameters and training
tokens.

80



parameter-constrained settings. The contributions
of this paper are as follows:

1. We extend the conventional scaling law, tra-
ditionally expressing training loss as a func-
tion of data quantity and model parameters,
and incorporate the concept of effective token
size. This modification emphasizes the impor-
tance of data quality in the scaling equation,
addressing a critical oversight in previous for-
mulations.

2. We investigate the revised scaling law in the
context of data refinement techniques such as
data selection (e.g. deduplication) and synthe-
sis and investigate their relations to data qual-
ity metrics such as diversity and syntheticity.
Our finding underscores the potential of data
quality, rather than sheer quantity, to enhance
model performance.

2 Background

Chinchilla scaling law (Hoffmann et al., 2022)
provides a predictive framework for estimating
model training loss, considering the number of
training tokens and model parameters. Initially de-
signed to identify optimal compute settings for ex-
tensive pretraining—a costly and time-consuming
endeavor—these laws are crucial for optimizing
computational resources. Recent studies by Abbas
et al. (2023); Liu et al. (2024); Goyal et al. (2024)
emphasize the pivotal role of data quality in model
pretraining, underscoring the need for revising scal-
ing law formulations.

On the other hand, data refinement can be cat-
egorized into non-transformative and transforma-
tive types (Zhao et al., 2023). Non-transformative
refinements involve selective curation of data sam-
ples without altering their core characteristics. In
contrast, transformative refinements generate new
text data, rearranging and introducing new tokens,
thus impacting training token distributions and data
quality. This significantly affects the effective num-
ber of training tokens used in model training.

In non-transformative refinements, data dedu-
plication is essential for preventing model gen-
eralization issues by removing duplicate docu-
ments (Lee et al., 2022; Penedo et al., 2023; Tiru-
mala et al., 2024). This process not only reduces
the number of training tokens but also enhances
the quality and effectiveness of the remaining to-
kens, improving model performance (Muennighoff

et al., 2024; Lee et al., 2022). Data selection, an-
other non-transformative method, involves choos-
ing an optimal data subset from a larger corpus for
model training. Both approaches aim to enhance
model performance, reduce computational costs,
and maintain evaluation metric integrity (John and
Draper, 1975; Murphy, 2012).

Transformative refinements, such as synthetic
data generation through instructional prompts, are
becoming popular (Long et al., 2024; Chung et al.,
2023; Ding et al., 2024). This approach creates
new data to fill existing dataset gaps or introduce
new learning scenarios. Integrating synthetic data
into large-scale pretraining has significantly im-
proved model robustness and generalization (Li
et al., 2023; Maini et al., 2024; Liu et al., 2024).
Synthetic data generation allows for controlled
training dataset expansion, ensuring exposure to
diverse inputs and scenarios (Adler et al., 2024).

Generally, data refinements are crucial in shap-
ing the training landscapes of modern machine
learning models, directly influencing training token
distribution and quality, thereby enhancing train-
ing efficiency and effectiveness in line with scaling
laws (Adler et al., 2024).

3 Formulating Data Quality

Here we adopt two popular metrics to measuring
text quality that are easy to compute on large-scale
pretraining data, which is an important consider-
ation when measuring data quality of pretraining
sets.

Diversity: Following Shaib et al. (2024), we uti-
lize the compression ratio, which has been demon-
strated to be effective for large-scale pretraining
datasets and correlates well with other diversity
metrics (Figure 4). Past metrics generally quantify
the number of repeated substrings across outputs.
Among these, the token-type ratio is calculated by
dividing the count of unique tokens by the total
number of tokens in a text. To capture the lexical
dynamics across varying text lengths, the moving
average token type ratios (MATTRs) were intro-
duced, providing a robust measure that is insensi-
tive to text length (Covington and McFall, 2010).
This metric focuses on the frequency of individual
word repetition within text segments and does not
account for longer repeated sequences.

To address longer sequences, the concept of
token-type ratio has been expanded through the
introduction of n-gram diversity, as explored in
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CR NGD TTR MATTR Self-Rep

CR

NGD

TTR

MATTR

Self-Rep

1 0.95 0.71 0.92 0.69

0.95 1 0.68 0.79 0.79

0.74 0.61 1 0.66 0.69

0.92 0.79 0.66 1 0.39

0.69 0.76 0.69 0.39 1

Figure 1: Correlations between text diversity scores on 1%
of RefinedWeb (Penedo et al., 2023). Similar to (Shaib et al.,
2024), compression ratio (CR) correlates strongly with most
other diversity metrics.

recent studies (Padmakumar et al., 2023; Meister
et al., 2023; Li et al., 2016). Additionally, the met-
ric of self-repetition has been developed to assess
the tendency of language models to repeat long n-
grams across different outputs (Salkar et al., 2022),
which measures language model’s inclination to-
wards redundancy in longer sequences. To this end,
we employ text compression algorithms designed
to identify redundancy in sequences of variable
length. We use gzip (Gailly and Adler, 1992) to
compress the concatenated text of all outputs gen-
erated by a model. The compression ratio, which
compares the size of the original file to that of the
compressed file, serves as an indicator of redun-
dancy:

CR(D) = Original size of D ⊕ (in bytes)
Compressed size of D ⊕ (in bytes)

Dr(D) = CR−1(D) (1)

High compression ratios suggest greater redun-
dancy, indicating lower diversity within the text
data. Therefore, diversity is defined as Dr(D),
where higher means more diverse text.

Syntheticity: We estimate the syntheticity of
data points in our dataset using the perplexity met-
ric, which is calculated with a teacher-model, i.e.
Llama-2 7B chat (Touvron et al., 2023)2. This
model choice is strategic because teacher models
are known for their robust performance across a
variety of benchmarks and their alignment with
safety choices, making them reliable for general
evaluations without needing to tailor them to spe-
cific downstream tasks. Perplexity, in this context,

2This smaller pretrained model is selected due to practical
concerns over the total scoring time.

measures how well the teacher model predicts a
sequence of subword tokens, with lower values
indicating higher predictability and, by extension,
higher syntheticity. A low perplexity score sug-
gests that the data point is well-represented by the
model’s learned patterns, which could indirectly
indicate that it is more relevant or useful for sim-
ilar tasks or applications. Hence syntheticity is
inversely proportional to perplexity and is then de-
fined as follows:

S(D) = exp
−1 (− 1

M

M

∑
i=1

logP (wi∣w<i)) (2)

The formula above calculates the inverse of the
exponential of the negative average log-likelihood
of predicting each subword token in the document
D, given all previous tokens. This quantifies how
expected the tokens are, given the model’s current
knowledge state, thus providing a direct measure
of how typical or atypical the sequence is within
the context of the teacher model.

4 Scaling Law with Data Quality

We propose to modify the third approach of the
Chinchilla scaling law (Hoffmann et al., 2022)
which originally models the losses in training
large language models with the functional form
E + A

Nα + B
Dβ with the constants: (E = 1.89, A =

463.3, α = 0.345, B = 12530, β = 0.452)3. In
this formulation, (E) represents the baseline loss,
akin to the entropy of natural text under an ideal
generative process, setting the theoretical minimum
loss achievable with data D and model parameter
N .

In this work, we model the zero-shot accuracy
on common sense reasoning as we postulate that
the score provides an indication on how much rea-
soning ability a given data D could possibly instill.
To incorporate data quality into this framework,
we propose to use a quality term Q to provide a
quality-adjusted number of training tokens (Dq),
combining Eq. 1 and Eq. 2:

Dq = D ⋅ exp(c1 ⋅ diversity + c2 ⋅ syntheticity)
= D ⋅ exp(c1 ⋅ Dr(D) + c2 ⋅ S(D)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

Scaling factor Q

) (3)

where (c1) and (c2) are scaling factors that adjust
(Dq) to account for the syntheticity and diversity of

3Later work from Besiroglu et al. (2024) re-estimated the
constants from the original Chinchilla scaling law with more
plausible confidence level.
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the training tokens. Here we revise the scaling law
to predict the average zero-shot accuracy G across
eight reasoning tasks4 instead of loss as given by:

Ĝ(N,D) = R(E +
A

Nα +
B

D
β
q

)
R(x) = min(max(x, 0), 1) (4)

This revision integrates the quality-adjusted
number of training tokens (Dq) into the accuracy
function, allowing for a more nuanced understand-
ing of how data quality impacts model training and
performance.

5 Data Refinement: A Case Study

We explore two prevalent data refinement tech-
niques aimed at enhancing data quality: data se-
lection and data synthesis. These methods have
become standard practices in the preparation of
pretraining datasets, significantly influencing text
diversity and syntheticity and downstream perfor-
mance as shown in various studies (Abdin et al.,
2024; Albalak et al., 2024).

To put them in context, we present a comparative
analysis in Figure 2, which displays the relationship
between effective token counts Dq and the total
number of tokens D. It clearly demonstrates that
data synthesis has a more substantial impact on
increasing the effective token count compared to
data selection and the use of original datasets. This
underscores the value of synthesis in optimizing
data quality for model training.

5.1 Data Selection
Coreset Selection. One way to create a higher
quality dataset is via importance sampling (Xie
et al., 2023; Wang et al., 2018), which transformed
input data into n-gram based feature vectors and
compares the feature distributions between the raw
and target datasets and assigns importance weights
to each example.

This selectively enhance the dataset’s synthetic-
ity and directly influenced the Dq term in the re-
vised scaling law, increasing the syntheticity factor
without compromising on diversity. While this
approach assumes the knowledge of target applica-
tions, it also allows us to easily explore the impact

4We employ ARC-easy, ARC-challenge (Clark et al.,
2018), BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020),
SIQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019),
OBQA (Mihaylov et al., 2018), and WinoGrande (Sakaguchi
et al., 2021) as the tasks that define the score Ĝ(N,D).
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Figure 2: This plot illustrates the impact of various data
refinement techniques on the effective token count (Dq) as the
number of tokens is scaled up. Experiments were performed
with RefinedWeb (Penedo et al., 2023) data.

of having more in-domain data on the data quality
and losses.

Text Deduplication. An orthogonal approach is
text deduplication (Sorscher et al., 2022; Penedo
et al., 2023, 2024) which removes redundant data,
ensuring a balanced dataset that does not favor
frequently occurring examples. This method modu-
lates the diversity and quality of the dataset, which
is crucial for robust model training. The dedupli-
cation process effectively controlled the Dq term
by filtering out excessive redundancy, which could
lead to overfitting if left unchecked.

5.2 Synthetic Data

In transformative data refinement, one popular ap-
proach is to utilize a teacher model trained on
a diverse and comprehensive dataset to generate
synthetic data (Narayan et al., 2024; Abdin et al.,
2024). We provided the instruction prompts in
the appendix, which aim to paraphrased pretrain-
ing documents. In general, the synthetic data
broadened the diversity of the dataset and intro-
duced more complex token patterns, which can
lead to improved model performance, particularly
in providing complex scenarios that were not well-
represented in the original dataset.

6 Experimental Setup

Network and Training Details. For all experi-
ments, we pretrain the decoder-only transformer
using causal language modeling objectives on se-
lected datasets, where model weights were ran-
domly initialized. We evaluated with the language
models of sizes {25, 50, 75, 125, 350, 500}M and
1.5B parameters which allowed us to explore how
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Figure 3: Plots of revised scaling law with qualitative data measurements. Left: Plot of averaged accuracy against effective
tokens Dq where Dq = D ⋅ exp(c1 ⋅Dr(D)+ c2 ⋅S(D)). The accuracy values are the reference values. Right: Impact of scaling
factor Q on both diversity and syntheticity. Interestingly, we found that diversity needs to be reduced while syntheticity needs to
be increased for scaling factor to go up, which can then improve overall accuracy. We include the constant values in Table 1.

model capacity impacts the final results. Pretrain-
ing was conducted on a distributed computing setup
with 32 GPUs across 4 nodes, each equipped with
an H100 graphics card.

Data Preparations. For our evaluations, we
benchmarked the models across eight common
sense reasoning tasks in a zero-shot setting, includ-
ing ARC-easy, ARC-challenge (Clark et al., 2018),
BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020),
SIQA (Sap et al., 2019), HellaSwag (Zellers et al.,
2019), OBQA (Mihaylov et al., 2018), and Wino-
Grande (Sakaguchi et al., 2021). We selected a
random sample of 16M JSON objects from Re-
finedWeb, formatted in JSONL. The dataset was
then segmented into increments of 10% ranging
from 10% to 100% of the data, and used to pre-
train seven different model sizes.

The token counts for these models were set
at {2, 4, 6, 8, 10} billion tokens, with each model
trained using an equivalent amount of computa-
tional resources. Our hardware setup included 4
nodes, each equipped with 8 GPUs, running for
100,000 steps with a context length of 2048 and a
batch size of 16. This configuration ensured that
each model was sufficiently trained, with the largest
dataset undergoing approximately 9.5 epochs and
the smallest dataset experiencing about 48.1 epochs.
Intermediate model sizes were trained for epochs
falling between these two extremes.

To ensure a diverse range of training data, we
constructed several datasets from multiple sources,
including random data (8B tokens), selected data
(7B tokens), and synthetic data (2B tokens). The se-
lected data was curated based on the evaluation set

of the eight tasks using importance sampling (Xie
et al., 2023), while the synthetic data was generated
through instructional prompts aimed at paraphras-
ing each pretraining document. In contrast, the ran-
dom data was noted for its high diversity but low
syntheticity, as discussed in Section 3. Conversely,
the synthetic data exhibited the lowest diversity but
the highest syntheticity score.

Parameter Besiroglu et al. (2024) Ours

A 482.01 (124.58) -0.8546
B 2085.43 (1293.23) -18.3078
E 1.8172 (0.03) 1.1400
α 0.3478 (0.02) 0.0450
β 0.3658 (0.02) 0.3683
c1 - -12.7756
c2 - 0.6369
Data points 240 210

Table 1: Parameter estimates and their standard errors. The
standard errors are shown in parentheses and are obtained
by bootstrapping. We show the estimates from Besiroglu
et al. (2024) (re-estimated from Hoffmann et al. (2022)) for
comparison and added the constants c1 and c2 for text diversity
and syntheticity respectively.

7 Discussions

By over 200 training runs, we re-estimate all the
constants which we show in Table 1. Here we first
discuss the estimation of constants that relate to
accuracy and the rest of the scaling parameters in
Eq. 4. In particular, we discuss the scaling factor Q
and how it can be applied to pretraining scenarios.

Correlation Strength of Estimated Constants.
In Table 1, we show the estimated constants for
the scaling law Eq.4 and the proposed scaling fac-
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Figure 4: This plot illustrates the correlation between the
accuracy and the scaling factor Q across all model sizes, which
shows that scaling up the value of Q improves accuracy up to
a point, where then the token number becomes dominant.

tor term Eq.3. The constants were estimated with
the nonlinear least-squares method with the Scipy
optimizer5, where the initial guesses were the orig-
inal Chinchilla scaling law constants in Hoffmann
et al. (2022), and the maximum number of function
calls was set as 2000. To validate our estimated
constants, we provide a predicted vs. true accuracy
plot and the Pearson correlation in Figure 5. This
gives us ideas on how strongly these constants are
correlated to the training set used to estimate our re-
vised scaling formulation. Strikingly, this amounts
to the correlation strength of +0.83 across all model
sizes and data samples. We attribute the robustness
of the formulation to the use of data-agnostic com-
pression ratio and a reasonably-capable language
model as teacher.

How to Improve Data Quality for Better Mod-
els? In the left plot of Figure 3, we first explore
the impact of effective tokens on model accuracy. It
is evident that an increase in effective tokens corre-
lates with higher accuracy. However, the influence
of the scaling factor Q varies across different mod-
els. Notably, the impact of data quality is more pro-
nounced in smaller model sizes ranging from 25M
to 500M, and it gradually levels off as the value of
scaling factor Q increases, eventually reaching a
point where effective tokens Dq are predominantly
determined by the sheer number of tokens. Ad-
ditionally, we examine the interplay between the
scaling factor Q, diversity, and syntheticity in the
right plot of Figure 3. Several key observations
emerge:

1. There is an inverse relationship between di-
versity and syntheticity, which is expected as

5
https://docs.scipy.org/doc/scipy/reference/

generated/scipy.optimize.curve_fit.html
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Figure 5: This plot illustrates correlation between the pre-
dicted accuracy G(N,D) and the true accuracy of Refined-
Web data. The Pearson correlation is +0.83.

synthetic data generated by language models
tends to be less diverse.

2. Less diverse data increases the value of the
scaling factor; conversely, more synthetic data
tends to elevate scaling factor Q.

3. However, when the curves of diversity and
syntheticity converge, the influence of the
scaling factor Q on accuracy improvement
becomes negligible.

Data Quality Scaling is Token Quantity Bound.
These insights establish some basic guidelines: To
enhance data quality in smaller models, introduc-
ing synthetic data can be beneficial, as it typically
yields less diverse but more synthetic data with a
higher scaling factor Q. However, it is crucial for
training practitioners to recognize that while in-
creasing text syntheticity can scale up data quality,
the total token count ultimately plays a more dom-
inant role in improving model accuracy in larger
models that are more data-hungry (e.g. greater than
1.5B in our experiments), as illustrated in Figure 4.

8 Conclusion and Future Works

In this paper, we revisited traditional scaling laws
in language modeling that often overlook the criti-
cal impact of data quality on model generalization.
We introduced the concept of effective training to-
kens, emphasizing its significance in enhancing
model performance, particularly for models with
constrained parameters, in order to offer a more pre-
cise understanding of data quality’s role in model
scaling. Our findings highlight the pivotal role of
data quality and pave the way for developing more
efficient and compact language models suitable for
on-device applications.
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Limitations

While our revised scaling law incorporating effec-
tive training tokens offers a nuanced understanding
of data quality, a significant limitation arises from
the number of sample points required to accurately
estimate the constants within the law. The preci-
sion of these constants is crucial as they directly
influence the model’s performance predictions and
generalizations. However, obtaining a sufficient
number of diverse and representative sample points
to robustly estimate these constants is challenging.
This limitation is particularly pronounced in scenar-
ios involving rare or complex data characteristics,
where the availability of adequate and varied train-
ing examples is limited. Consequently, the reliabil-
ity of our scaling law under these conditions may
be compromised, necessitating further research and
potentially more sophisticated sampling techniques
to enhance the robustness of our estimates.

Ethics Statement

In this study, we explore the impact of data qual-
ity on language model performance by introducing
the concept of effective training tokens. Our ex-
periments, conducted on a diverse set of sampled
and synthetic data, adhere to rigorous standards
to ensure the reproducibility and reliability of our
findings. While our research utilizes datasets that
are well-established within the academic commu-
nity, the application of our findings to sensitive or
private datasets must be approached with strict eth-
ical considerations and robust privacy safeguards.
Additionally, the methodologies proposed for en-
hancing data quality, such as text diversity and
fidelity assessments, should be applied judiciously
to avoid unintended biases or ethical dilemmas.
As we push the boundaries of model efficiency
and performance, it is imperative to balance these
advancements with careful consideration of their
broader implications, including the potential in-
crease in computational demands and its associated
environmental impact.
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A Details of Data Synthesis

Here we provide the instruction prompt that is used for data synthesis, which is used to rewrite with a
Llama-3-70B-instruct (https://ai.meta.com/blog/meta-llama-3/) model to rewrite provided docu-
ments from the pretraining data. The data for synthesis was sourced from a directory with JSONL files
organized by group numbers and shards, and the model was configured to process sequences up to 8196
tokens in length. Computational precision was optimized for specific hardware by enabling BF16 and
disabling FP16, with a batch size of 8 per device to ensure efficient processing and resource utilization.
We provide the instruction prompt here:

Create a common sense reasoning problem-answer pair based on the following text. However, if it’s
impossible to create a problem, rewrite the text to be a textbook style language that is clear and concise.
Only provide the relevant response and do not say anything else. Do not assume the reader to know
anything about the text, so make sure to provide the context for the reasoning problem.

Text:
{Pretraining Document}

Response:

B Details of Data Selection

We employ data selection as described in Xie et al. (2023). Here we provide additional details into the
feature extraction process from documents. Due to memory limitations on our computational resources,
we divided the RefinedWeb dataset into 16 distinct shards. From each shard, we selectively sampled
a subset of data tailored to our target specifications. The entire sampling process typically requires
approximately 1.5 days to complete across all methodologies. It is important to note that variations in the
tokenizer’s vocabulary do not significantly affect the sampling speed. This observation suggests that the
vocabulary size primarily influences the sentence compression ratio rather than the processing time.

C Computing Text Syntheticity

To accurately assess syntheticity, it is essential to compute the perplexity for each document. This involves
deploying a language model with a context length of 1024 tokens to process all documents. The average
perplexity score across these documents serves as the metric for syntheticity.

Given the computationally demanding nature of calculating perplexity with language models, we
strategically sampled 25% of complete documents from each dataset. This sampling strategy results in a
substantial volume of data, ranging from approximately 100 million to several billion subword tokens,
ensuring a robust and efficient analysis.

D Scaling Law Constant Estimation

In this work, we introduce a scaling law for language modeling systems, defined as Ĝ(N,D) = E +
A
Nα + B

Dβ . Here, Ĝ(N,D) estimates accuracy, with N as model size and D as dataset size. Constants E,
A, α, B, β, c1, and c2 are parameters to be determined.

The estimation of this scaling law constants involved analyzing a dataset of 210 data points, each
representing different model and dataset sizes with corresponding training losses and accuracy scores.
These estimation accounted for the refinement of the training data that incorporate additional factors such
as diversity and syntheticity into the dataset size. Further, different transformations of the dataset size
were included to determine how these factors could be integrated effectively. The accuracy of the model
was then obtained for each of these refinements. This comprehensive dataset allowed for robust parameter
estimation. Parameter estimation was achieved through nonlinear curve fitting, aiming to align the scaling
law’s predictions with observed training losses. The process included:

1. Model Definition: Formulating the scaling law as a function with parameters to estimate. Overall,
we have experimented with four equations for Dq:
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Equation R
2

D ⋅ exp(c1 ⋅ Dr(D) + c2 ⋅ S(D)) 0.45
D ⋅ Dr(D)c1 ⋅ exp(c2 ⋅ S(D)) 0.23
D ⋅ exp(c1 ⋅ Dr(D)) ⋅ S(D)c2 0.19

D ⋅ Dr(D)c1 ⋅ S(D)c2 0.35

Table 2: Equations and their corresponding R
2 values

2. Initial Guesses: Setting initial parameter values based on Besiroglu et al. (2024). Initial guesses
were E = 1.8172, A = 482.01, α = 0.3478, B = 2085.43, β = 0.3658, and we proposed to set
c1 = 0.5, and c2 = 0.5.

3. Optimization Algorithm: Utilizing the ’curve_fit’ function from ’scipy.optimize’ to perform non-
linear least squares fitting. The algorithm adjusted the parameters to minimize the sum of the squares
of the differences between observed and predicted values.

4. Convergence and Validation: Iterating the fitting process until parameter changes minimized, and
validating the model by examining residuals and fit quality. The process ensured that the parameters
converged effectively, representing the trends in the data accurately.

During curve fitting, the goodness of fit was assessed using the R-squared value, which measures the
proportion of variance in the observed data that is predictable from the model inputs. This iterative process
of refinement and evaluation helped in achieving the best possible fit between the predicted and observed
accuracies, enhancing the scaling law’s ability to predict training losses across various settings. We stop
the iteration at 200.

This process refined the estimates of E, A, α, B, β, c1, and c2, enhancing the scaling law’s ability to
predict training losses across various settings, thus supporting efficient resource allocation and model
design in language modeling. The refined constants provided a more accurate description of how
training loss scales with changes in model size and dataset size, incorporating the effects of diversity and
syntheticity through c1 and c2.

E Deriving Effective Token Dq Equation

We derive the formula to obtain the number of effective tokens as a function of the loss.
Original formula:

L̂(N,D) ≜ E +
A

Nα +
B

D
β
q

(5)

We consider shorten the loss L̂(N,D) as L.

L ≜ E +
A

Nα +
B

D
β
q

(6)

Move the E to the left:

L − E −
A

Nα ≜ B

D
β
q

(7)

Make same denominator:
LN

α − EN
α −A

Nα ≜ B

D
β
q

(8)

Group the N
α: (L − E)Nα −A

Nα ≜ B

D
β
q

(9)
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Flip Both:
N

α

(L − E)Nα −A
≜

D
β
q

B
(10)

Isolate D to the beta on the right:

BN
α

(L − E)Nα −A
≜ D

β
q (11)

Apply root of beta to get D effective tokens

Dq ≜ ( BN
α

(L − E)Nα −A
)1/β (12)

Here we provide additional details regarding the process of feature extraction from documents. Due
to the memory constraints on the machines, we split the RefinedWeb data into 16 shards, and sampled a
subset from each shard based on the target data. This process takes around 1.5 days on average for all
approaches, meaning that the change in tokenizer’s vocabulary does not result in noticeable differences in
sampling speed, since vocabulary also defines sentence compression ratio.

F Diversity and syntheticity Result Table

Data % Diversity syntheticity

1 Random 10 0.37750 0.02699
2 Random 20 0.37783 0.02682
3 Random 30 0.37833 0.02675
4 Random 40 0.37853 0.02705
5 Random 50 0.38348 0.02661
6 Random 60 0.38003 0.02658
7 Random 70 0.38618 0.02656
8 Random 80 0.42511 0.02649
9 Random 90 0.46301 0.02642
10 Random 100 0.36370 0.02635
11 Selection 10 0.36187 0.04230
12 Selection 20 0.36189 0.04080
13 Selection 30 0.36186 0.04102
14 Selection 40 0.36186 0.04069
15 Selection 50 0.36187 0.04102
16 Selection 60 0.36188 0.04089
17 Selection 70 0.36189 0.04065
18 Selection 80 0.36189 0.04015
19 Selection 90 0.36190 0.04003
20 Selection 100 0.29054 0.03990
21 Selection + Synthesis 10 0.28586 0.13058
22 Selection + Synthesis 20 0.28585 0.11919
23 Selection + Synthesis 30 0.28584 0.12308
24 Selection + Synthesis 40 0.28579 0.12383
25 Selection + Synthesis 50 0.28580 0.12489
26 Selection + Synthesis 60 0.28577 0.12719
27 Selection + Synthesis 70 0.28579 0.13113
28 Selection + Synthesis 80 0.28581 0.12656
29 Selection + Synthesis 90 0.28578 0.12002
30 Selection + Synthesis 100 0.28578 0.11902
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G Scaling Law Result Table

Size (M) Data % N. Tokens Train Loss Eval Loss Avg. Acc.

1 25 Random 10 1,083,200,970 1.36 6.89 37.87
2 50 Random 10 1,083,200,970 3.26 4.00 35.30
3 75 Random 10 1,083,200,970 2.77 3.62 38.93
4 125 Random 10 1,083,200,970 2.69 3.58 39.31
5 500 Random 10 1,083,200,970 1.78 4.51 40.47
6 1500 Random 10 1,083,200,970 0.25 11.33 40.68
7 25 Random 20 2,178,049,311 1.42 5.60 40.76
8 50 Random 20 2,178,049,311 3.28 3.97 37.43
9 75 Random 20 2,178,049,311 2.81 3.51 39.06
10 125 Random 20 2,178,049,311 2.70 3.45 40.04
11 350 Random 20 2,178,049,311 2.35 3.37 41.59
12 500 Random 20 2,178,049,311 2.18 3.43 43.29
13 1500 Random 20 2,178,049,311 1.29 5.10 42.46
14 25 Random 30 3,301,058,727 3.14 3.82 38.30
15 50 Random 30 3,301,058,727 3.29 3.99 37.56
16 75 Random 30 3,301,058,727 2.82 3.50 39.66
17 125 Random 30 3,301,058,727 2.71 3.38 40.47
18 350 Random 30 3,301,058,727 2.41 3.23 42.11
19 500 Random 30 3,301,058,727 2.30 3.21 43.12
20 1500 Random 30 3,301,058,727 1.70 3.53 45.33
21 25 Random 40 4,391,680,343 3.15 3.82 37.88
22 50 Random 40 4,391,680,343 3.28 3.98 36.27
23 75 Random 40 4,391,680,343 2.83 3.48 38.96
24 125 Random 40 4,391,680,343 2.72 3.40 41.05
25 350 Random 40 4,391,680,343 2.44 3.16 43.36
26 500 Random 40 4,391,680,343 2.32 3.12 43.50
27 1500 Random 40 4,391,680,343 2.01 3.12 45.19
28 25 Random 50 5,471,561,263 3.15 3.85 37.80
29 50 Random 50 5,471,561,263 3.28 3.98 36.51
30 75 Random 50 5,471,561,263 2.91 3.53 40.07
31 125 Random 50 5,471,561,263 2.73 3.38 39.82
32 350 Random 50 5,471,561,263 2.46 3.14 42.90
33 500 Random 50 5,471,561,263 2.36 3.06 43.56
34 1500 Random 50 5,471,561,263 2.11 3.02 46.22
35 25 Random 60 6,599,971,622 3.16 3.84 37.78
36 50 Random 60 6,599,971,622 3.29 3.98 35.82
37 75 Random 60 6,599,971,622 2.84 3.49 39.25
38 125 Random 60 6,599,971,622 2.72 3.34 40.81
39 350 Random 60 6,599,971,622 2.46 3.10 43.35
40 500 Random 60 6,599,971,622 2.51 3.10 43.94
41 1500 Random 60 6,599,971,622 2.16 2.92 46.82
42 25 Random 70 7,688,714,499 3.15 3.83 38.24
43 50 Random 70 7,688,714,499 3.28 3.97 37.20
44 75 Random 70 7,688,714,499 2.85 3.49 38.70
45 125 Random 70 7,688,714,499 2.76 3.38 40.35
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Size (M) Data % N. Tokens Train Loss Eval Loss Avg. Acc.

46 350 Random 70 7,688,714,499 2.47 3.12 43.69
47 500 Random 70 7,688,714,499 2.52 3.09 43.50
48 1500 Random 70 7,688,714,499 2.19 2.91 47.80
49 25 Random 80 8,761,608,715 3.14 3.81 38.01
50 50 Random 80 8,761,608,715 3.29 3.96 37.44
51 75 Random 80 8,761,608,715 2.85 3.49 39.55
52 125 Random 80 8,761,608,715 2.74 3.39 40.85
53 350 Random 80 8,761,608,715 2.48 3.09 43.89
54 500 Random 80 8,761,608,715 2.40 3.02 44.63
55 1500 Random 80 8,761,608,715 2.23 2.87 47.97
56 25 Random 90 9,882,886,144 3.15 3.85 37.48
57 50 Random 90 9,882,886,144 3.28 3.98 37.65
58 75 Random 90 9,882,886,144 2.83 3.46 39.45
59 125 Random 90 9,882,886,144 2.73 3.34 40.63
60 350 Random 90 9,882,886,144 2.47 3.08 43.39
61 500 Random 90 9,882,886,144 2.39 3.01 44.13
62 1500 Random 90 9,882,886,144 2.23 2.85 49.16
63 25 Random 100 10,993,147,242 3.15 3.84 38.27
64 50 Random 100 10,993,147,242 3.29 3.97 36.44
65 75 Random 100 10,993,147,242 2.84 3.46 38.73
66 125 Random 100 10,993,147,242 2.73 3.34 40.85
67 350 Random 100 10,993,147,242 2.49 3.09 43.81
68 500 Random 100 10,993,147,242 2.41 2.98 45.09
69 1500 Random 100 10,993,147,242 2.15 2.85 48.23
70 25 Selection 10 708,363,509 2.67 4.70 39.02
71 50 Selection 10 708,363,509 2.45 4.70 40.81
72 75 Selection 10 708,363,509 2.29 4.79 39.75
73 125 Selection 10 708,363,509 2.12 5.18 40.57
74 350 Selection 10 708,363,509 1.37 7.71 41.13
75 500 Selection 10 708,363,509 0.95 10.27 40.57
76 1500 Selection 10 708,363,509 0.10 14.46 41.13
77 25 Selection 20 1,417,265,043 2.68 4.65 39.20
78 50 Selection 20 1,417,265,043 2.48 4.49 40.40
79 75 Selection 20 1,417,265,043 2.33 4.35 41.44
80 125 Selection 20 1,417,265,043 2.25 4.28 41.71
81 350 Selection 20 1,417,265,043 1.81 4.91 43.07
82 500 Selection 20 1,417,265,043 1.62 5.80 43.17
83 1500 Selection 20 1,417,265,043 0.35 11.82 43.16
84 25 Selection 30 2,127,218,639 2.68 4.65 39.51
85 50 Selection 30 2,127,218,639 2.49 4.44 40.82
86 75 Selection 30 2,127,218,639 2.35 4.31 41.64
87 125 Selection 30 2,127,218,639 2.24 4.23 42.39
88 500 Selection 30 2,127,218,639 1.80 4.58 44.37
89 1500 Selection 30 2,127,218,639 0.83 7.70 43.12
90 25 Selection 40 2,836,208,025 2.69 4.58 39.39
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Size (M) Data % N. Tokens Train Loss Eval Loss Avg. Acc.

91 50 Selection 40 2,836,208,025 2.51 4.42 40.65
92 75 Selection 40 2,836,208,025 2.35 4.25 40.97
93 125 Selection 40 2,836,208,025 2.24 4.13 42.15
94 350 Selection 40 2,836,208,025 1.96 4.09 44.44
95 500 Selection 40 2,836,208,025 1.87 4.11 45.21
96 1500 Selection 40 2,836,208,025 1.21 5.72 45.00
97 25 Selection 50 3,544,568,369 2.67 4.57 38.82
98 50 Selection 50 3,544,568,369 2.50 4.41 40.89
99 75 Selection 50 3,544,568,369 2.37 4.25 41.55
100 125 Selection 50 3,544,568,369 2.29 4.13 42.49
101 350 Selection 50 3,544,568,369 2.01 3.94 45.30
102 500 Selection 50 3,544,568,369 1.90 3.96 45.42
103 1500 Selection 50 3,544,568,369 1.39 4.93 46.25
104 25 Selection 60 4,253,350,223 2.66 4.57 40.01
105 50 Selection 60 4,253,350,223 2.49 4.42 41.09
106 75 Selection 60 4,253,350,223 2.36 4.22 41.41
107 125 Selection 60 4,253,350,223 2.28 4.13 42.84
108 350 Selection 60 4,253,350,223 2.00 3.93 44.87
109 500 Selection 60 4,253,350,223 1.93 3.87 44.92
110 1500 Selection 60 4,253,350,223 1.74 3.84 47.25
111 25 Selection 70 4,962,280,568 2.67 4.61 39.34
112 50 Selection 70 4,962,280,568 2.49 4.36 40.86
113 75 Selection 70 4,962,280,568 2.42 4.24 42.50
114 125 Selection 70 4,962,280,568 2.30 4.11 42.17
115 350 Selection 70 4,962,280,568 2.01 3.86 45.09
116 500 Selection 70 4,962,280,568 1.93 3.81 45.24
117 1500 Selection 70 4,962,280,568 1.72 3.78 47.51
118 25 Selection 80 5,670,003,836 2.67 4.60 39.64
119 50 Selection 80 5,670,003,836 2.50 4.36 40.55
120 75 Selection 80 5,670,003,836 2.37 4.19 41.86
121 125 Selection 80 5,670,003,836 2.27 4.11 43.11
122 350 Selection 80 5,670,003,836 2.02 3.86 44.84
123 500 Selection 80 5,670,003,836 1.95 3.79 45.46
124 1500 Selection 80 5,670,003,836 1.65 3.87 47.66
125 25 Selection 90 6,378,582,091 2.68 4.60 39.57
126 50 Selection 90 6,378,582,091 2.50 4.38 40.62
127 75 Selection 90 6,378,582,091 2.35 4.18 41.34
128 125 Selection 90 6,378,582,091 2.30 4.12 42.89
129 350 Selection 90 6,378,582,091 2.02 3.84 44.78
130 500 Selection 90 6,378,582,091 1.97 3.75 46.08
131 1500 Selection 90 6,378,582,091 1.81 3.62 49.25
132 25 Selection 100 7,087,328,618 2.68 4.60 39.49
133 50 Selection 100 7,087,328,618 2.50 4.38 41.10
134 75 Selection 100 7,087,328,618 2.36 4.22 41.86
135 125 Selection 100 7,087,328,618 2.27 4.08 42.88
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136 350 Selection 100 7,087,328,618 2.02 3.80 45.61
137 500 Selection 100 7,087,328,618 1.96 3.75 46.51
138 1500 Selection 100 7,087,328,618 1.68 3.74 48.82
139 25 Selection + Synthesis 10 250,378,189 1.36 6.89 37.87
140 50 Selection + Synthesis 10 250,378,189 1.49 6.15 38.25
141 75 Selection + Synthesis 10 250,378,189 0.85 12.24 38.96
142 125 Selection + Synthesis 10 250,378,189 0.49 15.56 38.55
143 350 Selection + Synthesis 10 250,378,189 0.05 18.64 39.86
144 500 Selection + Synthesis 10 250,378,189 0.03 17.01 38.89
145 1500 Selection + Synthesis 10 250,378,189 0.02 13.44 40.32
146 25 Selection + Synthesis 20 500,768,330 1.42 5.60 40.76
147 50 Selection + Synthesis 20 500,768,330 1.52 5.51 37.67
148 75 Selection + Synthesis 20 500,768,330 1.14 7.13 40.78
149 125 Selection + Synthesis 20 500,768,330 0.94 8.89 40.08
150 350 Selection + Synthesis 20 500,768,330 0.20 16.41 40.53
151 500 Selection + Synthesis 20 500,768,330 0.08 17.22 40.58
152 1500 Selection + Synthesis 20 500,768,330 0.03 14.28 41.80
153 25 Selection + Synthesis 30 751,577,046 1.45 5.23 39.44
154 50 Selection + Synthesis 30 751,577,046 1.54 5.36 38.48
155 75 Selection + Synthesis 30 751,577,046 1.21 5.92 41.67
156 125 Selection + Synthesis 30 751,577,046 1.08 6.74 41.88
157 350 Selection + Synthesis 30 751,577,046 0.49 11.22 41.61
158 500 Selection + Synthesis 30 751,577,046 0.26 14.23 41.97
159 1500 Selection + Synthesis 30 751,577,046 0.04 14.48 42.49
160 25 Selection + Synthesis 40 1,002,469,726 1.44 5.14 39.81
161 50 Selection + Synthesis 40 1,002,469,726 1.58 5.25 38.54
162 75 Selection + Synthesis 40 1,002,469,726 1.23 5.23 41.39
163 125 Selection + Synthesis 40 1,002,469,726 1.13 5.88 41.33
164 350 Selection + Synthesis 40 1,002,469,726 0.70 9.07 42.04
165 500 Selection + Synthesis 40 1,002,469,726 0.48 10.96 43.47
166 1500 Selection + Synthesis 40 1,002,469,726 0.07 13.62 43.42
167 25 Selection + Synthesis 50 1,253,583,976 1.45 4.95 39.38
168 50 Selection + Synthesis 50 1,253,583,976 1.54 5.23 38.74
169 75 Selection + Synthesis 50 1,253,583,976 1.25 4.96 42.43
170 125 Selection + Synthesis 50 1,253,583,976 1.17 5.29 42.77
171 350 Selection + Synthesis 50 1,253,583,976 0.82 7.52 41.65
172 500 Selection + Synthesis 50 1,253,583,976 0.64 9.17 43.37
173 1500 Selection + Synthesis 50 1,253,583,976 0.15 12.36 43.18
174 25 Selection + Synthesis 60 1,504,223,685 1.45 5.01 39.68
175 50 Selection + Synthesis 60 1,504,223,685 1.54 5.11 37.69
176 75 Selection + Synthesis 60 1,504,223,685 1.26 4.93 42.72
177 125 Selection + Synthesis 60 1,504,223,685 1.18 5.00 43.10
178 350 Selection + Synthesis 60 1,504,223,685 0.90 6.43 41.92
179 500 Selection + Synthesis 60 1,504,223,685 0.75 7.65 42.99
180 1500 Selection + Synthesis 60 1,504,223,685 0.21 11.04 44.03
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181 25 Selection + Synthesis 70 1,754,577,326 1.46 4.99 40.42
182 50 Selection + Synthesis 70 1,754,577,326 1.55 5.16 37.51
183 75 Selection + Synthesis 70 1,754,577,326 1.27 4.81 42.51
184 125 Selection + Synthesis 70 1,754,577,326 1.20 4.89 43.28
185 350 Selection + Synthesis 70 1,754,577,326 0.95 6.18 43.47
186 500 Selection + Synthesis 70 1,754,577,326 0.82 6.79 43.52
187 1500 Selection + Synthesis 70 1,754,577,326 0.19 12.85 43.32
188 25 Selection + Synthesis 80 2,004,994,693 1.46 5.03 40.48
189 50 Selection + Synthesis 80 2,004,994,693 1.57 5.13 38.29
190 75 Selection + Synthesis 80 2,004,994,693 1.27 4.70 42.92
191 125 Selection + Synthesis 80 2,004,994,693 1.21 4.77 43.26
192 350 Selection + Synthesis 80 2,004,994,693 0.98 6.05 44.84
193 500 Selection + Synthesis 80 2,004,994,693 0.87 6.48 43.77
194 1500 Selection + Synthesis 80 2,004,994,693 0.26 11.52 45.29
195 25 Selection + Synthesis 90 2,255,719,055 1.46 4.95 41.05
196 50 Selection + Synthesis 90 2,255,719,055 1.55 5.13 39.31
197 75 Selection + Synthesis 90 2,255,719,055 1.27 4.65 42.70
198 125 Selection + Synthesis 90 2,255,719,055 1.20 4.72 43.94
199 350 Selection + Synthesis 90 2,255,719,055 1.00 5.71 44.69
200 500 Selection + Synthesis 90 2,255,719,055 0.90 5.98 44.89
201 25 Selection + Synthesis 100 2,507,011,688 1.46 4.92 39.12
202 50 Selection + Synthesis 100 2,507,011,688 1.54 5.14 38.54
203 75 Selection + Synthesis 100 2,507,011,688 1.27 4.69 42.14
204 125 Selection + Synthesis 100 2,507,011,688 1.22 4.71 43.35
205 350 Selection + Synthesis 100 2,507,011,688 1.12 4.75 44.94
206 500 Selection + Synthesis 100 2,507,011,688 0.93 5.53 44.97
207 1500 Selection + Synthesis 100 2,507,011,688 0.41 9.53 45.27

H Ablation Plots

H.1 Performances vs. Data Size and Model Size
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Figure 6: Ablating model performances when varying the data sizes (orange) and the model sizes (blue).
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H.2 Learning Curve for Varying Model Sizes and Diversity
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Figure 7: Plot of accuracy against the number of tokens, where tokens are increased in percentages.

Figure 8: Diversity vs. Evaluation Loss: This plot shows the relationship between model diversity and evaluation loss on
different datasets.

Figure 9: Size vs. Accuracy: This plot shows the relationship between model size and accuracy on different datasets.
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