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Abstract

To enhance a question-answering system for
automotive drivers, we tackle the problem of
automatic generation of icon image descrip-
tions. The descriptions can match the driver’s
query about the icon appearing on the dash-
board and tell the driver what is happening so
that they may take an appropriate action. We
use three state-of-the-art large vision-language
models to generate both visual and functional
descriptions based on the icon image and its
context information in the car manual. Both
zero-shot and few-shot prompts are used. We
create a dataset containing over 400 icons with
their ground-truth descriptions and use it to
evaluate model-generated descriptions across
several performance metrics. Our evaluation
shows that two of these models (GPT-4o and
Claude 3.5) performed well on this task, while
the third model (LLaVA) performs poorly.

1 Introduction

Vehicle dashboard icons convey critical informa-
tion to drivers, who must quickly understand the
symbols’ meaning and take appropriate action.
However, many drivers are unfamiliar with these
icons, emphasizing the pressing need for a virtual
assistant that can explain the icons’ meanings. For
example, when presented with a dashboard icon re-
sembling a steaming cup, the driver might naturally
ask "What does that cup icon mean?" The correct
response is that this is a warning from the vehicle’s
driver attention system.

The iNAGO netpeople® Assistant is a propri-
etary voice-based virtual assistant platform for au-
tomotive drivers. It can answer drivers’ questions
based on knowledge extracted from text documents,
such as car manuals. However, netpeople currently
struggles with icon-related inquiries because its
text-based knowledge base lacks icon descriptions.
This gap means driver’s questions about icons can-
not be matched to any existing knowledge items.

Currently, no conversational system for drivers can
answer questions about dashboard icons.

To address this, we aim to automatically gen-
erate text descriptions for icon images, enabling
netpeople to include questions and answers (QAs)
about dashboard icons in its knowledge base. This
task presents several challenges. First, existing
image description systems are trained mainly on
natural images, whereas icon images are drawings.
Second, understanding an icon’s function, beyond
its visual description, requires context from the
manual and is harder than typical image captioning.
Training and evaluating a model that generates both
visual and functional icon descriptions necessitates
a labeled dataset, which currently does not exist.
Third, while many metrics for text generation are
available, identifying the most suitable metrics for
evaluating both visual and functional descriptions
of dashboard icons is crucial.

In this work, we compile a dataset of 408 vehi-
cle dashboard icon images and their correspond-
ing names/functions, which we collected from 42
vehicle manuals. We use state-of-the-art multi-
modal Large Vision-Language Models (LVLMs)
(i.e., GPT-4o (OpenAI et al., 2024), LLaVA-NEXT
(Liu et al., 2023) and Claude 3.5 (Anthropic PBC,
2024)) to generate natural English descriptions of
each icon’s visual design and function. Such de-
scriptions can form QA pairs for netpeople’s knowl-
edge base. We assess model performance using
standard performance metrics and human evalua-
tion. The key contributions of this work are:

• We create a new image description dataset
with human-generated visual and functional
descriptions for vehicle dashboard icons 1.

• Using this new dataset, we show that sev-
eral state-of-the-art and generically trained

1Available: https://github.com/yorku-datamining-
lab/generating-vehicular-icon-descriptions
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LVLMs can perform well on this icon descrip-
tion task.

• We compare several automatic performance
metrics against human evaluation scores and
found that SBERT cosine similarity scores are
most consistent with human evaluation scores.

2 Related Work

Efforts to verbalize images through image caption-
ing (Chan et al., 2023) and summarization (Celis
and Keswani, 2020) use retrieval (Lindh et al.,
2018) or generation methods (Vinyals et al., 2015).
Recently, researchers have combined these by re-
trieving image-caption pairs and inputting them
into generation models (Ramos et al., 2023).

LVLMs use Large Language Models (LLMs) in
vision-language tasks either as schedulers (Chen
et al., 2022; Surís et al., 2023), where the LLM
manages various visual models as plug-and-play
modules based on specific task requirements, or as
decoders (Zhu et al., 2024), enabling cross-modal
knowledge transfer. With the increasing need for
larger language model backends, approaches like
InstructBLIP (Zhu et al., 2024) and LLaVA (Liu
et al., 2023) collect extensive human instruction
datasets to train larger LVLMs. These models then
undergo end-to-end training, enhancing the LLMs
with visual reasoning capabilities. GPT-4o (Ope-
nAI et al., 2024) and Claude 3.5 (Anthropic PBC,
2024) are advanced multimodal models that pro-
cess text and image inputs to generate text out-
puts, exhibiting human-level performance on vari-
ous professional and academic benchmarks.

In this work, we utilize three recent LVLMs, i.e.,
GPT-4o, Claude 3.5, and LLaVA-NEXT, to gener-
ate descriptions of dashboard indicator icons. Our
goal is to enable a QA system to answer drivers’
questions about these icons. To the best of our
knowledge, this is the first application of AI mod-
els for generating such descriptions.

3 Methodology

3.1 Dataset Creation

We collected images of dashboard icons from 42
vehicle manuals from four different manufactur-
ers (see Appendix A for details). All the manuals
were available on the internet. To facilitate the
generation of functional descriptions of icons, we
considered only the manuals available in HTML
files, which enabled automated extraction of icon

images along with the surrounding context text.
This was achieved by identifying each image tag
in the main body of the document, ascending 2-3
levels up the HTML parse tree from the image tag,
and selecting all of the text under that parent node.
This creates the input part of each example in the
dataset. Table 1 shows an example in our dataset.

While dashboard icons’ visual designs are stan-
dardised (ISO, 2021), manufacturers often make
minor embellishments. Hence, to remove exact
image duplicates but preserve different image vari-
ants, we computed a 64-bit dHash image hash for
each icon based on the horizontal gradient of a
down-sampled versions of each original icon image
(Buchner, 2024). After removing images with du-
plicate hashes, 408 unique icon images remained.

Two separate ground-truth descriptions of icon
each image were produced: (1) a visual description
of the image, focusing on the recognizable compo-
nents that could be seen within the image; and (2)
a functional description that described the purpose
and intent of the icon, based on the appropriate
manual text. The importance of separating these
two types of descriptions is that the visual and func-
tional descriptions form the question and answer,
respectively, in the knowledge base of netpeople,
which we are seeking to enhance.

To create the ground-truth functional description
for each example, two native English speakers read
the relevant part of the car manual for each icon and
extracted or created its functional description. Each
icon has a single ground-truth functional descrip-
tion since each icon has one specific indication. In
contrast, for creating the ground-truth visual de-
scriptions of the icons, 28 fluent English-speaking
human annotators are used to collect diverse visual
descriptions for an icon, as different people may
describe an image differently. For example, con-
sidering the different visual descriptions of the cup
icon shown in Table 1.

To collect the visual descriptions of the icons,
we created a web interface. The starting page pro-
vides instructions and examples to the annotators,
followed by subsequent pages where each page dis-
plays an icon image. On these pages, annotators
can enter their descriptions and indicate the degree
of difficulty in describing the image on a scale of 1-
5, with 5 meaning the most difficult. The difficulty
labels will be used in the analysis when evaluating
the description-generation models. Appendix A
shows a snapshot of the instruction page and an
example page displaying an icon and collecting the
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Input Ground Truth Descriptions

Visual: "This amber dashboard icon depicts a cup and saucer. Three wavy lines above the cup represent
the idea that the cup contains a hot drink."
"The pictogram depicts an orange coloured cup placed on a saucer. The steam is coming out of the cup."
"The image shows an amber coffee mug on a coaster. Wavy vertical lines indicate steam rising from the
coffee mug."

See Driver Condi-
tion Monitor (Amber)

Functional: "The icon indicates that the vehicle’s driver condition monitor system has detected that the
driver is presenting signs of high fatigue levels."

Table 1: A single example from our dataset: Driver Condition Monitor

annotator’s inputs.
As a result, a total of 408 examples were created.

A subset of 20 examples was randomly selected for
use in few-shot prompting, and the remaining 388
samples formed the test set for evaluating models.

3.2 Automatic Generation of Image
Descriptions

Given an icon image and its context description
from a car manual, the task is to generate both a vi-
sual description and a functional description of the
icon. The visual description should explain what
the icon looks like, while the functional description
should explain what the icon indicates (e.g. see the
context and ground truth descriptions for the cup
icon shown in Table 1).

Three pre-trained state-of-the-art LVLMs were
used in this study: GPT-4o (OpenAI et al., 2024),
LLaVA-NEXT:34b (Liu et al., 2023) and Claude
3.5 (Anthropic PBC, 2024). The steps for using
these models for automated icon description gen-
eration were straightforward: A base64-encoded
icon and corresponding context were supplied to
the models along with an appropriate prompt (see
Appendix B), and the model output was collected;
containing both, visual and functional descriptions
separately.

These models were pre-trained for general-
purpose tasks. To alleviate hallucination, we ex-
perimented with few-shot prompts in addition to
zero-shot prompts. To select the few shot exam-
ples, we choose the k icons from the training set
that were closest to the query icon by computing
the Hamming distance between the image hash of
the query image and the image hash of each of
the training images. This was made possible by
the properties of the dHash image hashing method,
where similar input images produce similar output
hashes (Buchner, 2024).

The following is a prompt for zero-shot: “You
are an AI visual assistant specialized in interpret-
ing icons displayed on the dashboard of a vehicle.

An icon communicates important information about
the vehicle to the driver. You are seeing an image
of a single dashboard icon. Briefly describe the
dashboard icon depicted in the image, focusing on
the visual content of the image and meaning of the
icon. Limit your response to 2 sentences. The first
sentence should describe the visual content. The
second sentence should describe the icon’s mean-
ing. Format your response as a JSON object with
the following keys: ’visual_content’, ’meaning’.
The image has the following associated text: ..."

Appendix B shows prompts for k-shot (for k =
1, 3, 5). Of the three models, we found that LLaVA
required the most explicit prompting in order to
produce acceptable output. To make a fair compar-
ison, we selected the best prompt for LLaVA and
used the same prompt for all three models. We also
found it difficult to prevent the models from includ-
ing functional descriptions, even when explicitly
prompted to only provide visual descriptions. This
is why we prompted the models to generate both
visual and functional descriptions together and then
separate them in a JSON object.

4 Evaluation

In our evaluation, we primarily considered the per-
formance of different LVLMs, effectiveness of few-
shot prompting, and correlation of automated per-
formance metrics with human evaluation. We also
evaluated the impact of description type and input
type on model performance.

4.1 Automatic Metrics
A variety of automatic metrics were used to evalu-
ate the model-generated icon descriptions against
the human-generated ground truth. Traditional rule-
based metrics such as ROUGE (Lin, 2004), ME-
TEOR (Banerjee and Lavie, 2005) and Google-
BLEU4 (Wu et al., 2016) (a variant of the conven-
tional BLEU score) were used, along with several
newer embedding-based metrics such as BERT-
Score (Zhang et al., 2020) and CLIP-Score and
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Model k-shot

Claude 0
3.5 1

3
5

GPT-4 0
1
3
5

LLaVA 0
1
3
5

Visual Description Functional Description
BS SB CL rCL GB4 M R BS SB CL rCL GB4 M R

0.73 0.68 0.79 0.81 0.16 0.24 0.39 0.79 0.86 0.75 0.82 0.21 0.33 0.47
0.74 0.70 0.79 0.81 0.16 0.25 0.40 0.80 0.84 0.74 0.82 0.22 0.33 0.49
0.76 0.70 0.79 0.82 0.17 0.27 0.41 0.81 0.85 0.74 0.82 0.24 0.34 0.52
0.78 0.70 0.78 0.83 0.21 0.29 0.45 0.82 0.86 0.73 0.82 0.27 0.35 0.54

0.76 0.70 0.77 0.81 0.18 0.26 0.42 0.82 0.85 0.73 0.81 0.28 0.32 0.53
0.81 0.72 0.79 0.84 0.25 0.32 0.53 0.84 0.88 0.72 0.81 0.32 0.35 0.58
0.82 0.73 0.79 0.85 0.30 0.34 0.57 0.85 0.88 0.71 0.81 0.34 0.36 0.61
0.83 0.73 0.79 0.85 0.33 0.36 0.58 0.85 0.89 0.71 0.81 0.35 0.38 0.62

0.70 0.61 0.75 0.78 0.11 0.19 0.31 0.74 0.77 0.72 0.79 0.14 0.26 0.35
0.73 0.62 0.75 0.79 0.14 0.14 0.28 0.79 0.79 0.71 0.79 0.20 0.27 0.43
0.72 0.61 0.74 0.78 0.13 0.20 0.34 0.78 0.78 0.70 0.79 0.19 0.27 0.43
0.72 0.62 0.75 0.78 0.13 0.21 0.35 0.78 0.78 0.71 0.79 0.19 0.28 0.43

Table 2: Results for all metrics for the k-shot prompting evaluation with one input level (image-and-context)
and four prompting levels (k=0, 1, 3, 5). Metrics used: BERT-Score (BS), SBERT-Score(SB), CLIP-Score (CL),
RefCLip-Score (rCL), Google-BLEU4 (GB4), METEOR (M), ROUGE (R).

RefCLIP-Score (Hessel et al., 2021). In addi-
tion, we also used SBERT (Reimers and Gurevych,
2019) to compute the embeddings of the gener-
ated descriptions and ground-truths, which we com-
pared using the cosine similarity score (which we
refer to as SBERT-Score). While the various scores
operate on different principles, in all cases higher
values represent closer agreement between model
outputs and ground truth.

4.2 Human Evaluation

We additionally conducted a human evaluation
study comparing the three models (Claude 3.5,
GPT-4o, and LLaVA) on their ability to generate
visual descriptions for 60 images (15% of the entire
dataset). The images were randomly selected from
the most dissimilar images in the test set based on
the Hamming distance (dmin = 21) of their dHash
(see Section 3.1). Six participants each rated 30
descriptions (generated by the models with 3-shot
prompts) on a one to five Likert scale. A balanced
incomplete block design (see Appendix C.6.1) was
chosen to minimize order effects, and each partic-
ipant was assigned to two out of four 15 image
blocks, resulting in three ratings per description
and thus 3× 60 = 180 ratings in total.

We opted not to have human evaluators assess
the generated functional descriptions of icons due
to the potential lack of knowledge about each icon’s
functional indications. Providing car manuals or
ground-truth functional descriptions to address this
knowledge gap could have inadvertently influenced
the evaluation of visual descriptions, creating a con-
founding factor in the experiment. We wanted eval-
uators to judge visual descriptions based solely on

images, allowing for a range of valid interpretations
beyond a single ground truth. By withholding func-
tional information, we maintained consistency in
our evaluation and prevented potential bias, ensur-
ing that the ratings of visual descriptions remained
uninfluenced by functional details. This approach
allowed us to focus on obtaining unbiased evalu-
ations of the visual aspects while acknowledging
the limitations in assessing functional descriptions
without appropriate domain knowledge.

4.3 Results and Findings

We show the evaluation results and address several
research questions.

RQ1: Which model performs best on this task?

Table 2 compares the three models with k-shot
prompts on all the performance metrics. GPT-4o
generally performed best for both description types,
with Claude 3.5 close behind, and LLaVA perform-
ing relatively poorly. Metrics like BERT-Score,
SBERT-Score and Google-BLEU4 produced sim-
ilar rankings, while Meteor and Rouge rankings
were also similar. CLIP and RefCLIP aligned with
others for visual descriptions, but quite different
rankings for functional descriptions. This is likely
because CLIP has no access to the context text
associated with an image when it generates the ref-
erence description, to which it then compares the
generated functional descriptions. CLIP is forced
to generate (and potentially hallucinate) a refer-
ence functional description purely from the image
itself. To further analyse the results, we use SBERT-
Score because it aligns best with human judgement
scores to be presented later in this section. The
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Icon Model Generated Visual Description SBERT
Score

Human
Eval.

GPT-4 This amber dashboard icon depicts a cup of steaming hot beverage, such as
coffee or tea.

0.70 3.7

LLaVA The icon depicts a stylized representation of a cup with steam rising from it. 0.69 4.0

GPT-4 This dashboard icon depicts a vehicle headlight with five horizontal lines
extending to the left, indicating the light beams.

0.70 3.7

LLaVA The icon depicts a headlight with a snowflake inside, representing icy road
conditions while the high beam is on.

0.44 1.0

Table 3: Examples of visual descriptions generated by GPT-4 and LLaVA with 3-shot prompting for 2 icons.

grand mean SBERT-Score across all models was
0.77± 0.13. GPT-4o achieved the highest similar-
ity of 0.8± 0.12, which is 4.46% above average 2.
Claude 3.5 was just slightly worse than GPT-4o at
a mean of 0.77± 0.12, but still 1.06% higher than
average. Conversely, LLaVA demonstrated a mean
cosine similarity of 0.7± 0.14, which is 8.65% be-
low average. While the difference between Claude
3.5 and GPT-4o was small, LLaVA came in far
behind the two models, scoring much worse on
average. A Friedman test showed that all differ-
ences were statistically significant (p < 0.001, see
Appendix C.1). For example, consider the two
icons in Table 3 with visual descriptions by GPT-
4o and LLaVA. Both correctly describe the first
icon, but LLaVA’s description of the second, more
challenging icon is incorrect, mentioning a non-
existent snowflake. Claude 3.5 performed simi-
larly to GPT-4o. These examples show that LLaVA
can match other models when it detects visual
content correctly, but it often produces hallucina-
tions when it fails. Despite many ’vision failures,’
LLaVA’s scores were only slightly lower due to au-
tomated metrics focusing on word matches rather
than meaning differences, which will be discussed
further.

Finding: GPT-4o performed best on the task,
but is followed closely by Claude 3.5. LLaVA
performed significantly worse.

RQ2: Does few-shot prompting improve model
performance?
For GPT-4o and Claude 3.5, the metrics show the
performance generally improves with increasing k
in the few-shot prompting. However, for LLaVA,
whether few-shot is better than zero-shot depends
on the metrics and the type of description. For
visual descriptions, 1-shot is better than zero-shot
for most metrics except Meteor and Rouge. For

2Percentages calculated as SBERTscore−mean
mean and reported to

two decimal places.

functional descriptions, 1-shot is better than zero-
shot on all metrics except CLIP. It is interesting to
see that when k > 1, the performance of k-shot
decreases for LLaVA. To see whether the improve-
ment is significant, we conducted a Friedman test
(see Appendix C.2), which shows that k-shot has
statistically significant improvements in SBERT-
Score over the 0-shot baseline for both GPT-4o
and Claude 3.5. Claude 3.5 showed the largest
improvement at k = 5 (+1.3%)3. GPT-4o had
the highest gains at k = 5 (+3.73%), with k = 3
(+3.34%) and k = 1 (+3.03%) close behind. All
improvement for k > 1 in GPT-4o were significant,
although differences for k ∈ [1, 3, 5] were minor.
LLaVA showed no significant improvements for
higher k levels. In few-shot prompting, prompts
were selected from the training based on image
similarity (see Section 3.2). An ablation study us-
ing GPT-4o alone compared this method to ran-
dom selection, finding minimal improvement in
visual descriptions (+0.27%) and a slight decrease
in functional descriptions (−0.23%) at all k levels.
These findings suggest that LVLMs generally ben-
efit from few-shot prompting, though the impact
varies. Claude 3.5 needed five examples for signifi-
cant improvements, GPT-4o just one. However, for
GPT-4o, using more than three examples may not
justify the token cost. Few-shot prompting primar-
ily results in style transfer of ground truth writing
style, but does not improve the vision component
(see Appendix D). Thus, a misinterpreted image
may be described in a style similar to the ground
truth, but the semantics will still differ.

Finding: 5-shot prompting improves GPT-4o
and Claude 3.5 performance most, while LLaVA
shows no benefit from few-shot prompting.

RQ3: To what extent does description type
affect scores?
We observed significant differences in the scores
between functional and visual descriptions com-
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pared to the ground truth. The average SBERT-
Score on functional description was 0.85 ± 0.1,
while the mean visual description SBERT-Score
was 0.69 ± 0.1, a relative difference of 23.65%
across all models. GPT-4o achieved both the high-
est average scores and the lowest gap between the
two types at 22.36%. Claude 3.5 came second with
a relative difference of 22.91%, whereas LLaVA
placed last with a large 27.31% margin between
mean scores for the two description types. These
differences were statistically significant between
all pairs of model and description type, as revealed
by a Friedman test (see Appendix C.3). These dif-
ferences may be attributed to several factors: The
context from vehicle manuals likely plays a cru-
cial role in enhancing the models’ understanding
of an icon’s function. Conversely, the lower per-
formance in visual descriptions highlights the chal-
lenges LVLMs face in interpreting complex graphi-
cal elements. While the models’ abilities of inter-
preting difficult icons is analyzed in Appendix C.5,
this discrepancy could also be attributed to the na-
ture of the ground truth, which was generated by
humans. Depending on the annotator, descriptions
might incorporate deeper domain knowledge and
cultural understanding on the one hand, or resort
to a basic description of geometric features and
similarity with other known symbols on the other.
More advanced models like GPT-4o may bridge
this gap better due to their larger size and improved
integration of visual and contextual understanding.

Finding: The image descriptions of all models
score significantly worse than their functional
counterparts. This may be influenced by the
context, the vision capabilities, and the large
variability in ways of describing images.

RQ4: Can models achieve comparable
performance using only text, or only images?
Table 4 compares the three models for zero-shot
prompting across three input levels (image and con-
text, image only, context only) using SBERT-Score
and METEOR metrics. All models performed best
with both image and context. For visual descrip-
tions, performance was worst without images. For
functional descriptions, performance was worst
without context.

Providing image and context generally per-
formed best (SBERT-Score: 0.75 ± 0.13), while
image- (0.7± 0.13) and context-only (0.68± 0.17)
were less effective. For functional descriptions,

context-only performed almost as well as image
and context (0.79±0.13 vs. 0.83±0.1). For visual
descriptions, image-only was close to image and
context (0.65 ± 0.11 vs. 0.67 ± 0.10). A Fried-
man test showed the differences for image & con-
text were always statistically significant for both
description types (see Appendix C.4). The only ex-
ception was GPT-4o, where image-only and image
plus context did not significantly differ for visual
descriptions. This experiment was conducted for
k = 0, and similar behavior is expected for k > 0.
These results highlight the benefit of multi-modal
inputs, especially for visual tasks.

Model Input

Claude i + c
3.5 i

c

GPT-4 i + c
i
c

LLaVA i + c
i
c

Visual
SB M

0.68 0.24
0.66 0.24
0.61 0.19

0.70 0.26
0.70 0.25
0.59 0.18

0.61 0.19
0.60 0.19
0.50 0.13

Functional
SB M

0.86 0.33
0.75 0.25
0.82 0.32

0.85 0.32
0.80 0.26
0.83 0.32

0.77 0.26
0.67 0.17
0.72 0.24

Table 4: Results for SBERT-score (SB) and METEOR
(M) on zero-shot results with 3 input levels: image-and-
context (i+c), image-only (i) and context-only (c).

Finding: Models generally performed best
when given both context & images. Depending
on the description type, using solely images or
context resulted only in a small score difference.

RQ5: How do automated scores relate to
human judgment?
The grand mean of all human ratings on the vi-
sual descriptions was 3.14 ± 1.35. Individual
means were 3.57 ± 1 for GPT-4o, 3.65 ± 1.17
for Claude 3.5, and 1.89 ± 1.18 for LLaVA. A
mixed-effects model analysis found no significant
difference between GPT-4o and Claude 3.5, but
both significantly outperformed LLaVA. LLaVA
overall scored very low (IQR: 1 – 2), suggesting
that while LLaVA’s descriptions share some se-
mantic similarity with ground truth, they lack or
misrepresent crucial elements that human raters
deem important. Inter-rater agreement analysis re-
vealed strong consensus among participants (see
Appendix C.6.3). The intraclass correlation co-
efficient (ICC) values indicate excellent agree-
ment (Koo and Li, 2016), with ICC(3, k) = 0.987
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(95% CI: [0.95, 1.0]). All participants consistently
ranked the models in the same order: Claude 3.5
slightly outperforming GPT-4o, with LLaVA re-
ceiving notably lower scores. Appendix C.6.2 pro-
vides more detailed analysis on the correlation of
automated metrics with human ratings, revealing
that all correlations with the automated metrics
were weak. Our analysis found SBERT cosine sim-
ilarity most consistent with human judgments while
providing easily interpretable scores. Traditional
metrics like METEOR and ROUGE showed high
correlation with human ratings but produced lower
average scores with high standard deviations.

Finding: The human evaluation confirms that
GPT-4o and Claude 3.5 are significantly better
than LLaVA, with strong inter-rater agreement.
Among the automatic metrics, SBERT-Score is
most consistent with human ratings.

4.4 Generalizability of Findings

While our findings provide valuable insights into
the current performance of LVLMs on vehicle icon
description tasks, the specific performance gaps we
observed between models may change as LVLMs
continue to evolve rapidly. Nevertheless, our gen-
eral findings - such as the importance of multi-
modal inputs and the challenges in visual interpre-
tation of abstract symbols - remain relevant. Future
LVLM versions may address some of the current
limitations, particularly in visual hallucinations and
abstract symbol interpretation. Researchers apply-
ing these findings to new models should consider
the specific architecture and training data of the
models, as these factors significantly influence per-
formance on specialized tasks like icon interpre-
tation. Moreover, as automotive technology ad-
vances, the nature and complexity of dashboard
icons may change, potentially requiring future re-
assessments of LVLM performance in this domain.

5 Conclusion

We have presented a novel application of large
vision-language models to generation of vehicle
dashboard icon descriptions. Our contributions
include a novel task for automatic generation of
visual and functional descriptions of automotive
icons, enabling QA systems to answer questions
about dashboard icons, which existing in-car QA
systems currently do not. We created a novel
dataset consisting of 408 different icons from four

different vehicle manufacturers for this specific do-
main and provided insights into challenges and
performance in an automotive context. The impact
includes improved driver safety through reduced
cognitive load, as drivers can quickly access clear
explanations of unfamiliar icons without manual
distraction. Our work furthermore assists the de-
velopment of easier to use and more powerful vehi-
cle assistants, which benefits drivers with varying
levels of automotive knowledge. Beyond driver as-
sistance, our methodology and findings may have
broader applications in evaluating LVLM perfor-
mance on abstract or symbolic images across vari-
ous domains, such as industrial design or medical
imaging.

For future work, we plan to fine-tune LLaVA
using our dataset, focusing on improving the vi-
sion encoder to better differentiate between icons
and reduce hallucinations. We will explore re-
placing LLaVA’s original CLIP ViT-L vision en-
coder with more capable versions, such as those
using Data Filtering Networks (DFN) (Fang et al.,
2023) and quick GELU (Hendrycks and Gimpel,
2023), which have shown improved performance
on ImageNet. Additionally, we aim to develop
new metrics that are more responsive to halluci-
nations in generated image descriptions, such as
visual-likeness aware named entity similarity. This
approach would capture that semantically different
objects (e.g., a tire cross-section and a horseshoe)
may describe similar shapes, while semantically
close items (e.g., a brake pedal and a brake disc)
may be visually distinct. We also plan to expand the
dataset by processing additional vehicle manuals
and collecting more human-generated descriptions.
With this study, we lay the groundwork for im-
proved icon interpretation in conversational driver
assistance systems and hope to contribute to the
development of more effective and user-friendly
automotive interfaces.

6 Limitations

We acknowledge several limitations with our study
and current dataset. As noted, we focused entirely
on vehicle manuals that were freely available and
in a structured format (HTML). There are many
more freely available vehicle manuals that are in
PDF format; however, these are much more diffi-
cult to parse consistently, in order to extract the
correct context text that goes with an image. We
decided that the challenges associated with PDF
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parsing were beyond current scope. Nevertheless,
this broader set of manuals is a valuable data source,
to which we hope to return in future. Further, since
this limited the size of our dataset, we did not con-
duct fine-tuning of the LLaVA model. With enough
additional data to preserve a respectable test set,
we hope to complete an evaluation of LLaVA fine-
tuning using an appropriate strategy, such as Low-
Rank Adaptation (LoRA) (Hu et al., 2022).

7 Acknowledgments

We would like to thank the anonymous reviewers
for their thoughtful and encouraging comments,
which have helped strengthen this paper. We also
extend our gratitude to Andrew Romanof and the
other volunteers for their valuable assistance with
dataset creation. This work is partially supported
by an NSERC Alliance grant from the Natural Sci-
ences and Engineering Research Council (NSERC)
of Canada.

References
Anthropic PBC. 2024. The Claude 3 Model Family:

Opus, Sonnet, Haiku.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

Johannes Buchner. 2024. ImageHash: A Python Per-
ceptual Image Hashing Module.

L. Elisa Celis and Vijay Keswani. 2020. Implicit Di-
versity in Image Summarization. Proc. ACM Hum.-
Comput. Interact., 4(CSCW2):139:1–139:28.

David Chan, Austin Myers, Sudheendra Vijaya-
narasimhan, David Ross, and John Canny. 2023. IC3:
Image captioning by committee consensus. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 8975–
9003, Singapore. Association for Computational Lin-
guistics.

Jun Chen, Han Guo, Kai Yi, Boyang Li, and Mohamed
Elhoseiny. 2022. VisualGPT: Data-Efficient Adapta-
tion of Pretrained Language Models for Image Cap-
tioning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
18030–18040.

Alex Fang, Albin Madappally Jose, Amit Jain, Ludwig
Schmidt, Alexander Toshev, and Vaishaal Shankar.
2023. Data Filtering Networks. arXiv preprint.

FCA US, LLC. 2024. Mopar Select Vehicle | Official
Mopar® Site.

Dan Hendrycks and Kevin Gimpel. 2023. Gaussian
Error Linear Units (GELUs). arXiv preprint.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan
Le Bras, and Yejin Choi. 2021. CLIPScore: A
reference-free evaluation metric for image captioning.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
7514–7528, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022.

ISO. 2021. ISO 2575:2021.

Jaguar Land Rover Limited. 2024. Jaguar / Land Rover
iGuide Online. Jaguar and Land Rover.

Terry K. Koo and Mae Y. Li. 2016. A Guideline of
Selecting and Reporting Intraclass Correlation Coef-
ficients for Reliability Research. Journal of Chiro-
practic Medicine, 15(2):155–163.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Annika Lindh, Robert J. Ross, Abhijit Mahalunkar, Gi-
ancarlo Salton, and John D. Kelleher. 2018. Generat-
ing Diverse and Meaningful Captions. In Artificial
Neural Networks and Machine Learning – ICANN
2018, pages 176–187, Cham. Springer International
Publishing.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023. Visual Instruction Tuning. In Advances in
Neural Information Processing Systems, volume 36,
pages 34892–34916.

Mazda Canada Inc. 2024. Owner’s Manuals for Vehi-
cles and Connected Services | Mazda Canada.

OpenAI, Josh Achiam, Stephen Adler, et al. 2024. GPT-
4 Technical Report. arXiv preprint.

Rita Ramos, Bruno Martins, Desmond Elliott, and Yova
Kementchedjhieva. 2023. SmallCap: Lightweight
Image Captioning Prompted With Retrieval Augmen-
tation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
2840–2849.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages

1114

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://github.com/JohannesBuchner/imagehash
https://github.com/JohannesBuchner/imagehash
https://doi.org/10.1145/3415210
https://doi.org/10.1145/3415210
https://doi.org/10.18653/v1/2023.emnlp-main.556
https://doi.org/10.18653/v1/2023.emnlp-main.556
https://openaccess.thecvf.com/content/CVPR2022/html/Chen_VisualGPT_Data-Efficient_Adaptation_of_Pretrained_Language_Models_for_Image_Captioning_CVPR_2022_paper.html
https://openaccess.thecvf.com/content/CVPR2022/html/Chen_VisualGPT_Data-Efficient_Adaptation_of_Pretrained_Language_Models_for_Image_Captioning_CVPR_2022_paper.html
https://openaccess.thecvf.com/content/CVPR2022/html/Chen_VisualGPT_Data-Efficient_Adaptation_of_Pretrained_Language_Models_for_Image_Captioning_CVPR_2022_paper.html
https://doi.org/10.48550/arXiv.2309.17425
https://www.mopar.com/en-us/my-garage/select-vehicle.html
https://www.mopar.com/en-us/my-garage/select-vehicle.html
https://doi.org/10.48550/arXiv.1606.08415
https://doi.org/10.48550/arXiv.1606.08415
https://doi.org/10.18653/v1/2021.emnlp-main.595
https://doi.org/10.18653/v1/2021.emnlp-main.595
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://www.iso.org/standard/68409.html
https://www.ownerinfo.jaguar.com/
https://www.ownerinfo.landrover.com/
https://doi.org/10.1016/j.jcm.2016.02.012
https://doi.org/10.1016/j.jcm.2016.02.012
https://doi.org/10.1016/j.jcm.2016.02.012
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.1007/978-3-030-01418-6_18
https://doi.org/10.1007/978-3-030-01418-6_18
https://papers.nips.cc/paper_files/paper/2023/hash/6dcf277ea32ce3288914faf369fe6de0-Abstract-Conference.html
https://www.mazda.ca/en/mazda-owners/Overview/owner-manuals/
https://www.mazda.ca/en/mazda-owners/Overview/owner-manuals/
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://openaccess.thecvf.com/content/CVPR2023/html/Ramos_SmallCap_Lightweight_Image_Captioning_Prompted_With_Retrieval_Augmentation_CVPR_2023_paper.html
https://openaccess.thecvf.com/content/CVPR2023/html/Ramos_SmallCap_Lightweight_Image_Captioning_Prompted_With_Retrieval_Augmentation_CVPR_2023_paper.html
https://openaccess.thecvf.com/content/CVPR2023/html/Ramos_SmallCap_Lightweight_Image_Captioning_Prompted_With_Retrieval_Augmentation_CVPR_2023_paper.html
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410


3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Dídac Surís, Sachit Menon, and Carl Vondrick. 2023.
ViperGPT: Visual Inference via Python Execution
for Reasoning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
11888–11898.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan. 2015. Show and Tell: A Neural
Image Caption Generator. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pages 3156–3164.

Volvo Canada. 2024. Volvo Support EN-CA.

Yonghui Wu, Mike Schuster, et al. 2016. Google’s
Neural Machine Translation System: Bridging the
Gap between Human and Machine Translation. arXiv
preprint.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. BERTScore:
Evaluating Text Generation with BERT. In Eighth
International Conference on Learning Representa-
tions.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and
Mohamed Elhoseiny. 2024. MiniGPT-4: Enhancing
vision-language understanding with advanced large
language models. In The Twelfth International Con-
ference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024.

A Data Collection Details

We collected images of dashboard icons from 42
vehicle manuals from four different manufacturers,
as shown in Table 5. All the manuals were avail-
able on the internet in HTML format (Jaguar Land
Rover Limited, 2024; Volvo Canada, 2024; Mazda
Canada Inc., 2024; FCA US, LLC, 2024).

Figure 1a and 1b show screenshots of the web-
site we developed to allow our volunteer human
labelers to provide icon image descriptions.

Make No. of Manuals Unique Icons
Jaguar Land Rover 16 107
Volvo 15 128
Stellantis 4 130
Mazda 7 43
Total 42 408

Table 5: Summary of dashboard icons by manufacturer.

B Prompts

Three prompt types were used in the zero-shot
study with multiple input levels:

• Image and Context. You are an AI visual assistant
specialized in interpreting icons displayed on the dash-
board of a vehicle. An icon communicates important
information about the vehicle to the driver. For example,
a particular icon may indicate that a seatbelt is not fas-
tened. You are seeing an image of a single dashboard
icon.

Briefly describe the dashboard icon depicted in the im-
age, focusing on the visual content of the image and
meaning of the icon. Limit your response to 2 sentences.
The first sentence should describe the visual content.
The second sentence should describe the icon’s mean-
ing. Format your response as a JSON object with the
following keys: ’visual_content’, ’meaning’. The image
has the following associated text:

<base64-encoded icon image> <context text for icon
image>

• Image Only. You are an AI visual assistant specialized
in interpreting icons displayed on the dashboard of a
vehicle. An icon communicates important information
about the vehicle to the driver. For example, a particular
icon may indicate that a seatbelt is not fastened. You are
seeing an image of a single dashboard icon.

Briefly describe the dashboard icon depicted in the im-
age, focusing on the visual content of the image and
meaning of the icon. Limit your response to 2 sentences.
The first sentence should describe the visual content.
The second sentence should describe the icon’s mean-
ing. Format your response as a JSON object with the
following keys: ’visual_content’, ’meaning’.

<base64-encoded icon image>

• Context Only (Imaginary Image). You are an AI vi-
sual assistant specialized in interpreting icons displayed
on the dashboard of a vehicle. An icon communicates
important information about the vehicle to the driver.
For example, a particular icon may indicate that a seat-
belt is not fastened. Imagine you are seeing an image
of a single dashboard icon that has an associated text
description.

Briefly describe the dashboard icon depicted in the im-
age, focusing on the visual content of the image and
meaning of the icon. Limit your response to 2 sentences.
The first sentence should describe the visual content.
The second sentence should describe the icon’s mean-
ing. Format your response as a JSON object with the
following keys: ’visual_content’, ’meaning’. The image
has the following associated text:

<context text for icon image>

Only one prompt type (image-and-context) was
used the k-shot evaluation, with k images and
ground truth descriptions appended as additional
messages before the query image:

• Image and Context. You are an AI visual assistant
specialized in interpreting icons displayed on the dash-
board of a vehicle. An icon communicates important
information about the vehicle to the driver. You are
seeing an image of a single dashboard icon. Briefly
describe the dashboard icon depicted in the image, fo-
cusing on the visual content of the image and meaning
of the icon. Limit your response to 2 sentences. The first
sentence should describe the visual content. The second
sentence should describe the icon’s meaning. Format
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(a) Instructions to volunteer labellers. (b) Icon labelling example

Figure 1: Screenshots of website used to gather image descriptions from volunteer labellers.

your response as a JSON object with the following keys:
’visual_content’, ’meaning’.

Briefly describe the dashboard icon depicted in this
image. The image has the following associated text:

<base64-encoded icon image from training set> <con-
text text for icon image> <simulated JSON response
based on ground truth descriptions in training set>

...

Briefly describe the dashboard icon depicted in this
image. The image has the following associated text:

<base64-encoded query image from test set> <context
text for icon image>

C Statistical Analysis

C.1 Effect of Model on SBERT-Score
Since the data was not normally distributed, a Fried-
man test was used to analyze the effect of the
model variable on the SBERT-Score. The results

Source W ddof1 ddof2 F p
model 0.744 1.995 812.005 1182.612 <0.001

Table 6: Friedman test: sbert_cosine ~ model.

revealed a statistically significant effect between
different levels of the model variable (see Table 6).
Wilcoxon signed-rank tests were conducted to com-

A B W-val p-corr hedges
claude-3-5 gpt-4 12206.0 <0.001 -0.442
claude-3-5 llava 974.0 <0.001 1.231
gpt-4 llava 23.0 <0.001 1.685

Table 7: Wilcoxon Signed-Rank post-hoc tests with
Holm–Bonferroni correction: sbert_cosine ~ model.

pare the SBERT-Scores between each pair of mod-
els and Holm-Bonferroni correction was applied

to adjust for multiple comparisons. All compar-
isons were statistically significant with p-values
less than 0.001 (see Table 7). Specifically, the
difference between Claude 3.5 and GPT-4o was
significant (W = 12206.0, p < 0.001, Hedges’
g = −0.442), indicating a moderate effect size.
Both, Claude 3.5 (W = 974.0, p < 0.001, Hedges’
g = 1.231) and GPT-4o (W = 23.0, p < 0.001,
Hedges’ g = 1.685) significantly outperformed
LLaVA, with the Hedges’ g-value indicating a large
effect size for both comparisons.

C.2 Effect of k-shot Level on SBERT-Score

model k-shot mean std min max
claude-3-5 0 0.770 0.123 0.383 0.980

1 0.772 0.115 0.384 0.985
3 0.771 0.116 0.388 0.982
5 0.780 0.121 0.396 1.000

gpt-4 0 0.777 0.117 0.407 0.994
1 0.801 0.115 0.447 1.000
3 0.803 0.113 0.411 1.000
5 0.806 0.115 0.435 1.000

llava 0 0.694 0.135 0.284 0.986
1 0.705 0.142 0.302 1.000
3 0.697 0.140 0.289 0.989
5 0.700 0.141 0.291 1.000

Table 8: Overview of SBERT scores by model and k-
shot level.

The grand means, standard deviation, and mini-
mum and maximum values for each model and
k-level can be seen in Table 8. As data was not
normally distributed, a Friedman test was con-
ducted (see Table 9), which revealed that the dif-
ference in k-level was only statistically signifi-
cant for GPT-4o (F3,1159 = 58.863, p < 0.001)
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Model W ddof1 ddof2 F p
gpt-4 0.132 2.995 1159.005 58.863 <0.001
claude-3-5 0.017 2.995 1159.005 6.596 <0.000
llava 0.003 2.995 1153.005 1.166 0.321

Table 9: Friedman test: sbert_cosine ~ model *
k-shot

and Claude 3.5 (F3,1159 = 6.596, p < 0.001),
but not for LLaVA (F3,1153 = 1.166, p > 0.05).
Again, Wilcoxon signed-rank pairwise tests with

Model A B W-val p-corr hedges
gpt-4 0 1 15356.0 <0.001 -0.388

0 3 15048.0 <0.001 -0.432
0 5 12980.0 <0.001 -0.466
1 3 32616.0 0.041 -0.039
1 5 31112.0 0.008 -0.077
3 5 34397.0 0.131 -0.039

claude-3-5 0 1 32851.0 0.121 -0.042
0 3 34515.0 0.291 -0.037
0 5 26739.0 <0.001 -0.168
1 3 37219.0 0.885 0.006
1 5 30450.0 0.005 -0.129
3 5 31960.0 0.045 -0.137

Table 10: Wilcoxon Signed-Rank post-hoc tests with
Holm–Bonferroni correction: sbert_cosine ~ model
* k-shot.

Bonferroni-Holm correction were used to for com-
paring k-shot prompting levels (A and B) for GPT-
4o and Claude 3.5 (see Table 10). For GPT-4o, sig-
nificant differences were observed between 0-shot
and 1-shot (W = 15356.0, p < 0.001, Hedges’
g = −0.388), 0-shot and 3-shot (W = 15048.0,
p < 0.001, Hedges’ g = −0.432), and 0-shot
and 5-shot (W = 12980.0, p < 0.001, Hedges’
g = −0.466). Effects between 1-shot and 3-shot
(W = 32616.0, p = 0.041, Hedges’ g = −0.039),
and 1-shot and 5-shot (W = 31112.0, p = 0.008,
Hedges’ g = −0.077) were also significant, but
much smaller. For Claude 3.5, significant differ-
ences were observed between 0-shot and 5-shot
(W = 26739.0, p < 0.001, Hedges’ g = −0.168).
Other differences between 1-shot and 5-shot (W =
30450.0, p = 0.005, Hedges’ g = −0.129), and
3-shot and 5-shot (W = 31960.0, p = 0.045,
Hedges’ g = −0.137) could also be observed, but
are insignificant given the problem and the lack of
a significant difference to the k = 0 level. Both
models show varying degrees of performance im-
provement with increasing k-shot levels, while the
biggest improvement can be consistently seen at

k = 5 level.

C.3 Effect of description type on
SBERT-Score

description model mean std min max
functional claude-3-5 0.811 0.113 0.344 0.980

gpt-4 0.829 0.108 0.373 0.994
llava 0.718 0.131 0.182 0.986

visual claude-3-5 0.651 0.111 0.269 0.897
gpt-4 0.664 0.113 0.235 0.918
llava 0.574 0.122 0.137 0.894

Table 11: Overview of SBERT cosine similarity scores
by description type and model.

The grand means, standard deviation, and mini-
mum and maximum values for each model and re-
spective description type can be found in Table 11.

C.4 Effect of the input-level on SBERT-Score,
for k = 0

description input model mean std min max
functional context-only claude-3-5 0.82 0.10 0.46 0.97

gpt-4 0.83 0.11 0.40 0.99
llava 0.72 0.14 0.18 0.98

image-and-context claude-3-5 0.86 0.09 0.39 0.98
gpt-4 0.85 0.09 0.41 0.99
llava 0.77 0.11 0.43 0.99

image-only claude-3-5 0.75 0.12 0.34 0.98
gpt-4 0.80 0.11 0.37 0.99
llava 0.67 0.11 0.23 0.95

visual context-only claude-3-5 0.61 0.11 0.29 0.86
gpt-4 0.59 0.12 0.23 0.88
llava 0.50 0.12 0.14 0.86

image-and-context claude-3-5 0.68 0.09 0.38 0.90
gpt-4 0.70 0.09 0.44 0.92
llava 0.61 0.11 0.28 0.89

image-only claude-3-5 0.66 0.11 0.27 0.88
gpt-4 0.70 0.09 0.30 0.90
llava 0.60 0.11 0.20 0.89

Table 12: Overview of SBERT-Scores by input, descrip-
tion type and model, for k = 0.

Table 12 compares the SBERT-Scores of the
three models across different three input types (see
Section 3.2) for both functional and visual descrip-
tions. Note that k = 0 for all of these results,
as few-shot prompting was not within the scope
for this part of the experiment. Generally, mod-
els perform better on functional descriptions com-
pared to visual ones. The image-and-context input
consistently yields the highest mean scores across
all models and description types. GPT-4o and
Claude 3.5 demonstrate similar performance, often
outperforming LLaVA, particularly in functional
tasks. All models show improved performance
when given both image and context compared to
either context or image alone. The data shows con-
siderable variability in scores, with standard devia-
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tions ranging from 0.09 to 0.14 and wide ranges be-
tween minimum and maximum values, likely stem-
ming from sample-dependent fluctuations. The

Model W ddof1 ddof2 F p-unc
0 gpt-4 0.231 1.995 812.005 122.192 <0.001
1 llava 0.235 1.995 812.005 125.047 <0.001
2 claude-3-5 0.298 1.995 812.005 173.177 <0.001

Table 13: Friedman test: sbert_cosine ~ input *
description_type * model

Friedman test results in Table 13 show significant
differences across input types for all three mod-
els, with p-values < 0.001. Post-hoc Wilcoxon

Model Description A B W-val p-corr hedges
gpt-4 visual c i+c 4600.0 <0.001 -1.067

visual c i 6276.0 <0.001 -1.015
visual i+c i 37276.0 0.122 0.047
functional c i+c 31423.0 0.002 -0.191
functional c i 30245.0 <0.001 0.259
functional i+c i 23192.0 <0.001 0.474

llava visual c i+c 9540.0 <0.001 -0.974
visual c i 14501.0 <0.001 -0.860
visual i+c i 36691.0 0.035 0.093
functional c i+c 22527.0 <0.001 -0.461
functional c i 28700.0 <0.001 0.384
functional i+c i 13745.0 <0.001 0.970

claude-3-5 visual c i+c 11767.0 <0.001 -0.737
visual c i 23117.0 <0.001 -0.466
visual i+c i 24519.0 <0.001 0.238
functional c i+c 23716.0 <0.001 -0.321
functional c i 19376.0 <0.001 0.643
functional i+c i 8579.0 <0.001 0.974

Table 14: Wilcoxon Signed-Rank post-hoc tests with
Holm–Bonferroni correction: sbert_cosine ~ input
* description_type * model.

signed-rank tests with Holm-Bonferroni correction,
as shown in Table 14 confirmed these performance
variations across input types and description tasks.
For visual descriptions, all models show significant
improvements when using image-and-context or
image-only inputs compared to context-only, with
generally larger effect sizes for image-and-context.
In functional descriptions, image-and-context con-
sistently outperforms other input types, while the
relationship between context-only and image-only
inputs varies by model. Claude 3.5 demonstrates
the most consistent pattern across both description
types, with significant differences and substantial
effect sizes between all input type pairs.

C.5 Effect of image difficulty on SBERT-Score

We evaluated the degree to which each model-
generated description relied on the content of the
image versus the manual context text. Using a zero-
shot strategy, each model was prompted to return

one visual description and one functional descrip-
tion of each icon image. Three types of prompts
were used in this evaluation: (1) the model was sup-
plied with both the encoded icon image and context
text; (2) only the encoded icon image was supplied
to the model; and (3) only the context text was sup-
plied. For this third case, the model was asked to
imagine an image that matched the supplied con-
text text and then return a visual description of the
imagined image.

We found a significant linear trend in the effect
of the difficulty on SBERT-Scores (β = −0.133,
p < 0.001), indicating a general decrease in per-
formance as difficulty increases. This weak mono-
tonic relationship was confirmed using Spearman’s
rank correlation (ρ = −0.254, p < 0.001).

As image complexity increases, model perfor-
mance decreases, with a weak to moderate negative
correlation between image difficulty and descrip-
tion accuracy.

C.6 Human Evaluation

C.6.1 Design Details
The human evaluation was designed using a bal-
anced incomplete block approach to assess 60 sam-
ples, representing 15% of the dataset. Six partici-
pants were recruited for the study, with each partic-
ipant evaluating a subset of the samples. The sam-
ples were divided into four blocks, each containing
15 samples. As shown in Figure 2, the evaluation

Figure 2: Balanced Incomplete Block Design for Hu-
man Evaluation

process followed a pattern where each participant
rated a specific set of samples across two different
blocks. The block design balanced the distribution
of samples among participants, with each partici-
pant assessing 30 samples in total, resulting in three
independent ratings per sample. The overlapping
blocks were chosen to mitigate potential biases that
could arise from assigning all samples to a single
rater. This proved effective, as discussed in the
following subsection.
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C.6.2 Results
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Figure 3: Average Human Evaluation Ratings by Model

A linear mixed-effects model analysis was con-
ducted to investigate the effect of different models
on the human evaluation ratings, the distribution
of which is shown in Figure 3. Model and partic-
ipant were treated as fixed effects, while the four
blocks were modeled as random effects. Addi-
tionally, individual images were accounted for us-
ing varying coefficients. The regression results in
Table 15 reveal significant differences in ratings
across models and participants. Neither Claude

Mixed Linear Model Regression Results
Model: MixedLM Dependent Variable: rating
No. Observations: 720 Method: REML
No. Groups: 4 Scale: 0.9765
Min. group size: 180 Log-Likelihood: -1058.0983
Max. group size: 180 Converged: Yes
Mean group size: 180.0

Coef. Std.Err. z P> |z| [0.025 0.975]
Intercept 3.874 0.153 25.375 0.000 3.575 4.174
C(model)[T.claude-3-5] 0.189 0.104 1.813 0.070 -0.015 0.393
C(model)[T.gpt-4] 0.106 0.104 1.013 0.311 -0.099 0.310
C(model)[T.llava] -1.572 0.104 -15.094 0.000 -1.776 -1.368
C(participant)[T.2] 0.040 0.141 0.287 0.774 -0.235 0.316
C(participant)[T.3] -0.593 0.152 -3.914 0.000 -0.890 -0.296
C(participant)[T.4] -0.457 0.142 -3.218 0.001 -0.735 -0.179
C(participant)[T.5] -0.542 0.141 -3.855 0.000 -0.817 -0.266
C(participant)[T.6] -0.928 0.142 -6.525 0.000 -1.207 -0.649
block Var 0.025 0.038
sample Var 0.189 0.054

Table 15: Linear Mixed Effects Model: rating ~
model + participant.

3.5 nor GPT-4o show statistically significant differ-
ences (p > 0.05). However, LLaVA demonstrates
a highly significant negative effect (p < 0.001),
with substantially lower ratings compared. Partici-
pant effects are evident, with all participants except
participant 2 rating significantly lower than the ref-
erence participant. Notably, the balanced incom-
plete block design with four overlapping blocks

(see Section 4.2) proved effective in mitigating the
impact of varying participant rating habits, as indi-
cated by minimal variability between experimental
blocks. While substantial variability was observed
between individual images, this was anticipated
given the varying degrees of difficulty in the image
set.

C.6.3 Inter-Rater Agreement
The inter-rater agreement for our human evalua-
tion was assessed using intraclass correlation co-
efficients (ICC) and visual inspection of the rat-
ings. Figure 4 presents the average scores for each
participant and model, revealing consistent trends
across raters. The ICC analysis shows strong agree-
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Figure 4: Ratings by Participant and Model

ment among raters. The ICC(3,k) value of 0.987
(95% CI: [0.95, 1.0]) indicates excellent agreement
for average fixed raters, and the ICC(1) value of
0.771 (95% CI: [0.43, 0.98]) suggests good agree-
ment even for single raters. These high ICC values
demonstrate reliable consensus among participants
in their assessments. Examining the ratings, we
observe that all participants consistently ranked the
models in the same order: Claude 3.5 slightly out-
performing GPT-4, with LLaVA receiving notably
lower scores. While there are some variations in
individual scoring patterns (e.g., participant 6 gen-
erally gave lower scores), the overall trends remain
consistent.

C.6.4 Correlation with Automated Metrics
To evaluate the performance of the different auto-
mated metrics in predicting human judgments of
image description quality, we conducted a Spear-
man’s rank correlation analysis with bootstrapping.
This approach allowed us to assess the robustness
of the correlation between each metric and human
ratings while mitigating the impact of individual
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samples. We performed 1000 bootstrap iterations,
calculating the Spearman’s rho for each metric in
each iteration. The outcome of this analysis can

0.25 0.3 0.35 0.4 0.45
0

0.2

0.4

0.6

0.8

1

Mean Human Rating

bertscore

google-bleu

sbert-cosine

CLIPScore
RefCLIPScore

bleu-4

meteor

rouge

Spearman’s ρ

M
ea

n
M

et
ri

c
Sc

or
e

Figure 5: Correlation of Automated Metrics with Hu-
man Ratings

be seen in Figure 5, all correlations were of posi-
tive, weak to moderate degree. The results revealed
that Meteor and ROUGE demonstrated the highest
correlations with human ratings (ρ = 0.439 and
ρ = 0.417 respectively), followed closely by the
SBERT-Score (ρ = 0.395). However, when consid-
ering both correlation strength and the interpretabil-
ity of the metric scores, SBERT-Score emerged as
the preferred choice. Unlike Meteor and ROUGE,
which produced lower average scores with high
standard deviations (0.26± 0.12 and 0.44± 0.17
respectively), SBERT-Score yielded a mean score
of 0.68, which aligned much more closely with
the average percentage of the human evaluation at
0.63 (calculated as 3.14

5 = 0.63). This balance be-
tween a comparably high correlation with human
judgements and producing easily interpretable sim-
ilarity scores made the SBERT-Score most suitable
for evaluating image descriptions in our context,
where both alignment with human perception and
general similarity levels were of importance.

D Additional Results

Icon Context

See DIESEL EXHAUST FLUID (DEF)
(RED)

Ground Truth Visual Description

This red dashboard icon depicts two hor-
izontal lines representing emissions from
the vehicle. Two drops of fluid are shown
on top of the horizontal lines with a wavy
line at the bottom.

k-shot Visual Description Generated by LLaVA

1 The icon is a red warning sign with the
words ’DIESEL EXHAUST FLUID’ and
an image of a car or vehicle

3 The dashboard icon displays a red fuel can-
ister symbol with wavy lines above it, sig-
nifying emission

5 The red dashboard icon shows an abstract
representation of a vehicle with two red
stars above it, suggesting energy or com-
bustion.

Table 16: Example of LLaVA generations with increas-
ing k for k-shot prompting.

1120


